
Conditioning in First-Order Knowledge
Compilation and Lifted Probabilistic Inference

Guy Van den Broeck and Jesse Davis
Department of Computer Science, KU Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
guy.vandenbroeck@cs.kuleuven.be

Abstract
Knowledge compilation is a powerful technique for com-
pactly representing and efficiently reasoning about logical
knowledge bases. It has been successfully applied to numer-
ous problems in artificial intelligence, such as probabilistic
inference and conformant planning. Conditioning, which up-
dates a knowledge base with observed truth values for some
propositions, is one of the fundamental operations employed
for reasoning. In the propositional setting, conditioning can
be efficiently applied in all cases. Recently, people have ex-
plored compilation for first-order knowledge bases. The ma-
jority of this work has centered around using first-order d-
DNNF circuits as the target compilation language. However,
conditioning has not been studied in this setting. This paper
explores how to condition a first-order d-DNNF circuit. We
show that it is possible to efficiently condition these circuits
on unary relations. However, we prove that conditioning on
higher arity relations is #P-hard. We study the implications
of these findings on the application of performing lifted infer-
ence for first-order probabilistic models. This leads to a better
understanding of which types of queries lifted inference can
address.

1 Introduction
Knowledge compilation is a powerful technique for reason-
ing about logical theories or knowledge bases. Knowledge
compilation transforms or compiles a logical theory into a
circuit language where certain inferences (e.g., model count-
ing or consistency checking) can be done in polynomial time
in the size of the circuit. With the circuit, it is possible to ef-
ficiently answer a large number of queries. While the com-
pilation step may be computationally expensive, it is a one
time cost that can be amortized over all subsequent queries.

Circuit reuse is one of the main computational advantages
of compilation. Transformations modify the compiled cir-
cuit, enabling it to answer additional queries. Applying an
efficient transformation is much cheaper than modifying the
original theory and recompiling. Conditioning, which is a
important operation in logic, is such a transformation. It
updates a knowledge base to incorporate information about
the truth values of a set of literals in the theory. All circuits
in the propositional knowledge compilation map (Darwiche
and Marquis 2002) support polynomial time conditioning.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Traditionally, knowledge compilation primarily focused
on propositional logic. Recently, we have proposed a first-
order circuit language, called first-order deterministic de-
composable negation normal form (FO d-DNNF) circuits,
and a compilation algorithm for first-order theories (Van den
Broeck et al. 2011; Van den Broeck 2011). In contrast
to its wide support in propositional knowledge compilation,
it is currently unknown whether conditioning in first-order
knowledge compilation is possible. This paper makes two
key contribution about the feasibility and complexity of con-
ditioning FO d-DNNF circuits. The first is an algorithm to
efficiently condition a FO d-DNNF on both propositions and
unary relations. The second is proving that conditioning on
higher-arity relations is #P-hard.

Probabilistic inference is a well-known application of
propositional knowledge compilation. By compiling a prob-
abilistic model, such as a Bayesian network, inference can
be solved by weighted model counting on the compiled cir-
cuit (Chavira, Darwiche, and Jaeger 2006; Chavira and Dar-
wiche 2008; Fierens et al. 2011). Conditioning the circuit
permits computing both marginal and conditional probabili-
ties for each variable in the domain.

First-order knowledge compilation can be used to perform
lifted inference for first-order probabilistic models (Getoor
and Taskar 2007; De Raedt et al. 2008). Lifted infer-
ence (Poole 2003) algorithms are more efficient than propo-
sitional algorithms because they exploit symmetries in these
models. However, the inability to condition first-order cir-
cuits requires current approaches to compile a new circuit
for each query and/or evidence set. This makes comput-
ing conditional probabilities exponential in the size of ev-
idence term, partially defeating the purpose of lifted infer-
ence (Van den Broeck 2011). The results from this paper
lead to three insights into lifted probabilistic inference. First,
it is possible to compile a single circuit for a first-order prob-
abilistic model that can answer all queries on single argu-
ment atoms. Second, a compiled circuit can allow for prob-
abilistic inference that is polynomial in the size of the evi-
dence, provided it contains only propositions and unary re-
lations. Empirically, this results in greatly improved perfor-
mance on two benchmark domains in lifted inference. Third,
in general, it is #P-hard to compute conditional probabilities
if there is evidence on relations of arity two or higher.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1961

∧

∨

∨

rainbow

¬ rainbow

rain ¬ sun

∧¬ rain

(a)

(b)

Figure 1: Propositional d-
DNNF Circuit for Example 1

Σ

Σ|γ
?

