
Search Algorithms for M Best Solutions for Graphical Models

Rina Dechter and Natalia Flerova
University of California Irvine

USA

Radu Marinescu
IBM Research
Dublin, Ireland

Abstract

The paper focuses on finding the m best solutions to com-
binatorial optimization problems using Best-First or Branch-
and-Bound search. Specifically, we present m-A*, extend-
ing the well-known A* to the m-best task, and prove that all
its desirable properties, including soundness, completeness
and optimal efficiency, are maintained. Since Best-First algo-
rithms have memory problems, we also extend the memory-
efficient Depth-First Branch-and-Bound to the m-best task.
We extend both algorithms to optimization tasks over graph-
ical models (e.g., Weighted CSP and MPE in Bayesian net-
works), provide complexity analysis and an empirical eval-
uation. Our experiments with 5 variants of Best-First and
Branch-and-Bound confirm that Best-First is largely superior
when memory is available, but Branch-and-Bound is more
robust, while both styles of search benefit greatly when the
heuristic evaluation function has increased accuracy.

1 Introduction
Depth-First Branch and Bound (B&B) and Best-First Search
(BFS) are the most widely used search schemes for find-
ing optimal solutions in combinatorial optimization tasks.
In this paper, we explore the extension of such search algo-
rithms to finding the m best solutions. We are interested in
applying such algorithms to optimization tasks over graph-
ical models, such as weighted CSPs and the most probable
explanation (MPE) over probabilistic networks. These tasks
arise in many applications, for example, procurement auc-
tion problems, biological sequence alignment or finding m
most likely haplotype configurations.

Most of the paper’s analysis focuses on Best-First Search,
whose behavior for the task of finding a single optimal solu-
tion is well understood. The algorithm is sound and com-
plete when guided by an admissible heuristic evaluation
function. Most significantly, it is efficiently optimal: any
node it expands, must be expanded by any other exact search
algorithm having the same heuristic function if both use the
same tie-breaking rule (Dechter and Pearl 1985). Best-First
Search and its most famous variant A* are also known to re-
quire significant memory and therefore substantial research
went into trading memory and time, yielding schemes such
as iterative deepening A* (Pearl and Korf 1987).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A popular alternative to BFS is Depth-First Branch-and-
Bound, whose most attractive feature compared with BFS
is that it can be executed with linear memory. Yet, when
the search space is a graph, it can exploit memory to im-
prove its performance by flexibly trading space and time.
Highly efficient B&B and BFS algorithms were devel-
oped for graphical models exploring the model’s AND/OR
search tree or the context-minimal AND/OR search graph
(Dechter and Mateescu 2007), while using heuristics gen-
erated either by the mini-bucket scheme or through soft arc-
consistency schemes (Marinescu and Dechter 2009a; 2009b;
Schiex 2000).

The contributions of our paper are in extending both A*
and Branch-and-Bound algorithms to the m best solutions,
analyzing their performance analytically and empirically.
Specifically, 1) we show (in Section 3) that m-A*, our pro-
posed A* for the m-best task, inherits all A* desirable prop-
erties, most significantly it has an optimal performance; 2)
we discuss an m-best Branch-and-Bound extension (in Sec-
tion 4); 3) we discuss the extension of both algorithms to
graphical models by exploring the AND/OR search spaces
(in Section 5). 4) Empirical evaluations (in Section 7) con-
firm the superiority of m-A*, when memory is available,
and show that otherwise, Branch-and-Bound provides a ro-
bust alternative for solving more problem instances. The de-
pendency of the search efficiency on the heuristic strength
is shown to be more pronounced as the number of solu-
tions sought increases. Finally, 5) we show that a hybrid of
bucket-elimination and search yields a scheme (called BE-
Greedy-m-BF) that is superior to all other competing graphi-
cal models algorithms worst-case wise. This scheme suffers
severely from memory issues over dense graphs, far more
than A* schemes.

