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Abstract

We show that by modeling people as bounded finite
automata, we can capture at a qualitative level the be-
havior observed in experiments. We consider a decision
problem with incomplete information and a dynami-
cally changing world, which can be viewed as an ab-
straction of many real-world settings. We provide a sim-
ple strategy for a finite automaton in this setting, and
show that it does quite well, both through theoretical
analysis and simulation. We show that, if the probabil-
ity of nature changing state goes to 0 and the number
of states in the automaton increases, then this strategy
performs optimally (as well as if it were omniscient and
knew when nature was making its state changes). Thus,
although simple, the strategy is a sensible strategy for
a resource-bounded agent to use. Moreover, at a quali-
tative level, the strategy does exactly what people have
been observed to do in experiments.

1 Introduction
Our goal in this paper is to better understand how peo-
ple make decisions in dynamic situations with uncertainty.
There are many examples known where people do not seem
to be choosing acts that maximize expected utility. Various
approaches have been proposed to account for the behavior
of people, of which perhaps the best known is Kahnemann
and Tversky’s 1979 prospect theory.

One explanation for this inconsistency between expected
utility theory and real-life behavior has been that agents
are boundedly rational—they are rational, but computation-
ally bounded. The most commonly-used model of compu-
tationally bounded agents has been finite automata. Finite
automata were used by Rubinstein 1986 and Neyman 1985
to explain the behavior of people playing finitely repeated
prisoner dilemma. The only Nash equilibrium in finitely re-
peated prisoner’s dilemma is to always defect, but this is
clearly not what people do in practice. Rubinstein and Ney-
man showed (under different assumptions) that if we restrict
players to choosing a finite automaton to play for them,
there are equilibria with cooperation. (See (Papadimitriou
and Yannakakis 1994) for more recent results along these
lines.)
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Wilson 2002 considers a decision problem where an agent
needs to make a single decision, whose payoff depends on
the state of nature (which does not change over time). Na-
ture is in one of two possible states, G (good) and B (bad).
The agent gets signals, which are correlated with the true
state, until the game ends, which happens at each step with
probability η > 0. At this point, the agent must make a deci-
sion. Wilson characterizes an n-state optimal finite automa-
ton for making a decision in this setting, under the assump-
tion that η is small (so that the agent gets information for
many rounds). She shows that an optimal n-state automa-
ton ignores all but two signals (the “best” signal for each of
nature’s states); the automaton’s states can be laid out “lin-
early”, as states 0, . . . , n− 1, and the automaton moves left
(with some probability) only if it gets a strong signal for state
G, and moves right (with some probability) only if it gets a
strong signal for state B. Thus, roughly speaking, the lower
the current state of the automaton, the more likely from the
automaton’s viewpoint that nature’s state is G. (Very simi-
lar results were proved earlier by Hellman and Cover 1970.)
Wilson argues that these results can be used to explain ob-
served biases in information processing, such as belief po-
larization (two people with different prior beliefs, hearing
the same evidence, can end up with diametrically opposed
conclusions) and the fist-impression bias (people tend to put
more weight on evidence they hear early on). Thus, some
observed human behavior can be explained by viewing peo-
ple as resource-bounded, but rationally making the best use
of their resources (in this case, the limited number of states).

Wilson’s model assumes that nature is static. But in many
important problems, ranging from investing in the stock
market to deciding which route to take when driving to work,
the world is dynamic. Moreover, people do not make de-
cisions just once, but must make them often. For example,
when investing in stock markets, people get signals about
the market, and need to decide after each signal whether to
invest more money, take out money that they have already
invested, or to stick with their current position.

In this paper, we consider a model that is intended to cap-
ture the most significant features of a dynamic situation. As
in Wilson’s model, we allow nature to be in one of a number
of different states (for simplicity, like Wilson, in most of the
paper we assume that nature is in one of only two states), and
assume that the agent gets signals correlated with nature’s
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state. But now we allow nature’s state to change, although
we assume that the probability of a change is low. (Without
this assumption, the signals are not of great interest.)

Our choice of model is in part motivated by recent work
by psychologists and economists on how people behave in
such scenarios, and particularly that of Erev, Ert, and Roth
2010a, who describe contests that attempt to test various
models of human decision making under uncertain condi-
tions. In their scenarios, people were given a choice between
making a safe move (that had a guaranteed constant payoff)
and a “risky” move (which had a payoff that changed ac-
cording to an unobserved action of the other players). Since
their goal was that of finding models that predicted human
behavior well, Erev et al. 2010a considered a sequence of
settings, and challenged others to present models that would
predict behavior in these settings.