Figure 2: Conditioning
a Logical Circuit

2 Propositional Conditioning
This section briefly reviews the basics of knowledge compi-
lation and conditioning in the propositional setting. It then
mentions several applications of conditioning, with a partic-
ular emphasis on probabilistic inference.

2.1 Propositional Knowledge Compilation
In propositional knowledge compilation, a propositional the-
ory or knowledge base is compiled into a target circuit lan-
guage. While the compilation step may be computation-
ally expensive, it only needs to be done once per theory.
The payoff comes when the compiled circuit admits effi-
cient (i.e., polynomial time) inference operations such as
weighted model counting and consistency checking (i.e.,
satisfiability). The compiled circuit can answer a wide vari-
ety of queries very quickly, and the compilation cost can be
spread over all subsequent queries.

All circuit languages in the knowledge compilation map
are subsets of the negation normal form (NNF) lan-
guage (Darwiche and Marquis 2002). A NNF sentence is a
directed, acyclic graph where the leaves are labeled with ei-
ther a literal (e.g., x or ¬ x) or a truth value. The inner nodes
represent formulae in propositional logic, being either a con-
junction or a disjunction. A circuit language is a set of cir-
cuits that have a shared set of properties. A language of par-
ticular interest for this paper are deterministic decomposable
negation normal form (d-DNNF) circuits (Darwiche 2001).
A d-DNNF circuit restricts a NNF circuit such that all the
conjunctions are decomposable and all the disjunctions are
deterministic. In a decomposable conjunction, each pair of
child nodes must be independent (i.e., they cannot share any
variables). In a deterministic disjunction, only one of dis-
junction’s children can be true at the same time (i.e., their
conjunction is unsatisfiable).

Example 1. Figure 1 shows a d-DNNF circuit. The node
labeled (a) represents the theory sun∧ rain⇒ rainbow.

2.2 Conditioning Propositional Circuits
Conditioning is one of the most basic transformations that
can be applied to a circuit. Intuitively, conditioning updates
a knowledge base to reflect information about the truth val-
ues of specific propositions. More formally, conditioning
a logical theory Σ on a term γ is denoted as Σ|γ, where
γ = l1 ∧ l2 ∧ · · · ∧ ln and each li is a literal. For each pos-
itive (negative) li, conditioning replaces all positive (nega-

tive) occurrences of li in Σ with true and all negative (posi-
tive) occurrences by false.
Example 2. Conditioning the theory of Example 1 on
¬ rainbow results in the theory sun∧ rain ⇒ false, or
equivalently ¬ sun∨¬ rain.

Figure 2 illustrates the difference between conditioning a
knowledge base Σ and conditioning a circuit on the term γ.
The vertical arrows represent conditioning on γ. Condition-
ing both logical theories and circuits is an efficient (poly-
time) operation. The horizontal arrows represent compila-
tion of a logical theory into a circuit. Since compilation is
computationally demanding, conditioning the circuit, as op-
posed to the Σ, permits reuse of the previously compiled cir-
cuit. Thus with a single expensive compilation step followed
by conditioning, the circuit can perform efficient inference
over all theories Σ|γ, facilitating circuit reuse.

In propositional knowledge compilation, Darwiche and
Marquis (2002) have proven that every language in the
knowledge compilation map can be conditioned on any term
in polynomial time. In other words, the dotted line in Fig-
ure 2 exists for each type of propositional circuit. Further-
more, conditioning any circuit preserves its properties. That
is, the conditioned circuit is in exactly the same circuit fam-
ily as the original (i.e., unconditioned) circuit. Conditioning
a NNF circuit on γ is achieved by replacing all terminal
nodes that occur as variables in γ by true of false terminals.
Example 3. Conditioning the circuit of Figure 1 on
¬ rainbow replaces the terminal rainbow with false and the
terminal ¬rainbow with true. After some simplifications,
this is equivalent to the circuit rooted at the node labeled (b).