Two earlier works that are most relevant and provide the
highest challenge to our work are by (Nilsson 1998) and (Al-
jazzar and Leue 2011) of which we learned only recently.

• Nilsson proposed a junction-tree based message passing
scheme that iteratively finds the m best solutions and
claimed that it has the best runtime complexity among
m-best schemes for graphical models. Our analysis (not
included here) can show that indeed Nilsson’s scheme is
very similar to our BE-Greedy-m-BF (Section 5.2). So,
while we were unable to run Nilsson’s code directly, we
compare and contrast with BE-Greedy-m-BF. In particu-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1895

lar this scheme is not feasible for problems having a large
induced width, also known as treewidth.

• In the recent work (Aljazzar and Leue 2011) proposed K*,
an A* search scheme for finding the k shortest paths that
is interleaved with Breadth-First search. They use a spe-
cialized data structure and it is unclear if it can be ex-
tended straightforwardly to graphical models, a point we
will leave to future work.
We will further elaborate and contrast our methods with

related work towards the end of the paper. For lack of space
all proofs are omitted.

2 Background
Consider a search space defined implicitly by a set of states
(the nodes in the graph), operators that map states to states
having costs or weights (the directed weighted arcs), a start-
ing state n0 and a set of goal states. The task is to find the
least cost solution path from n0 to a goal (Nillson 1980),
where the cost of a solution path is the sum of the weights
or the product of the weights on its arcs. In this paper, we
explore extensions of Best-First Search (BFS) and Depth-
First Branch-and-Bound (BnB) search to finding the m best
solutions for general search spaces, and then apply those al-
gorithms to search over graphical models.

BFS seems to be the most suitable algorithm to be ex-
tended to the m-best task. It explores the search space using
a heuristic evaluation function f(n) that estimates the best
cost solution path that passes through each node n. It is
known that when f(n) is a lower bound on the optimal cost
path the algorithm terminates with an optimal solution.

The most popular variant of BFS is A*, whose heuris-
tic evaluation function is f(n) = g(n) + h(n), where g(n)
is minimal cost from the root n0 to n along the current
path, and h(n) underestimates h∗(n), the optimal cost from
n to a goal node. The implicit directed search graph is
G = (N,E). We denote by gπ(n) the cost from the root
to n along path π and by cπ(n1, n2) the cost from n1 to n2
along π. The heuristic function h is consistent iff ∀ n′ suc-
cessor of n in G, h(n) ≤ c(n, n′) + h(n′).

3 Best-first Search For the m Best Solutions
As was already noted, (e.g., (Charniak and Shimony 1994)),
the extension of a BFS algorithm, including A*, to the task
of finding them best solutions seems simple: rather than ter-
minating with the first solution found, the algorithm contin-
ues searching until it generatesm solutions. In the following
section we prove that indeed these solutions are the m best
ones and that this simple scheme, that we call m-A*, is ac-
tually the best one among all its competitors under certain
conditions.

3.1 Algorithm m-A*
Algorithm 1 provides a high level description of a tree-
search variant which we call m-A*. The algorithm expands
nodes in increasing value of f in the usual A* manner. For
simplicity, we specify the algorithm under the assumption
that h is consistent, but it can be extended to general admis-
sible heuristics in the usual way. The algorithm maintains

Algorithm 1: m-A*
Data: An implicit directed search graph G = (N,E), with a

start node n0 and a set of goal nodes Goals. A
consistent heuristic evaluation function h(n),
parameter m, OPEN=∅ and a tree Tr = ∅

Result: the m best solutions
1 i = 1 (i counts the current solution being searched for);
2 OPEN← {n0}; f(n0) = h(n0); make n0 the root of Tr;
3 If OPEN is empty then return the solutions found so far;
4 Remove a node, denoted n, in OPEN having a minimum f

(break ties arbitrarily, but in favor of goal nodes and deeper
nodes) and put it in CLOSED;

5 If n is a goal node, output the current solution obtained by
tracing back pointers from n to n0 (pointers are assigned in
the following step). Denote this solution as Soli. If i = m
exit. else i← i+ 1, and go to step 3;