They also introduced a number of models themselves, and
determined the performance of these models in their set-
tings. One of those models is I-Saw (inertia, sampling, and
weighting) (Erev, Ert, and Roth 2010a); it performed best
among their models, with a correlation of 0.9 between the
model’s prediction and the actual observed results for most
variables. I-Saw assumes that agents have three types of re-
sponse mode: exploration, exploitation, and inertia. An I-
Saw agent proceeds as follows. The agent tosses a coin. If
it lands heads, the agent plays the action other than the one
he played in the previous step (exploration); if it lands tails,
he continues to do what he did in the previous step (inertia),
unless the signal received in the previous round crosses a
probabilistic “surprise” trigger (the lower the probability of
the signal to be observed in the current state, the more likely
the trigger is to be crossed); if the surprise trigger is crossed,
then the agent plays the action with the best estimated sub-
jective value, based on some sampling of the observations
seen so far (exploitation).

The winner of the contest was a refinement of I-Saw
called BI-Saw (bounded memory, inertia, sampling and
weighting) model, suggested by Chen et al. 2011. The major
refinement involved adding a bounded memory assumption,
whose main effect is a greater reliance on a small sample
of past observations in the exploitation mode. The BI-Saw
model had a normalized mean square deviation smaller than
1.4 for estimating the entry rate of the players, and smaller
than 1 for estimating the actual payoff they get, which was
better than the results of the I-Saw model.

I-Saw and BI-Saw seem quite ad hoc. In this paper, we
show that they can be viewed as the outcomes of play of
a resource-bounded agent modeled as a finite automaton.1
Specifically, we consider a setting where an agent must make

1Although the scenarios in (Erev, Ert, and Roth 2010a) are
games rather than decision problems, as observed in (Erev, Ert,
and Roth 2010b), learning in a decision problem should work es-
sentially the same way as learning in games, so, for simplicity, we
consider the former setting. The winner of a similar contest for
single agent decision problems (see Erev et al. 2010) was a prede-
cessor of the I-Saw model with very similar behavior modes. In our
setting, the agent’s actions do not influence nature, which is similar
to assumptions usually made in large economic markets, where a
single agent cannot influence the market.

a decision every round about playing safe (and getting a
guaranteed payoff) or playing a risky move, whose payoff
depends on the state of nature. We describe a simple strat-
egy for this agent, and show both theoretically and by simu-
lation that it does very well in practice. While it may not be
the optimal strategy if the agent is restricted to n states, we
show that as n goes to infinity and the probability of nature
changing state goes to 0, the expected payoff of this strat-
egy converges to the best expected payoff that the player
could get even if he knew the state of nature at all times.
Interestingly, this strategy exhibits precisely the features of
(I-Saw and) BI-Saw at a qualitative level. Thus, we believe
that (B)I-Saw can be best understood as the outcome of a
resource-bounded agent playing quite rationally.

Paper Outline: The rest of the paper is organized as fol-
lows. Section 2 describes our stylized model and the agent’s
strategy. Sections 3 presents our theoretical analysis of the
model. Section 4 describes the results of our simulations.
We conclude in Section 5.

2 The Model
We assume that nature is in one of two states G (“good”)
and B (“bad”); there is a probability π of transition between
them in each round. (In Section 4, we show that allowing
nature to have more states does not affect the results at a
qualitative level; similarly, while we could allow different
transition probabilities from G to B and from B to G, this
would not have an impact on our results.)

The agent has two possible actions S (safe) andR (risky).
If he plays S, he gets a payoff of 0; if he plays R he gets
a payoff xG > 0 when nature’s state is G, and a payoff
xB < 0 when nature’s state is B. The agent does not learn
his payoff, and instead gets one of k signals. Signal i has
probability pGi of appearing when the state of nature is G,
and probability pBi of appearing when the state is B. We as-
sume that the agent gets exactly one signal at each time step,
so that

∑k
i=1 p

G
i =

∑k
i=1 p

B
i = 1. This signaling mecha-

nism is similar to that considered by Wilson 2002 and Cover
and Hellman 1970. However, we assume that the agent gets
a signal only if he plays the risky action R; he does not get
a signal if he plays the safe action S. We denote this set-
ting S[pG1 , p

B
1 , . . . , p

G
k , p

B
k , xG, xB ]. We say that a setting is

nontrivial if there exists some signal i such that pBi 6= pGi .
If a setting is trivial, then no signal enables the agent to dis-
tinguish whether nature is in state G or B; the agent does
not learn anything from the signals. (Note that we have de-
liberately omitted nature’s transition probability π from the
description of the setting. That is because, in our technical
results, we want to manipulate π while keeping everything
else fixed.) One quick observation is that a trivial strategy
that plays one of S orR all the time gets a payoff of 0 in this
model, as does the strategy that chooses randomly between
S and R. We are interested in finding a simple strategy that
gets appreciably more than 0.2

2This model can be viewed as an instance of a “one-armed rest-
less bandit” (Whittle 1988) that does not have perfect information
about the state of the project. This kind of decision problem was
also tested (Biele, Erev, and Ert 2009), and the model that per-
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As suggested by the BI-Saw model, we assume that
agents have bounded memory. We model this by assum-
ing agents which are restricted to using a finite automaton,
with deterministic actions and probabilistic transitions, and
a fixed number n of internal states. The agent’s goal is to
maximize his expected average payoff.