2.3 Applications of Conditioning
Knowledge compilation and conditioning have been used to
solve tasks in many different fields, such as fault diagno-
sis (Elliott and Williams 2006), conformant planning (Pala-
cios et al. 2005) and databases (Dalvi, Schnaitter, and
Suciu 2010). One application of knowledge compila-
tion we explore in this paper is for probabilistic inference
(e.g., (Chavira, Darwiche, and Jaeger 2006; Chavira and
Darwiche 2008; Fierens et al. 2011)). Given a probabilis-
tic model, M , the main inference task is to compute the
conditional probability of some query term q given the val-
ues of evidence variables e by summing out the remaining
variables from the probability distribution. Knowledge com-
pilation solves this task by posing it as a weighted model
counting problem. M assigns a probability (or weight) to
each possible configuration of values the variables in M can
take on. Intuitively, calculating p(q|e,M) requires comput-
ing the weight of the configurations where e and q are both
true and dividing it by the weight of the configurations where
e is true. Formally, this can be written as follows:

P(q|e,M) =
WMC(q ∧ e ∧M)

WMC(e ∧M)
(1)

=
WMC(M |e|q) ·

∏
l∈q w(l) ·

∏
l∈e w(l)

WMC(M |e) ·
∏

l∈e w(l)
(2)

where WMC stands for the weighted model count. Note that
conditioning is used to transform Equation 1 to Equation 2.

1962

Literal Arity Complexity of Conditioning
0 Polynomial
1 Polynomial if supported by compilation

≥ 2 #P-hard

Figure 3: Complexity of Conditioning a FO d-DNNF

After compiling M into a circuit that supports weighted
model counting, conditioning this circuit permits calculat-
ing the marginal probability of each proposition in polyno-
mial time. Furthermore, conditioning allows the circuit to
compute the conditional probability of any query given any
term (i.e., conjunction of literals) in polynomial time. Dar-
wiche (2009) gives a more detailed overview.

3 First-Order Conditioning
The following subsections introduce knowledge compilation
for first-order theories. We analyze which types of literals
can be efficiently conditioned on in a compiled circuit that
supports polytime model counting. We consider different
cases based on the arity of the conditioned literal. The dis-
cussion focuses on the first-order deterministic decompos-
able negation normal form (FO d-DNNF) circuit language.
The results for FO d-DNNFs are summarized in Figure 3

Function Free First-Order Logic An atom p(t1, . . . , tn)
in function free first-order logic (FFFOL) consists of a pred-
icate p /n of arity n followed by n arguments, which are ei-
ther (lowercase) constants or (uppercase) logical variables.
An atom is ground if it does not contain any variables. A
literal is an atom a or its negation ¬a. A clause is a dis-
junction over a finite set of literals. A theory in conjunctive
normal form (CNF) is a conjunction of clauses. A substitu-
tion Σ{X/t} replaces the variableX in the formula Σ by the
term t. We will assume that all logical variables are univer-
sally quantified. When conditioning a theory in FFFOL on
the term γ, we assume that γ consists of ground literals li.

3.1 First-Order Knowledge Compilation
First-order knowledge compilation compiles a first-order
knowledge base into a target circuit language. This paper
considers the FO d-DNNF language (Van den Broeck et al.
2011), which represents theories in FFFOL with domain
constraints, where all the formulae are universally quanti-
fied. Domain constraints are constraints that define a finite
domain for each logical variable. They can take the form
of X = t, where X is a logical variable and t is a constant
or variable; X ∈ D, where D is a domain; or the negation
(6=, /∈) of these constraints.

A FO d-DNNF circuit is a directed, acyclic graph, where
the leaves represent literals and the inner nodes represent
formulae in FFFOL with domain constraints. In addition to
the proposition inner node types, a FO d-DNNF includes the
following three node types:

• Inclusion-exclusion IE(φ, ψ, χ), representing the formula
φ ∨ ψ with the additional property that χ ≡ φ ∧ ψ.

smokes(X), X ∈ D

¬ smokes(X), X /∈ D ¬ friends(X,Y), X ∈ D,Y /∈ D

∧

∧

∨
D⊆People

set disjunction

decomposable conjunction

Figure 4: FO d-DNNF Circuit for Formula 3

• Decomposable set conjunction
∧

x∈D Σ{X/x} with one
child circuit Σ. It represents a decomposable conjunction
over all instances of Σ where one variableX is substituted
by a constant x from the domain D.