6 Else expand n, generating all its children Ch. Compute
g(n′) = g(n)+ c(n, n′); f(n′) = g(n′)+h(n′), ∀n′ ∈ Ch ;

7 If n′ already appears in OPEN or CLOSED m times, discard
node n′, else attach from each n′ in Ch a pointer back to n in
Tr. Insert n′ into the right place in OPEN based on f(n′);

8 Go to step 3;

separate paths to each copy of a node in the explored search
tree, denoted by Tr. As we will show, this redundancy is
not at all wasteful when the heuristic function is consistent.
In the subsequent sections we establish the following prop-
erties of m-A*, corresponding to the known properties of A*
(Nillson 1980):

1. Soundness and completeness: m-A* terminates with the
m best solutions generated in order of their costs.

2. Optimal efficiency: Any node that is surely expanded by
m-A* must be expanded by any other sound and complete
search algorithm.

3. Optimal efficiency for consistent heuristics: When the
heuristic function is consistent m-A* expands each node
at most m times.

4. Dominance: Given two heuristic functions h1 and h2, s.t.
∀n h1(n) < h2(n), m-A∗1 will expand every node surely
expanded by m-A∗2, where m-A∗i is using heuristic hi.

3.2 m-A* is Sound and Complete
We know that if provided with an admissible heuristic, A*
will surely expand every node n′, such that n′ ∈ πn0..n

and f(n′) < C∗. We next show that this property can
be extended straightforwardly to the m-best case. We de-
note by C∗i the ith best solution cost and by SSi the set
of nodes expanded by m-A* just before a goal node of the
ith-best solution was selected for expansion. By definition
SS1 ⊂ SS2 . . . ⊂ SSi . . . ⊂ SSm and C∗1 ≤ C∗2 . . . ≤ C∗m.

Because at any point before the algorithm generates the
i-best solution there is always a node in OPEN along each
of the j-best solution path for j = i, ...,m and because such
a node must satisfy that f(n) ≤ C∗i , it follows that:

Proposition 1 At any time before m-A* expands a goal node
on the ith best solution path, there is a node n′ in OPEN
satisfying f(n′) ≤ C∗i .

From this it follows that:

1896

Theorem 1 (sound and completeness) Algorithm m-A*
generates the m best solutions in order, namely, the ith

solution generated is an ith best solution.

3.3 m-A* is Optimally Efficient
Algorithm A* is known to be optimally efficient (Dechter
and Pearl 1985). Namely, any other algorithm that extends
search paths from the root and uses the same heuristic in-
formation will expand every node that is surely expanded by
A*, namely nodes satisfying that they end a path from the
root π s.t. ∀n′ ∈ π, f(n′) < C∗. This property can be
extended to our m-A*, as follows:

Theorem 2 (m-optimal efficiency) Any search algorithm
which is guaranteed to find the m best solutions, and which
explores the same search graph as m-A* will have to expand
every node that is surely expanded by m-A*, if it uses the
same heuristic function. Formally, it will have to expand ev-
ery node n that lies on a path π0..n that is dominated byC∗m,
namely such that f(n′) < C∗m ∀n′ ∈ π0..n.

Similarly to (Dechter and Pearl 1985) we can show that
any algorithm that does not expand a node n lying on a path
π0..n, whose evaluation function is dominated by C∗m, can
miss one of the m best solutions when applied to a slightly
different problem, and therefore, contradicts completeness.

3.4 m-A* for Consistent Heuristics
If the heuristic function is consistent, whenever a node n is
selected for expansion (for the first time) by A*, the algo-
rithm had already found the shortest path to that node. We
can extend this property as follows:

Theorem 3 Given a consistent h, when m-A* selects a node
n for expansion for the ith time, then g(n) = g∗i (n), namely
it has found the ith best solution from s to n.

We can conclude that when h is consistent any node n
will be expanded at most m times.