We focus on one particular family of strategies (au-
tomata) for the agent. We denote a typical member
of this family A[n, pexp ,Pos,Neg , ru, rd]. The automa-
ton A[n, pexp ,Pos,Neg , ru, rd] has n + 1 states, denoted
0, . . . , n. State 0 is dedicated to playing S. In all other states
R is played. The k signals are partitioned into three sets, Pos
(for “positive”), Neg (for “negative”), and I (for “ignore” or
“indifferent”), with Pos and Neg nonempty. Intuitively, the
signals in Pos make it likely that nature’s state is G, and
the signals in Neg make it likely that the state of nature is
B. The agent chooses to ignore the signals in I; they are
viewed as not being sufficiently informative as to the true
state of nature. (Note that I is determined by Pos and Neg .)

In each round while in state 0, the agent moves to state 1
with probability pexp . In a state i > 0, if the agent receives
a signal in Pos , the agent moves to i + 1 with probability
ru (unless he is already in state n, in which case he stays
in state n if he receives a signal in Pos); thus, we can think
of ru as the probability the the agent moves up if he gets
a positive signal. If the agent receives a signal in Neg , the
agent moves to state i − 1 with probability rd (so rd is the
probability of moving down if he gets a signal in Neg); if
he receives a signal in I , the agent does not changes states.
Clearly, this automaton is easy for a human to implement (at
least, if it does not have too many states).

Note that this automaton incorporates all three behavior
modes described by the I-Saw model. When the automaton
is in state 0, the agent explores with constant probability by
moving to state 1. In state i > 0, the agent continues to do
what he did before (in particular, he stays in state i) unless
he gets a “meaningful” signal (one in Neg or Pos), and even
then he reacts only with some probability, so we have iner-
tia-like behavior. If he does react, he exploits the informa-
tion he has, which is carried by his current state; that is, he
performs the action most appropriate according to his state,
which isR. The state can be viewed as representing a sample
of the last few signals (each state represents remembering
seeing one more “good” signal), as in the BI-Saw model.

3 Theoretical analysis
In this section, we do a theoretical analysis of the expected
payoff of the automaton A[n, pexp ,Pos,Neg , ru, rd]. This
will tell us how to optimally choose the parameters Pos ,
Neg , ru, and rd. Observe that the most any agent can hope
to get is xG

2 . Even if the agent had an oracle that told him
exactly what nature’s state would be at every round, if he
performs optimally, he can get only xG in the rounds when
nature is in state G, and 0 when it is in state B. In expec-
tation, nature is in state G only half the time, so the opti-
mal expected payoff is xG/2. One of our results shows that,

formed best can be be viewed as a predecessor of the I-Saw model.

somewhat surprisingly, as n gets large, if π goes to 0 suffi-
ciently quickly, then the agent can achieve arbitrarily close
to the theoretical optimum using an automaton of the form
A[n, pexp ,Pos,Neg , ru, rd], even without the benefit of an
oracle, by choosing the parameters appropriately. More pre-
cisely, we have the following theorem.

Theorem 3.1 Let Π and Pexp be functions from IN to
(0, 1] such that limn→∞ nΠ(n) = limn→∞Π(n) =
limn→∞Π(n)/Pexp(n) = 0. Then for all settings
S[pG1 , p

B
1 , . . . , p

G
k , p

B
k , xG, xB ], there exists a partition

Pos,Neg , I of the signals, and constants rd and ru such that
limn→∞EΠ(n)[A[n, Pexp(n),Pos,Neg , ru, rd]] = xG

2 .

Note that in Theorem 3.1, Π(n) goes to 0 as n goes to
infinity. This requirement is necessary, as the next result
shows; for fixed π, we can’t get too close to the optimal no
matter what automaton we use (indeed, the argument below
applies even if the agent is not bounded at all).

Theorem 3.2 For all fixed 0 < π ≤ 0.5 and all automata
A, we have Eπ[A] ≤ xG/2 + πxB/2.

Proof: Suppose that the automaton had an oracle that, at
each time t, correctly told it the state of nature at the previous
round. Clearly the best the automaton could do is to play
S if the state of nature was B and play R if the state of
nature was G. Thus, the automaton would play R half the
time and G half the time. But with probability π the state
of nature will switch from G to B, so the payoff will be xB
rather than xG. Thus, the payoff that it gets with this oracle
is xG/2 + xBπ/2. (Recall that xB < 0.) We can think of
the signals as being imperfect oracles. The automaton will
do even worse with the signals than it will be with an oracle.

The theorem focuses on small values of π, since this is
the range of interest for our paper. We can prove a result in
a similar spirit even if 0.5 < π < 1.