• Deterministic set disjunction
∨

D′⊆D Σ{F/D′} with one
child circuit Σ. It represents a deterministic disjunction
over all instances of Σ where the domain variable F is
substituted by a subset of the domain D.

Example 4. Figure 4 illustrates a FO d-DNNF for the theory

smokes(X) ∧ friends(X,Y)⇒ smokes(Y). (3)

The theory states that smokers are only friends with other
smokers. The circuit introduces a new domain D, which is
a subset of People. It states that there exists such a D for
which (i) all people inD are smokers (ii) no other people are
smokers and (iii) smokers are not friends with non smokers.

Transforming a CNF in FFFOL into a FO d-DNNF is
done by a compilation algorithm, which applies a sequence
of operations that simplify the logical theory. Unlike the
proposition setting, the compilation algorithm must consider
formulae that apply to sets of objects, which are captured by
the domain constraints. Compilation often requires modify-
ing the domain constraints. The compilation operators are
complete for any theory in FFFOL with universally quan-
tified formulae of up to two logical variables. Theories in
this class of problems, called 2-WFOMC, can always be
expressed by and compiled into FO d-DNNFs. In many
cases, other theories can still be compiled, but there are no
guarantees. See Van den Broeck et al. (2011) and Van den
Broeck (2011) for an overview of the compilation algorithm.

3.2 Conditioning on Propositions
Conditioning on a proposition works the same way as in con-
ditioning of propositional NNF circuits. All that it requires
is replacing terminal nodes which represent that literal by a
true or false terminal.

Theorem 1. A FO d-DNNF circuit can be conditioned on
any proposition (or literal with arity zero) in polynomial
time and its result is also a FO d-DNNF.

Proof outline. Following from the results in the proposi-
tional setting (Darwiche and Marquis 2002), conditioning
preserves the properties of the propositional inner nodes.
For the deterministic set disjunction and decomposable set

1963

conjunction, since their operands are all isomorphic, condi-
tioning affects them all the same way, preserving their re-
spective properties. The inclusion-exclusion node property
is also preserved, because χ|γ ≡ φ|γ ∧ ψ|γ.

3.3 Conditioning on Unary Relations
Unlike the propositional setting, where each leaf node rep-
resents a single proposition, a FO d-DNNF circuit terminal
node can be a non-ground literal, which represents an entire
set of ground literals. For example, the smokes(X), X ∈ D
terminal in Figure 4 represents a set of people that smoke.
The conditioning term does not necessarily provide the truth
value for each grounding of a non-ground terminal. Even
if the evidence provides the truth value for each grounding,
they could be different. Thus, conditioning a circuit on a
subset of the groundings requires partitioning this set of lit-
erals (i.e., into those that are true, false and unknown). Each
of these partitions needs to be treated separately. Therefore,
given an arbitrary FO d-DNNF, it is unclear if it can be con-
ditioned on any unary literal.

However, by compiling extra clauses into the circuit, it is
possible to efficiently condition on any unary relation term.
The applicability of this transformation is independent of the
domains the theory is evaluated on and the specific terms
on which it will be conditioned. In order to support condi-
tioning for a unary predicate p /1, each clause it appears in
must be split into three clauses, representing the cases when
a grounding of p /1 is true, false or unknown.
Proposition 2. Any theory in FFFOL with domain con-
straints can be transformed into an equivalent representa-
tion that allows for conditioning on a unary relation p(X).
First, each clause containing p(X) is split into three copies
with additional domain constraints: (i) X ∈ D> (ii) X ∈
D⊥ and (iii) X /∈ D>, X /∈ D⊥. For clauses with a pos-
itive p(X) literal, clause (i) is removed and ¬p(X) is re-
moved from clause (ii). Conversely, for clauses with a nega-
tive p(X) literal, clause (ii) is removed and p(X) is removed
from clause (i).