Corollary 1 Given m-A* with a consistent h:
1. The maximum number of copies of the same node in

OPEN or CLOSED can be bounded by m.
2. The set {n|f(n) < C∗m} will surely be expanded (no need

of dominance along the path).

3.5 The Impact of m on the Search Space
The sizes of search space explored by m-A* for different
levels of m are obviously monotonically increasing with m.

Proposition 2 Given a search graph:
1. Any node expanded by i-A* is expanded by j-A* if i < j,

if both use the same tie-breaking rule.
2. The set S(i, j) = {n|C∗i < f(n) < C∗j } will surely be

expanded by j-A* and surely not be expanded by i-A*.
3. If C∗i = C∗j , the number of nodes expanded by i-A* and
j-A* is determined by the tie-breaking rule.

As a result, the larger the discrepancy between the respec-
tive costs C∗j − C∗i is, the larger would be the potential dif-
ference in the search spaces they explore.

3.6 The Case of h = h∗ for m-A*
Like A*, m-A* improves its performance if it has access to
more accurate heuristics. In particular, when h1 is strictly
larger (and therefore more accurate) than h2, every node
surely expanded by m-A* with h2 before the jth solution
is uncovered will also be expanded by m-A* with h1 before
the jth solution is found. The case of the exact heuristic
deserves a special notice. It is easy to show that,

Theorem 4 If h = h∗ is the exact heuristic, then m-A* gen-
erates solutions only on j-optimal paths 1 ≤ j ≤ m.

When h = h∗, m-A* is clearly linear in the number of
nodes having f∗ ≤ C∗m value. However, when the cost func-
tion has only a small range of values, there may be an expo-
nential number of solution paths having cost C∗m. To avoid
this exponential frontier we chose the tie-breaking rule of
expanding deeper nodes first, resulting in a number of nodes
expansions bounded by m · n, when n bounds the solution
length. We can express the number of expanded nodes #N
as #N =

∑
i#Ni nodes, where #Ni is the length of the

i-optimal solution path. We get therefore,

Theorem 5 When m-A* has access to h = h∗, then, using
a tie-breaking rule in favor of deeper nodes, it expands at
most #N ≤ m · n, when n is the maximum solution length.

4 Branch-and-Bound for m Best Solutions
Branch-and-Bound explores the search space in a Depth-
First manner. The algorithm maintains the best cost solution
encountered so far, U , which is an upper bound on the ex-
act minimum cost. Like A*, B&B uses a heuristic function
h(n) which underestimates the best cost solution below n,
yielding a lower bound evaluation function f(n). Therefore,
whenever f(n) > U , search below n is pruned.

The main difference between B&B for one solution and
its m-best extension m-BB is in the pruning condition. Let
U1 ≤ U2 ≤ ... ≤ Um denote the costs of the m best so-
lutions encountered thus far, which m-BB maintains in a
sorted list. Algorithm m-BB prunes a subproblem below
node n iff f(n) ≥ Um.

When m-BB terminates, it outputs the m best solutions
to the problem. We can show that when the search space
explored is a graph and m-BB caches solutions, it has a run-
time overhead ofO(m · logm) for each cachable node in the
search space compared with both 1-BB that uses caching and
m-BB without caching, respectively. The main reason is that
we may have to maintain a sorted list of up to m solutions
below each cachable node.

5 Application to Graphical Models
A graphical model is a tuple M = (X,D,F,

∑
), where

F is a set of real-valued local cost functions over subsets
of discrete variables X, called scopes, with finite domains
D. The common optimization task is to find minX

∑
i fi

or maxX
∏
i fi (aka MPE). The scopes of F imply a primal

graph G with certain induced width and a pseudo tree T of
G that guides an AND/OR search space (Dechter and Ma-
teescu 2007). An AND/OR search tree ST associated with
T respects its structure and consists of alternating levels of

1897

OR nodes corresponding to the variables and AND nodes
corresponding to the values of the OR parent’s variable, with
edges weighted according to F. A complete assignment to
the problem variables X is represented by a solution tree S
of ST and the cumulative weight of S’s edges corresponds
to the cost of the assignment. We are interested in finding
both the m best solution costs and their assignments.