The key technical result, from which Theorem 3.1 follows
easily, gives us a very good estimate of the payoff of the au-
tomaton A[n, pexp ,Pos,Neg , ru, rd], for all choices of the
parameters. We state the estimate in terms of n, π, pexp and
four auxiliary quantitites, ρGu , ρBu , ρGd , and ρBd , Intuitively,
ρNu is the probability of the automaton changing states from
i to i+ 1 (going “up”) when nature is in state N and i ≥ 1,
and ρNd is the probability of the automaton changing states
from i to i−1 (going “down”) given that nature is in stateN .
Thus, ρNu = (

∑
i∈Pos p

N
i )ru and ρNd = (

∑
i∈Neg p

N
i )rd.

We define σN = ρNu /ρ
N
d . Recall that when the automaton

is in state 0, it does not get any signals; rather, it explores
(moves to state 1) with probability pexp .

Proposition 3.3

Eπ[A[n, pexp ,Pos,Neg , ru, rd]] ≥
xG
2

(
1− (ρGu−ρ

G
d )+π(

∑n
i=1(σG)i−n)

(ρGu−ρGd )+pexp((σG)n−1)

)
+

xB
2

(
1− (ρBu−ρ

B
d )−π(

∑n
i=1(σB)i−n)

(ρBu−ρBd )+pexp((σB)n−1)

)
.

(1)

We sketch a proof of Proposition 3.3 in the next section.
Although the expression in (1) looks rather complicated, it
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gives us just the information we need, both to prove Theo-
rem 3.1 and to define an automaton that does well even when
n is finite (and small).
Proof of Theorem 3.1: We want to choose Pos , Neg , ru,
and rd so that ρGu > ρGd —the agent is more likely to go up
than down when nature is in state G (so that he avoids going
into state 0 and getting no reward) and ρBd > ρBu —the agent
is more likely to go down than up when nature is in state B
(so that he quickly gets into state 0, avoiding the payoff of
−1). Suppose that we can do this. If ρGu > ρGd , then σG > 1,
so the first term in the expression for the lower bound of
EΠ(n)[A[n, Pexp(n),Pos,Neg , ru, rd]] given by (1) tends to
xG
2 (1 − Π(n)

Pexp(n) ) as n → ∞. Since we have assumed that
limn→∞Π(n)/Pexp(n) = 0, the first term goes to xG/2. If
ρBu < ρBd , then σB < 1, so the second term goes to

xB
2

(
1−

(ρBu − ρBd ) + Π(n) σB
1−σB + nΠ(n)

(ρBu − ρBd )− Pexp(n)

)
.

Since we have assumed that limn→∞ nΠ(n) =
limn→∞ Pexp(n) = 0, the second term goes to 0.

Now we show that we can choose Pos , Neg , rB , and rG
so that ρGu > ρGd and ρBd > ρBu . By assumption, there ex-
ists some signal i such that pGi 6= pBi . Since

∑k
i=1 p

G
i =∑k

i=1 p
B
i (= 1), it must be the case that there exists some

signal i such that pGi > pBi . Let Pos = {i}. If there ex-
ists a signal j such that pGj < pBi and pBj > pBi , then
let Neg = {j} and ru = rd = 1. Otherwise, let Neg =
{1 . . . k} \ {i}, ru = 1, and let rd be any value such that
pGi

1−pBi
< rd <

pGi
1−pGi

. It is easy to check that, with these
choices, we have σG > 1 and σB < 1. This completes the
proof of Theorem 3.1.

As we said, Proposition 3.3 gives us more than the means
to prove Theorem 3.1. It also tells us what choices to make
to get good behavior of n is finite. In Section 4, we discuss
what these choices should be.

3.1 Proving Proposition 3.3
In this section, we sketch a proof of Proposition 3.3.

Once we are given π and a setting
S[pG1 , p

B
1 , . . . , p

G
k , p

B
k , xG, xB ], an automaton

A[n, pexp ,Pos,Neg , ru, rd] determines a Markov chain,
with states of (0, G), . . . , (n,G), (0, B), . . . , (n,B), where
the Markov chain is in state (i,N) if nature is in state N
and the automaton is in state i. The probability of transition
is completely determined by π, the parameters of the
automaton, and the setting.

Let qNi (s, t) be the probability of the Markov chain be-
ing in state (i,N) at time t when started in state s. We are
interested in limt→∞ qNi (s, t). In general, this limiting prob-
ability may not exist and, even when it does, it may depend
on the state the Markov chain starts in. However, there are
well known sufficient conditions under which the limit ex-
ists, and is independent of the initial state s. A Markov chain
is said to be irreducible if every state is reachable from ev-
ery other state; it is aperiodic if, for every state s, there exist

two cycles from s to itself such that the gcd of their lengths
is 1. The limiting probaility exists and is independent of the
start state in every irreducible aperiodic Markov chain over
a finite state space (Resnick 1992, Corollary to Proposition
2.13.5). Our Markov chain is obviously irreducible; in fact,
there is a path from every state in it to every other state. It is
also aperiodic. To see this, note that if 0 < i ≤ n, there is a
cycle of length 2i that can be obained by starting at (i,N),
going to (0, N) (by observing signals in Neg and nature not
changing state) starting (0, N) and going back up to (i,N).
At (0, N), there is a cycle of length 1. Thus, we can get a cy-
cle of length 2i+ 1 starting at (i,N). Since we can go from
(0, B) to (0, G) and back, there is also a cycle of length 2
from every state (0, N). Since a limiting probability exists,
we can write qNi , ignoring the arguments s and t.