Example 5. To illustrate the procedure, consider the follow-
ing clause, which omits constraints on Y for readability:

p(X) ∨ q(X,Y), X ∈ D. (4)

We now introduce the subdomain D> ⊆ D of constants for
which we condition on p(X) being true, and the subdomain
D⊥ ⊆ D of constants for which we condition on p(X) be-
ing false. Knowing that D> ∩ D⊥ = ∅, this divides the
clause into

p(X) ∨ q(X,Y), X ∈ D>
p(X) ∨ q(X,Y), X ∈ D⊥
p(X) ∨ q(X,Y), X ∈ D, X /∈ D>, X /∈ D⊥.

Since p(X) appears as a positive literal in the initial formula,
and we know that p(X), X ∈ D> is true and p(X), X ∈
D⊥ is false, these can be simplified to

q(X,Y), X ∈ D⊥ (5)
p(X) ∨ q(X,Y), X ∈ D, X /∈ D>, X /∈ D⊥. (6)

Substituting {D>/∅, D⊥/∅} fills in empty domains in the
constraint sets, which makes Clause 5 and the additional do-
main constraints onX in Clause 6 trivially satisfied, thereby
recovering the original Clause 4. However, filling in non-
empty domains for D> or D⊥, conditions the theory on a
term of literals of p /1. Note that the atoms p(X), X ∈ D>
and p(X), X ∈ D⊥, which are conditioned on, are removed
from the new theory entirely.

Conversely, if p /1 had appeared as a negative literal in
the initial formula, p /1 would have be removed from the
first formula and the second formula could be omitted.

The procedure outlined in Proposition 2 can be repeated
to support conditioning on multiple unary relations. In sum-
mary, it is possible to condition FO d-DNNF circuits on any
term of unary literals. However, this comes at the cost of a
more complex compilation and a larger circuit.

3.4 Conditioning on Binary Relations
Next, we show that conditioning on binary relations is #P-
hard by showing that #2SAT is reducible to it.

#2SAT A k-CNF formula is a CNF with k literals per
clause. kSAT is the problem of deciding the satisfiability
of a k-CNF formula. The #kSAT problem involves counting
the number of satisfying assignments to a k-CNF formula.
This task is also called model counting.
Example 6. The following formula is in 2-CNF:

(a ∨ b) ∧ (a ∨ ¬c) ∧ (¬c ∨ ¬d)

2SAT is decidable in polynomial time. However, #2SAT
is #P-complete (Valiant 1979), which implies that it is not
solvable in polynomial time unless P = NP .
Lemma 3. Each propositional 2-CNF can be represented
by conditioning the first-order logic theory

p(X) ∨ p(Y) ∨ ¬ c1(X,Y)

p(X) ∨ ¬ p(Y) ∨ ¬ c2(X,Y)

¬p(X) ∨ ¬ p(Y) ∨ ¬ c3(X,Y), (7)

where all variables are implicitly universally quantified.
The ci-predicates encode which propositions appear to-

gether in the three possible types of clauses for 2-CNF. Con-
ditioning on a positive ci literal includes the clause of type i
for the given propositions in the 2-CNF. For example, con-
ditioning on c1(a, b) adds p(a) ∨ p(b) to the theory. Condi-
tioning on a negative c-literal omits the clause for the given
propositions from the theory. For example, conditioning on
¬ c2(a, b) excludes p(a) ∨ ¬ p(b) from the theory.
Example 7. Conditioning Theory 7 on the term

c1(a, b) ∧ ¬ c1(a, a) ∧ · · · ∧ ¬ c1(d, d)∧
c2(a, c) ∧ ¬ c2(a, a) ∧ · · · ∧ ¬ c2(d, d)∧
c3(c, d) ∧ ¬ c3(a, a) ∧ · · · ∧ ¬ c3(d, d)

results in the theory

(p(a) ∨ p(b)) ∧ (p(a) ∨ ¬ p(c)) ∧ (¬p(c) ∨ ¬ p(d)),

which is isomorphic to the 2-CNF of Example 6.

1964

Theorem 4. In any formal system that can represent The-
ory 7, either conditioning on literals with arity≥ 2 or model
counting is #P-hard.

Proof. Theory 7 can be conditioned on binary literals to rep-
resent any 2-CNF. A subsequent model counting step can
solve any #2SAT problem. This shows that a #P-complete
problem is reducible to conditioning and model counting on
Theory 7, which means it must be at least as hard as any
problem in #P, or #P-hard.