The size of the AND/OR search tree based on T is
O(Nkh), where N is the number of variables, k bounds the
domain sizes, h is the height of T . Identical subproblems
can be identified and merged to obtain the context mini-
mal AND/OR search graph which can be searched using
additional memory and has size O(Nkw

∗
), w∗ being the in-

duced width of G along a depth first traversal of T . State
of the art algorithms for solving optimization problems over
graphical models are AOBB (AND/OR Branch-and-Bound)
and AOBF (AND/OR Best-First) (Marinescu and Dechter
2009a; 2009b), that use the mini-bucket heuristic known to
be admissible and consistent (Dechter and Rish 2003).

5.1 m-BB and m-A* for Graphical Models
Algorithm m-BB exploring the AND/OR search space is
called m-AOBB. At any AND node n the m best solutions
to the subproblems rooted at its children need to be com-
bined and the best m out of the combined results should be
chosen, introducing a time overhead of O(deg · m logm)
per AND node, where deg is the degree of n in the pseudo
tree. In the absence of caching (i.e. exploring AND/OR tree)
only up to m partial solutions need to be stored in memory,
enabling m-AOBB to operate in linear space. Caching intro-
duces both space and, as noted in Section 4, time overhead
ofO(m·logm) per cachable (OR) node. For a problem with
N variables:

Theorem 6 The tree version of m-AOBB has time com-
plexity of O(Nkhdeg · m logm) and space complexity of
O(nm), where h is the height of the pseudo-tree. The
graph version of m-AOBB has time and space complexity
of O(Nkw

∗
deg · m logm), where w∗ is the induced width

of the ordering that guides the search.

For the m-AOBF the overhead comes from expanding and
storing up to m copies of each node. Since a node is only
copied when a new path to it is discovered, this overhead
pretains only to the graph-based version of the algorithm.

Theorem 7 The time and space complexity of tree version
of m-AOBF is bounded by O(Nkh). The graph version of
m-AOBF has time and space complexity of O(Nmkw∗).

5.2 Algorithm BE-Greedy-m-BF
Since an exact heuristic for graphical models can be gener-
ated by the Bucket Elimination (BE) algorithm (Kask and
Dechter 2001), we can use the idea suggested in Section
3.6, yielding BE-Greedy-m-BF. The algorithm first gener-
ates the exact heuristics using BE and then applies m-A* (or
m-AOBF) using these exact heuristics.

Theorem 8 LetM = (X,D,F,
∑

) be a graphical model.
The complexity of BE-Greedy-m-BF is O(Nkw∗ +mN).

O[Nkw∗
+ mN(log mN + k)]

O[kw∗
Nm log m]

elim-m-opt

O[Nmkw∗]

Nilsson 1998

O
[
N mkw∗

log (m · deg)
]Elliot 2007

Yanover and Weiss 2004

O
[
N m2 kw∗

deg
]

O
[
N2 m kw∗]Lawler 1972

Seroussi and Golmard 1994

BE-Greedy-m-BF
O[Nkw∗

+ mN]

O[Nmkw∗
]

m-AOBF

m-AOBB

O[kw∗
Ndeg · m log m]

O[Nkw∗
w∗ log Nk + m]

Aljazzar and Leue 2011

Flerova, Dechter, Rollon 2011

Figure 1: Complexity comparison. A parent node in the
graph has a better complexity than its children.

It follows that the worst case complexity of the resulting hy-
brid scheme is superior to any other known m-best algorithm
for graphical models.