We are particularly interested in the qB0 and qG0 , because
these quantities completely determine the agent’s expected
payoff. As we have observed before, since the probability of
transition from B to G is the same as the probability tran-
sition from G to B, nature is equally likely to be in state B
and G. Thus,

∑n
i=0 q

B
i =

∑n
i=0 q

G
i = 1/2. Now the agent

gets a payoff of xG when he is in state i > 0 and nature
is in state G; he gets a payoff of xB when he is in state
i > 0 and nature is in state B. Thus, his expected payoff is
xG(1/2− qG0 ) + xB(1/2− qB0 ).

It remains to compute qB0 and qG0 . To do this, we need to
consider qNi for all values of i. We can write equations that
characterize these probabilities. Let N̄ be the state of nature
other than N (so B̄ = G and Ḡ = B). Note that for a time
t after (i,N) has reached its limiting probability, then the
probability of state (i,N) has to be the same at time t and
time t + 1. If i > 0, the probability of the system being in
state (i,N) at time t+ 1 is the sum of the probability of (a)
being in state (i+1, N) (or (n,N) if i = n), getting a signal
in Neg and reacting to it, and nature not changing state, (b)
being in state (i−1, N), getting a signal in Pos and reacting
to it (or, if i = 1, the system was in state (i, 0) and the
agent decided to explore), and nature did not change state,
(c) being in state (i,N), getting a signal in I , and nature not
changing state, (d) three further terms like (a)–(c) where the
system state is (j, N̄) at time t, for j ∈ {i − 1, i, i + 1}
and nature’s state changes. There are similar equations for
the state (0, N), but now there are only four possibilities: (a)
the system was in state (1, N) at time t, the agent observed
a signal in Neg and reacted to it, and nature’s state didn’t
change, (b) the system was in state (0, N) and the agent’s
state didn’t change, and (c) two other analogous equations
where nature’s state changes from N̄ to N .

These considerations give us the following equations:

qN0 = (1− π)((1− pexp)qN0 + ρNd q
N
1 )

+π((1− pexp)qN̄0 + ρN̄d q
N̄
1 )

qN1 = (1− π)((1− ρNd − ρNu )qN1 + ρNd q
N
2 + pexpq

N
0 )

+π((1− ρN̄d − ρN̄u )qN̄1 + ρN̄d q
N̄
2 + pexpq

N̄
0 )

...
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qNi = (1− π)((1− ρNd − ρNu )qNi + ρNd q
N
i+1 + ρNu q

N
i−1)

+π((1− ρN̄d − ρN̄u )qN̄i + ρN̄d q
N̄
i+1 + ρN̄u q

N̄
i−1)

...
qNn = (1− π)((1− ρNd )qNn + ρNu q

N
n−1)

+π((1− ρN̄d )qN̄n + ρN̄u q
N̄
n−1).

(2)
These equations seem difficult to solve exactly. But we

can get very good approximate solutions. Define:

γNi = π((1− ρN̄d − ρN̄u )qN̄i + ρN̄d q
N̄
i+1 + ρN̄u q

N̄
i−1)

−π((1− ρNd − ρNu )qNi + ρNd q
N
i+1 + ρNu q

N
i−1)

for i = 2, . . . , n;

γN1 = π((1− ρN̄d − ρN̄u )qN̄i + ρN̄d q
N̄
i+1 + pexp

−π((1− ρNd − ρNu )qNi + ρNd q
N
i+1 + pexp);

γN0 = π((1− ρN̄d )qN̄n + ρN̄u q
N̄
n−1)− ρN̄d qN̄1 .

Note that γNi is essentially a subexpression of qNi . Intu-
itively, γNi is the net probability transferred between states
of (i,N) from (or to) states of the form (j, N̄) as a re-
sult of nature changing from N to N̄ or from N̄ to N . Let
(γNi )+ = γNi if γNi > 0 and 0 otherwise; let (γNi )− = γNi if
γNi < 0 and 0 otherwise. Intuitively, (γNi )+ is the net prob-
ability transferred to (i, n) from states of the form (j, N̄) as
a result of nature’s state changing from N̄ to N ; similarly,
(γNi )− is the net probability transferred from (i,N) to states
of the form (j, N̄) as a result of nature’s state changing from
N to N̄ . Since

∑N
i=0 q

N
i = 1/2, it is easy to check that∑n

i=0 γ
N
i = 0;

−π/2 ≤
∑n
i=0(γNi )− ≤ 0 ≤

∑n
i=0(γNi )+ ≤ π/2. (3)

We can now rewrite the equations in (2) using the γNi ’s to
get:

qN0 = (1− pexp)qN0 + ρNd q
N
1 + γN0

qN1 = (1− ρNd − ρNu )qN1 + ρNd q
N
2 + pexpq

N
0 + γN1

...
qNi = (1− ρNd − ρNu )qNi + ρNd q

N
i+1 + ρNu q

N
i−1 + γNi

...
qNn = (1− ρNd )qNn + ρNu q

N
n−1 + γNn .