Consequences for Knowledge Compilation Theorem 4
can be specialized for first-order knowledge compilation.
Theorem 5. Conditioning on literals with arity ≥ 2 is #P-
hard in any circuit language that is expressive enough to rep-
resent Theory 7 and that allows for polytime model counting.

Theory 7 is in 2-WFOMC and can therefore be compiled
into a FO d-DNNF circuit. Because the FO d-DNNF lan-
guage also supports polytime model counting, conditioning
on binary terms is #P-hard in this language, and no polyno-
mial algorithm for it exists, unless P=NP.

3-CNF and 3SAT This raises the question as to whether
the inability to efficiently condition on binary relations is a
property specific to the FO d-DNNF circuit language. We
can make an analogous argument based on 3-CNF, which is
represented by the first-order theory

p(X) ∨ p(Y) ∨ p(Z) ∨ ¬ c1(X,Y, Z)

p(X) ∨ p(Y) ∨ ¬p(Z) ∨ ¬ c2(X,Y, Z)

p(X) ∨ ¬p(Y) ∨ ¬p(Z) ∨ ¬ c3(X,Y, Z)

¬ p(X) ∨ ¬ p(Y) ∨ ¬p(Z) ∨ ¬ c4(X,Y, Z) (8)

3SAT is NP-complete and #3SAT is #P-complete.
Theorem 6. Conditioning on literals with arity ≥ 3 is NP-
hard in any circuit language that is expressive enough to
represent Theory 8 and that allows for polytime consistency
checking.

Proof. Theory 8 can be conditioned on ternary literals to
represent any 3-CNF. A subsequent consistency checking
step can solve any 3SAT problem.

Although Theory 8 is not in 2-WFOMC, it can be com-
piled into a FO d-DNNF circuit. This result does not pro-
vide further insight into FO d-DNNF circuits, as they sup-
port model counting and therefore conditioning is #P-hard.
However, this result does provide insight into which trans-
formations are efficient in other (yet to be defined) circuit
languages that can perform consistency checking, but not
model counting, in polynomial time. These correspond to
the capabilities for propositional DNNF circuits (Darwiche
and Marquis 2002).

4 Evidence in Lifted Probabilistic Inference
First-order knowledge compilation can be used to perform
lifted inference (Poole 2003) in first-order probabilistic
models (Getoor and Taskar 2007; De Raedt et al. 2008). Just
like the propositional case, computing conditional probabil-
ities in this setting requires calculating the weighted model

counts in the numerator and denominator of Equation 1. Be-
cause of the lack of support for conditioning in first-order
circuits, the current approach is to compile a separate cir-
cuit for the numerator and denominator. Furthermore, re-
compilation is needed whenever the query q or evidence e
changes. However, by applying the transformation of Propo-
sition 2, we can compile a single circuit that can compute
the marginal or conditional probability of any proposition or
unary atom, provided the evidence is only on other proposi-
tions or unary atoms.

This section deals with exact probabilistic inference. In
the approximate lifted inference literature, Nath and Domin-
gos (2010) and Hadiji, Ahmadi, and Kersting (2011) deal
with a similar problem setting, where lifted belief propaga-
tion inference is performed with changing evidence.

Positive Result One way to define lifted inference more
formally is domain lifted inference (Van den Broeck 2011),
which requires that the inference algorithm is polynomial
in the domain sizes, but it can be exponential in the size of
the model M , query q and evidence e. The results from
Section 3.3 allow for a stronger definition: inference has
to be polynomial in the domain sizes and the size of the
evidence on propositions and unary relations. Lifted infer-
ence by first-order knowledge compilation is also domain-
lifted according to this stronger definition, when applying
the transformation of Proposition 2. This is a positive result
for lifted inference, because many more queries about first-
order probabilistic models can now be answered efficiently.

Negative Result In contrast, Theorem 5 is a strong neg-
ative result for lifted inference. It proves that first-order
knowledge compilation for lifted inference will not be able
to compute conditional probabilities with evidence on binary
relations efficiently, unless P=NP. This raises the question
whether the negative result holds only for this approach, or
for any lifted inference algorithm on similar models.