6 Related Work
It is possible to distinguish three main approaches employed
by earlier m-best exact algorithms. First one assumes find-
ing solutions iteratively, an idea made popular by (Lawler
1972), who provided a general iterative scheme for extend-
ing any given optimization algorithm to them-best task, and
more recently improved by (Yanover and Weiss 2004) and
(Nilsson 1998). Another approach lies in using dynamic
programming or variable elimination to directly obtain the
m best solutions (Seroussi and Golmard 1994; Elliott 2007;
Flerova, Dechter, and Rollon 2011). Third idea is to use
search to solve a related task of finding k shortest paths. The
majority of schemes in the latter category can not be applied
to the m-best combinatorial optimization task, since they as-
sume the availability of an explicit search graph, which for
most practical problems is too large. However, this problem
was overcome in the recently work by (Aljazzar and Leue
2011).

Figure 1 compares the worst-case time complexity be-
tween our schemes and earlier m-best work over graphical
models. A parent node in the graph has a better complexity
than its children. In many cases the complexity analysis is
ours. Note that worst-case analysis cannot capture the opti-
mality of m-A* that we proved above.

7 Experiments
We evaluate the performance of Best-First and Depth-First
search algorithms on finding the m best solutions to a
weighted CSP and on the m most probable explanations
in Bayesian networks. The benchmark problems consid-
ered include problem instances derived from genetic link-
age analysis networks, n-by-n grid networks used during the
UAI 2008 competition and ISCAS’89 digital circuits, all on-
line at http://graphmod.ics.uci.edu/. The algorithms were

1898

instance algorithm i = 10 i = 16 i = 22
(n, k, w∗, h) m = 1 m = 10 m = 100 m = 1 m = 10 m = 100 m = 1 m = 10 m = 100

time nodes time nodes time nodes genetic linkage networks (Bayesian networks) time nodes time nodes time nodes

m-AOBB - - - - - - - - -
pedigree7 m-AOBF out out out out out out out out out
(1069, 5) m-BB - - - - - - 25752 1.9B 25567 1.9B 25548 1.9B
(47, 204) m-BF out out out out out out out out out

m-AOBB 938.42 4.9M 5133.8 11.2M - 13.75 50.3K 87.35 139.1K 3196.81 327.9K 10.60 310 11.74 3.1K 77.50 11.0K
pedigree23 m-AOBF out out out 27.66 328.8K 27.73 329.7K out 7.23 719 7.37 1.4K 8.88 8.0K
(403, 5) m-BB 492.13 65.5M 497.04 66.6M 549.36 73.6M 7.52 832.7K 8.88 953.1K 19.80 1.6M 7.01 785 7.27 8.6K 9.29 110.1K
(21, 64) m-BF 120.63 7.5M 120.55 7.5M 146.65 8.9M 1.54 54.0K 1.61 55.8K 2.35 85.3K 7.08 630 7.17 2.3K 7.76 19.3K

BE+m-BF 7.11 630 7.24 2.5K 7.68 19.3M 7.11 630 7.24 2.5K 7.68 19.3K 7.11 630 7.24 2.3K 7.68 19.3K
m-AOBB 35.56 164.4K 137.23 292.9K 2519.8 607.7K 366.67 6.5K 371.53 13.7K 513.47 29.0K out out out

pedigree37 m-AOBF out out out out out out out out out
(798, 5) m-BB 10.87 854.4K 15.54 947.9K 87.89 2.4M 38.08 14.7K 38.23 40.4K 66.24 607.5K out out out
(20, 72) m-BF 5.56 202.2K 5.93 205.6K 8.43 242.3K 37.12 5.6K 37.56 9.0K 39.91 44.4K out out out

m-AOBB 2060.2 15.5M 3916.8 17.8M 23281 23.2M out out out out out out
pedigree38 m-AOBF out out out out out out out out out
(725, 5) m-BB - - - out out out out out out
(16, 52) m-BF out out out out out out out out out

m-AOBB 2107.8 9.9M 4148.0 11.9M 38089 14.7M 27.16 117.2K 80.69 184.4K 977.78 253.5K 11.69 958 12.72 2.9K 84.23 8.9K
pedigree39 m-AOBF out out out out out out 13.78 1.4K 14.62 2.4K 21.91 12.4K
(1273, 5) m-BB 6874.6 592.3M 6833.8 592.4M 6856.1 592.8M 17.58 1.5M 18.93 1.5M 76.59 2.6M 13.12 2.4K 13.17 5.4K 15.86 56.8K
(20, 78) m-BF out out out 10.17 474.8K 10.29 476.4K 11.33 491.2K 13.22 1.7K 13.35 3.3K 14.51 18.0K