(4)
Although γNi is a function, in general, of qNi , qNi ,qNi−1,qN̄i ,

qN̄i , and qN̄i−1, we can solve (4) by treating it as a constant,
subject to the contraints in (3). This allows us to break the
dependency between the equations for qB0 , . . . , q

B
n and those

for qG0 , . . . , q
G
n , and solve them separately. This makes the

solution much simpler.
By rearranging the arguments, we can express qNn as a

function of only qNn−1, ρNu , ρNd , and γNn . By then substituting
this expression (where the only unknown is qNn−1) for qNn
in the equation for qNn−1 and rearranging the arguments, we
can express qNn−1 in terms of qNn−2 (and the constants ρNu ,
ρNd , γNn , and γNn−1). In general, we can compute qNi as a
function of qNi−1 (and the constants ρNu , ρNd , γNi , and γNi−1),
and then substitute for it.

These calcuations (which are left to the full paper) give us
the following equation for qN0 :

(1 +
pexp((σN )n−1)

ρNu −ρNd
)qN0 =

1/2 +
∑n
i=1 γ

N
i

i−
∑i
j=1((σN )n−j+1

ρNu −ρNd
.

(5)

Moreover, all the terms that are multipled by γi in (5) are
negative, and, of these, the one multiplied by γn is the
largest in absolute value. Given the constraints on (γNi )+

and (γNi )− in (3), this means that we get a lower bound on
qN0 by setting γNn = π/2, γN0 = −π/2, and γNi = 0 for
i 6= 0, n. This is quite intuitive: In order to make qN0 as
small as possible, we want all of the transitions from N to
N̄ to happen when the automaton is in state 0, and all the
transitions from N̄ to N to happen when the automaton is
in state n, since this guarantees that the expected amount
of time that the automaton spends in a state i > 0 is maxi-
mized. Similarly, to make qN0 as large as possible, we should
set γN0 = π/2, γNn = −π/2, and γNi = 0 for i 6= 0, N .

Making these choices and doing some algebra, we get that

qN0 ≥ 1
2 (

(ρNu −ρ
N
d )−π(

∑n
i=1 σ

i
N−n)

(ρNu −ρNd )+pexp((σiN )n−1)
)

qN0 ≤ 1
2 (

(ρNu −ρ
N
d )+π(

∑n
i=1 σ

i
N−n)

(ρNu −ρNd )+pexp((σiN )n−1)
).

As we have observed before,
Eπ[A[n, pexp ,Pos,Neg , ru, rd]] = (1/2 − qG0 )xG +
(1/2 − qB0 )xB . Plugging in the upper bound for qG0 and
the lower bound for qB0 gives us the required estimate for
Proposition 3.3, and completes the proof.

4 Experimental Results
In the first part of this section, we examine the performance
of A[n, pexp ,Pos,Neg , ru, rd] with n finite. Using our the-
oretical analysis, we come up with an estimate of the per-
formance of the automaton, and show that our theoretical
estimate is very close to what we observe in simulation. In
the second part of the section, we show that the ideas under-
lying our automaton can be generalized in natural way to a
setting where nature has more than two possible states.

4.1 Two states of nature
We focus mostly on scenarios where π = 0.001, as when
nature changes too often, learning from the signals is mean-
ingless (although even for a larger value of π, with a strong
enough signal, we can get quite close to the optimal pay-
off; with smaller π the problem is easier). For simplicity,
we also consider an example where |xB | = |xG| (we used
xG = 1, xB = −1, but the results would be identical for any
other choice of values). We discuss below how this assump-
tion influences the results.

Again, for definiteness, we assume that there are four sig-
nals, 1, . . . , 4, which have probabilities 0.4, 0.3, 0.2, and 0.1,
respectively, when the state of nature is G, and probabilities
0.1, 0.2, 0.3, and 0.4, respectively, when the state of nature is
bad. We choose signal 1 to be the “good” signal (i.e., we take
Pos = {1}), and take signal 4 to be the “bad” signal (i.e.,
we take Neg = {4}), and take ru = rd = 1. We ran the pro-
cess for 108 rounds (although the variance was already quite
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Figure 1: Average payoff as a function of the number of
states

small after 106 rounds, and we got good payoff even with
105, which is approximately 100 switches between states),
using a range of pexp values, and took the result of the best
one. We call this poptexp(n) . As can be seen in Figure 1, the
automaton A[n, poptexp(n), {1}, {4}, 1, 1] does well even for
small values of n. The optimal expected payoff for an agent
that knows nature’s state is 0.5. With 4 states, the automaton
already gets an expected payoff of more than 0.4; even with
2 states, it gets an expected payoff of more than 0.15.