Theorem 7. For any probabilistic model that can express
a uniform distribution over the models of ¬ q∨φ, where φ
is Theory 7, computing conditional probabilities exactly is
#P-hard.

Proof outline. Querying for P(q |e), where e assigns a truth
value to every ci atom, returns c

c+2n , where c is the model
count of the 2-CNF φ|e and 2n the number of possible as-
signments to the n propositions in the 2-CNF. This allows
us to solve arbitrary #2SAT problems by solving for c.

This theorem applies to many first-order probabilistic lan-
guages, including parfactor graphs (de Salvo Braz, Amir,
and Roth 2005), Markov logic networks (Richardson and
Domingos 2006) and weighted first-order model counting
(Van den Broeck 2011) and therefore to all known exact
lifted inference algorithms which work on these represen-
tations, such as First-Order Variable Elimination (de Salvo
Braz, Amir, and Roth 2005; Milch et al. 2008). It high-
lights an important limitation of all exact lifted inference
methods: Computing probabilities with evidence on binary
relations cannot be polynomial in the size of the evidence,
unless P=NP.

1965

(a) Competing Workshops (b) Friends and Smokers

(c) Competing Workshops (d) Friends and Smokers

Figure 5: Plots (a) and (b) show runtime with varying domain size and fixed percentage of evidence (50%). Plots (c) and (d)
show runtime with varying percentage of evidence and fixed domain size ((c) 1000 people, (d) 50 people).

5 Experiments
To complement the theoretical results, we demonstrate the
utility of conditioning in FO d-DNNF for the task of per-
forming lifted probabilistic inference via weighted model
counting. Our goal is to address the following question:
Does conditioning on unary relations perform better than as-
serting evidence in lifted probabilistic inference?

Methodology To answer this question, we add support for
conditioning to the FO d-DNNF compiler implementation1

and compare the performance of these three systems:
Conditioning FO d-DNNF compiler with conditioning

supported as described in Proposition 2.
Naive FO d-DNNF compiler without conditioning. For

each evidence set, the evidence is conjoined to the the-
ory (as in Equation 1), which is then compiled. This gives
a separate circuit for each evidence set.

Ground Propositional knowledge compilation using the
c2d compiler.2 The unconditioned, grounded models are
too large to compile, so the evidence must be used to sim-
plify them, after which they are compiled.

We use two common benchmarks in the lifted inference liter-
ature. The competing workshops domain (Milch et al. 2008)
models that (i) whether a person attends a workshop depends
on the number of popular competing workshops and (ii)
whether a workshop becomes a series depends on its atten-
dance. The friends and smokers domain (Singla and Domin-
gos 2008) models that (i) smoking increases your risk of get-
ting cancer and (ii) friends have similar smoking habits. In
all experiments, the goal is to compute the partition function
(i.e., the denominator of Equation 1).

1http://dtai.cs.kuleuven.be/wfomc/
2http://reasoning.cs.ucla.edu/c2d/

Results Figures 5(a) and 5(b) illustrate the results for the
first experiment where we vary the number of objects in the
domain while holding the proportion of observed unary lit-
erals at 50%. Both the naive and ground approaches are al-
ways slower than conditioning, whose curve stays relatively
flat. When the domain size reaches 20 objects, condition-
ing is between one and two orders of magnitude faster than
the baseline algorithms. It quickly becomes impossible for
the baseline algorithms to compile the theories, whereas the
conditioning approach has no such difficulty.

Figures 5(c) and 5(d) illustrate the results for the sec-
ond experiment. Here, we hold the domain size constant
(1000 and 50 people) and vary the proportion of observed
unary literals. Conditioning works for any amount of ev-
idence with relatively consistent runtimes. The naive ap-
proach works for low levels of evidence, which is the ideal
case of lifted inference because most objects are indistin-
guishable and the problem is highly symmetric. However,
once evidence reaches 10%, conditioning is one to three or-
ders of magnitude faster than the naive approach. Ground
compilation never runs for the competing workshops do-
main. In the friends and smokers domain, both the naive
and ground strategies work for high evidence levels because
the evidence sufficiently simplifies the theory. Still, both are
at least two orders of magnitude slower than conditioning.