BE+m-BF 13.29 1.7K 13.46 3.3K 14.42 18.1K 13.29 1.7K 13.46 3.2K 14.42 18.0K 13.29 1.7K 13.46 3.3K 14.42 18.0K
grid networks (Bayesian networks)

m-AOBB - - - 1181.8 5.2M 2157.8 6.9M - 19.63 789 21.50 3.3K 111.61 19.6K
g-50-18-5 m-AOBF out out out out out out 13.65 5.8K 13.97 8.8K 15.75 24.6K
(324, 2) m-BB - - - 1135.7 171M 1316.9 199M 1840.1 277M 13.52 16.5K 13.56 27.2K 14.71 114.7K
(24, 84) m-BF out out out out out out 13.65 8.2K 13.68 11K 14.01 26.3K

BE+m-BF 37.98 324 38.00 1.7K 38.46 12.1K 37.98 324 38.00 1.7K 38.00 12.1K 37.98 324 38.00 1.7K 38.46 12.1K
m-AOBB - - - - - - 226.38 770.9K 654.08 1.5M 5126.0 3.5M

g-50-20-5 m-AOBF out out out out out out out out out
(400, 2) m-BB - - - - - - 424.57 64.1M 512.80 78M 723.66 109.6M
(27, 93) m-BF out out out out out out 55.39 2.9M 63.69 3.5M 82.62 4.9M

m-AOBB 1076.5 4.8M 3070.7 8.9M - 7.63 33K 59.64 135.4K 510.92 353.7K 22.02 722 24.98 5.8K 89.85 28.4K
g-75-18-5 m-AOBF out out out 26.29 368.8K out out 13.33 1.3K 13.92 7.1K 17.26 33.2K
(324, 2) m-BB - - - 7.86 1.3M 15.62 2.5M 32.67 4.9M 13.13 1.5K 13.35 21K 15.95 196.3K
(24, 85) m-BF out out out 3.57 280.4K 7.98 639K 17.95 1.4M 13.27 465 13.28 2.9K 13.87 22.2K

BE+m-BF 38.05 324 38.05 2.5K 38.69 21.4K 38.05 324 38.05 2.5K 38.69 21.4K 38.05 324 38.05 2.5K 38.69 21.4K
m-AOBB - - - 1635.1 6.2M - - 30.94 17.5K 52.70 50K 347.02 132.6K

g-75-19-5 m-AOBF out out out out out out out out out
(361, 2) m-BB - - - - - - 14.44 36.7K 15.31 90.5K 20.81 467.8K
(25, 85) m-BF out out out out out out 14.51 11.7K 14.56 16.6K 15.09 38.7K

BE+m-BF 143.11 361 143.11 2.3K 144.11 16.9K 143.11 361 143.11 2.3K 144.11 16.9K 143.11 361 143.11 2.3K 144.11 16.9K
m-AOBB - - - 214.21 1M 345.74 1.2M 1514.7 1.5M 47.19 33K 59.96 51.1K 246.82 88K

g-90-20-5 m-AOBF out out out out out out 19.97 17.8K 21.66 32.1K 29.65 96.5K
(400, 2) m-BB - - - 52.96 6.4M 67.87 8.2M 108.22 12.9M 18.44 95.5K 19.34 158.4K 24.80 498.2K
(27, 99) m-BF out out out 17.09 1.1M 25.00 1.6M 45.46 2.9M 18.17 3.9K 18.19 7K 18.56 21.3K