We also compared the simulation results to the lower
bound given by Proposition 3.3 (the “est” line in Figure 1).
As can be seen, the lower bound gives an excllent estimate
of the true results. This is actually quite intuitive. The worst-
case analysis assumes that all transitions from B to G hap-
pen when the automaton is in state 0, and all transitions from
G to B happen when the automaton is in state n. But when
nature is in state B, a “good” automaton should spend most
of its time in state 0; similarly, when nature is in state G, a
“good” automaton should spend most of its time in state n
(as a result of getting good signals). Thus, the assumptions
of the worst-case analysis are not far from what we would
expect of a good automaton.

Equation (1) suggests that while nature is in state G, as
the number of states grow, the loss term (that is, the minus
term in the xG/2 factor) decreases rapidly. The exact rate of
decrease depends on σG. We can think of σG as describing
the quality of the signals that the automaton pays attention
to (those in Pos and Neg) when nature is in state G. From
equation (1), we see that as the number of states grows this
loss reduces to πσG

pexp(σG−1)
. So the agent’s optimal choice is

to set the parameters of the automaton so that the ratio is
as large as possible. This allows him to both decrease the
loss as fast as possible (with regards to number of states he
needs) and to get to the minimal loss possible.

There is of course a tradeoff between σG and σB . The
loss while nature is in stateB also decreases rapidly with the
number of states, and the rate is dependent on 1/σB . As the

number of states grows this loss reduces to
pexp+π(

σB
1−σB

−n)

pexp+ρBd −ρBu
.

The graph also shows that, somewhat surprisingly, hav-
ing too many states can hurt, if we fix Pos , Neg , ru, and
rd. The lower bound in (1) actually bears this out. The rea-
son that more states might hurt is that, after a long stretch of
time with nature being in state G, the automaton will be in
state n. Then if nature switches to state B, it will take the
automaton a long time to get to state 0. All this time, it will
get a payoff of −1. (Of course, if we allowed the automaton
a wider range of strategies, including not using some states,
then having more states can never hurt. But we are consider-
ing only automata of the form A[n, pexp ,Pos,Neg , ru, rd].)
In a sense, this can be viewed as an explanation of the re-
cency bias observed in real decision makers—the tendency
to place significantly more weight on recent observations.
While the recency bias has often been viewed as inappropri-
ate, these experiments can show that it can be helpful. With
more states, more can be remembered, and it becomes harder
to “convince” the automaton to change its mind when na-
ture’s state actually changes. Having less memory, and thus
being more easily influenced by the last few signals, may be
more adaptive. By way of contrast, in Wilson’s 2002 model,
nature is static. The optimal automaton in Wilson’s setting
displayed a strong first-impression bias: early observations
were extremely influential in the final outcome, rather than
recent observations.

We can do a little better by decreasing ru, thus increas-
ing the amount of time it will take the automaton to get to
state n when nature is in state G. While this helps a lit-
tle, the effect is not great (we provide more details in the
full paper). Moreover, we do not think it is reasonable to
expect resource-bounded agents to “fine-tune” the value of
parameters depending on how many states they are willing
to devote to a problem. Fortunately, as our experimental re-
sults show, they do not need to do such fine-tuning for a
wide range of environment settings. There is another trade-
off when choosing the value of pexp , which lies at the heart
of the exploration-exploitation dilemma. Clearly, if the au-
tomaton is in state 0 and nature is in state G, the automaton
wants to explore (i.e., move to state 1 and play R) so as to
learn that nature is in state G. There are two reasons that the
automaton could be in state 0 while nature is in state G. The
first is that the automaton gets a sequence of “bad” signals
when nature is in state G that force it to state 0. Clearly this
is less likely to happen the more states the automaton has.
The second is that nature may have switched from B to G
while the automaton was in state 0.

Since nature switches from B to G with probability π, a
first cut at the exploration probability might be π. However,
this first cut is too low an estimate for two reasons. First,
the fewer states an automaton has, the more sensitive it is to
“bad” signals. Thus, the fewer states an automaton has, the
more it should explore. Second, the cost of exploring while
nature is in state B is small in comparison to the gain of ex-
ploring and discovering out nature has switched to state G.
Again, this suggests an increase in the exploration probabil-
ity. Indeed, we observe that as π gets smaller the optimal
pexp value gets smaller, but not in the same ratio. The opti-
mal agent explores less, but still chooses pexp higher than π.
For example, with n = 6, when changing π from 0.001 to
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0.0001 the optimal pexp only changed from 0.023 to 0.008.
In our simulation, we chose the optimal value of pexp rela-

tive to the number of states; this value did not change signif-
icantly as a function of the number of states or of the signal
profiles. For example, taking pexp = 0.03 resulted in pay-
offs very similar to those with the optimal value of pexp for
all n ≥ 5, and for a wide range of signal profiles while fixing
n to 6. This robustness supports our contention that agents
do not typically need to fine tune parameter values.