Both experiments clearly demonstrate that the benefit of
supporting conditioning on unary relations far outweighs the
cost of applying the transformation from Proposition 2 and
compiling a more complex circuit. The answer to the exper-
imental question is a clear and decisive yes.

1966

6 Conclusions
Until now, it was unknown whether conditioning was possi-
ble for first-order knowledge compilation techniques. This
paper makes two key contributions regarding conditioning
in FO d-DNNF circuits. One, it provides an algorithm to ef-
ficiently condition on both propositions and unary relations.
Two, it proves conditioning on higher arity relations is #P-
hard. These two results have significant implications for ex-
act lifted probabilistic inference techniques. The positive
result is that more queries can be efficiently answered with a
single circuit and inference can be polynomial in the size of
the evidence on propositions and unary relations, whereas
previously it was exponential. The negative results is that
for evidence on binary relations, exact lifted inference al-
gorithm can only efficiently compute conditional probabil-
ities if P=NP. Still, many domains contain unary relations
and these results improve the efficiency of lifted inference
in practice, as is shown in the experiments.

Acknowledgements
Guy Van den Broeck is supported by the Research
Foundation-Flanders (FWO-Vlaanderen). Jesse Davis is
partially supported by the Onderzoeksfonds/Research Fund
KU Leuven. The authors would like to thank Luc De Raedt
for valuable feedback.

References
Chavira, M., and Darwiche, A. 2008. On Probabilistic In-
ference by Weighted Model Counting. Artificial Intelligence
172(6-7):772–799.
Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compiling
Relational Bayesian Networks for Exact Inference. Interna-
tional Journal of Approximate Reasoning 42(1-2):4–20.
Dalvi, N.; Schnaitter, K.; and Suciu, D. 2010. Computing
query probability with incidence algebras. In Proceedings
of ACM SIGMOD/PODS Conference, 203–214.
Darwiche, A., and Marquis, P. 2002. A Knowledge Com-
pilation Map. Journal of Artificial Intelligence Research
17(1):229–264.
Darwiche, A. 2001. On the tractability of counting theory
models and its application to belief revision and truth main-
tenance. Journal of Applied Non-Classical Logics 11(1-
2):11–34.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S.,
eds. 2008. Probabilistic inductive logic programming: the-
ory and applications. Berlin, Heidelberg: Springer-Verlag.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted First-
Order Probabilistic Inference. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1319–1325.
Elliott, P., and Williams, B. 2006. DNNF-based belief state
estimation. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI).

Fierens, D.; Van den Broeck, G.; Thon, I.; Gutmann, B.; and
De Raedt, L. 2011. Inference in Probabilistic Logic Pro-
grams Using Weighted CNF’s. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence (UAI),.
Getoor, L., and Taskar, B., eds. 2007. An Introduction to
Statistical Relational Learning. MIT Press.
Hadiji, F.; Ahmadi, B.; and Kersting, K. 2011. Efficient
sequential clamping for lifted message passing. KI 2011:
Advances in Artificial Intelligence 122–133.
Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.;
and Kaelbling, L. P. 2008. Lifted Probabilistic Inference
with Counting Formulas. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence, 1062–1068.
Nath, A., and Domingos, P. 2010. Efficient lifting for online
probabilistic inference. In Proceedings of AAAI.
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning Conformant Plans by Counting Models on
Compiled d-DNNF Representations. In Proceedings of the
15th International Conference on Automated Planning and
Scheduling, 141–150.
Poole, D. 2003. First-Order Probabilistic Inference. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI), 985–991.
Richardson, M., and Domingos, P. 2006. Markov Logic
Networks. Machine Learning 62(1):107–136.
Singla, P., and Domingos, P. 2008. Lifted First-Order Belief
Propagation. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, 1094–1099.
Valiant, L. G. 1979. The Complexity of Enumeration
and Reliability Problems. SIAM Journal on Computing
8(3):410–421.
Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.; and
De Raedt, L. 2011. Lifted Probabilistic Inference by First-
Order Knowledge Compilation. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI), 2178–2185.
Van den Broeck, G. 2011. On the Completeness of First-
Order Knowledge Compilation for Lifted Probabilistic In-
ference. In Annual Conference on Neural Information Pro-
cessing Systems (NIPS).

1967