4.2 More states of nature
We now consider a setting where nature can have more than
two states. Specifically, we allow nature to have t+ 1 states,
which we denote B,G1, G2, . . . , Gt. In each state, there is
probability of π of transitioning to any other state. Again,
we have k signals, and the probability of observing signal
i is state dependent. The agent has t + 1 available actions
{S,E1, E2, . . . , Et}. As before, S is the “safe” action; play-
ing S gives the agent a payoff 0, but also results in the agent
receiving no signal. Playing Ei if the state of nature is B
result in a payoff of xB < 0; playing Ei when the state of
nature is Gi gives the agent a payoff of xG > 0; playing Ei
when the state of nature is Gj for i 6= j gives a payoff of 0.

We generalize the family of automata we considered ear-
lier as follows. The family we consider now consists of prod-
uct automata, with states of the form (s0, s1, . . . , st). Each
si takes on an integer value from 0 to some maximum n. In-
tuitively, the s0 component keeps track of whether nature is
in state B or in some state other than B; the si component
keeps track of how likely the state is to beGi. If s0 = 0, then
the automaton plays safe, as before. Again, if s0 = 0, then
with probability pexp the automaton explores and changes
s1 to 1. If s1 > 0, then the automaton plays the action cor-
responding to the state of nature Gi for which si is greatest
(with some tie-breaking rule).

We did experiments using one instance of this setting,
where nature was in one of five possible states—4 good
states and one bad state—and there were six possible sig-
nals. We assumed that there was a signal pi that was “good”
for state Gi: it occurred with probability .6 when the state
of nature was Gi; in state Gj with j 6= i, pi occurred with
probability 0.08; similarly, there was a signal that was highly
correlated with state B; the sixth signal was uninformative
with probability 0.08 in all states. We considered an automa-
ton for the agent where each of component of the product
had five states (so that there were 55 = 3125 states in the
automaton. In this setting, the optimal payoff is 0.8. The au-
tomaton performed quite well: it was able to get a payoff of
0.7 for an appropriate setting of its parameters. Again, we
discuss this in more detail in the full paper.

5 Conclusion
We have shown that observed human behavior that appears
to be irrational can actually be understood as the outcome of
a resource-bounded agent that is maximizing his expected
utility. We plan to use this approach of looking for simple,
easy-to-implement strategies with low computational cost
that perform well in real scenarios to explain other observed
biases in decision making.

Acknowledgments: We thank Ido Erev and the review-
ers for useful comments. Halpern and Seeman were sup-
ported in part by NSF grant IIS-0812045, and AFOSR grants
FA9550-08-1-0438 and FA9550-09-1-0266, and by ARO
grant W911NF-09-1-0281. Pass was supported in part by
a Alfred P. Sloan Fellowship, Microsoft New Faculty Fel-
lowship, NSF CAREER Award CCF-0746990, AFOSR YIP
Award FA9550-10-1-0093, and DARPA and AFRL under
contract FA8750-11-2- 0211. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US government.

References
Biele, G.; Erev, I.; and Ert, E. 2009. Learning, risk atti-
tude and hot stoves in restless bandit problems. Journal of
Mathematical Psychology 53(3):155–167.
Chen, W.; Liu, S.-Y.; Chen, C.-H.; and Lee, Y.-S. 2011.
Bounded memory, inertia, sampling and weighting model
for market entry games. Games 2(1):187–199.
Erev, I.; Ert, E.; Roth, A.; Haruvy, E.; Herzog, S.; Hau, R.;
Hertwig, R.; Stewart, T.; West, R.; and Lebiere, C. 2010. A
choice prediction competition: Choices from experience and
from description. Journal of Behavioral Decision Making
23(1):15–47.
Erev, I.; Ert, E.; and Roth, A. 2010a. A choice predic-
tion competition for market entry games: An introduction.
Games 1:117–136.
Erev, I.; Ert, E.; and Roth, A. 2010b. Market en-
try prediction competition web site. Available online at
https://sites.google.com/site/gpredcomp/.
Hellman, M. E., and Cover, T. M. 1970. Learning with finite
memory. The Annals of Mathematical Statistics 41(3):pp.
765–782.
Kahneman, D., and Tversky, A. 1979. Prospect theory: an
analysis of decision under risk. Econometrica 47(2):263–
292.
Neyman, A. 1985. Bounded complexity justifies coopera-
tion in finitely repated prisoner’s dilemma. Economic Let-
ters 19:227–229.
Papadimitriou, C. H., and Yannakakis, M. 1994. On com-
plexity as bounded rationality. In Proc. 26th ACM Sympo-
sium on Theory of Computing, 726–733.
Resnick, S. I. 1992. Adventures in Stochastic Processes.
Birkhauser.
Rubinstein, A. 1986. Finite automata play the repeated pris-
oner’s dilemma. Journal of Economic Theory 39:83–96.
Whittle, P. 1988. Restless bandits: Activity allocation in a
changing world. Journal of Applied Probability 287–298.
Wilson, A. 2002. Bounded memory and biases in informa-
tion processing. Manuscript.

1923