ISCAS networks (Weighted CSPs)
i = 6 i = 12 i = 18

m-AOBB 898.83 4.1M 4354.9 7.9M - 0.49 2.4K 2.48 4.9K 90.57 13.5K 0.52 433 1.52 2.7K 40.17 8.6K
c432 m-AOBF 1.72 18.9K 2.05 19.9K 30.46 290.1K 0.07 288 0.25 1K 1.86 7.5K 0.69 287 0.85 1K 2.54 7.4K
(432, 2) m-BB - - - 3.08 153.5K 6.31 304K 41.52 2.1M 1.09 22.9K 2.85 107.6K 35.35 1.7M
(28, 46) m-BF 279.60 12.2M 281.03 12.2M out 0.03 507 0.14 3.7K 1.22 34.2K 0.64 432 0.77 3.6K 1.84 33.9K

m-AOBB - - - 449.59 1.1K 2900.2 2.4M - 28.91 74.7K 60.57 107.4K 1853.4 347.6K
s953 m-AOBF 11.91 106K 11.91 106K 23.35 211.4K 0.29 2.4K 0.29 2,477 0.46 4K 2.92 600 2.93 648 3.06 1.3K
(441, 2) m-BB - - - 2013.5 147.2M 1976.1 147.5M 2010.4 151.7M 7.00 315.7K 7.05 317.5K 9.91 487.5K
(72, 99) m-BF out out out 0.09 1.5K 0.10 1.6K 0.47 16.6K 2.91 656 2.87 732 2.97 4.4K

m-AOBB - - - 289.72 835.5K 625.10 1.2M 6652.2 2.8M 26.53 66.6K 48.10 88K 681.16 216.8K
s1196 m-AOBF out out out 5.62 81.9K 13.66 155K out 3.70 2.2K 7.01 21.5K out
(562, 2) m-BB - - - 107.80 7.3M 110.24 7.4M 237.73 15.7M 8.02 338.4K 8.78 364.7K 20.16 877.4K
(54, 110) m-BF out out out 0.82 34.2K 14.84 539K 49.03 1.9M 3.43 3.9K 3.74 17.6K 4.65 46.1K

m-AOBB - - - - - - 409.05 984K 1094.1 1.5M -
s1238 m-AOBF out out out out out out 3.67 3.1K 5.16 9.2K 25.60 96.9K
(541, 2) m-BB - - - - - - 103.53 7.9M 106.62 8M 165.55 10.9M
(58, 100) m-BF out out out 76.61 2.8M 75.68 2.8M 351.05 12.9M 3.60 7.1K 3.62 9.8K 4.92 51.4K

m-AOBB 5095.3 14.7M - - 0.81 2.8K 49.44 56.3K 4118.8 394.2K 3.82 1.4K 25.14 23.9K 1956.7 175.9K
s1488 m-AOBF 12.38 42.8K out out 0.38 1.5K 2.19 9.7K 17.91 70.8K 5.02 4.2K 8.09 20K out
(667, 2) m-BB - - - 6.00 231.8K 130.39 4.2M 504.33 19.1M 6.82 86.1K 173.27 5M 702.75 21.4M
(46, 69) m-BF out out out 0.14 939 3.87 84.6K 33.62 692.7K 4.37 783 4.81 11.6K 9.02 110.9K

Table 1: CPU time (in seconds) and number of nodes expanded for the genetic linkage, grid and ISCAS networks. An ’-’ stands
for exceeding the time limit (12h - pedigrees, 2h - grids and ISCAS networks). ’out’ indicates out of 4GB memory. Algorithm
BE+m-BF is shown in the corresponding table row only when it solved that problem instance, and is omitted otherwise.

implemented in C++ (32-bit) and the experiments were run
on a 2.6GHz quad-core processor with 12GB of RAM.

We can distinguish 4 algorithms based on the particular
order of node expansions and the structure of the underlying
search space: two that explore a regular OR search tree, de-
noted by m-BF and m-BB, and two that explore an AND/OR

search tree, namely m-AOBF and m-AOBB. So far we im-
plemented algorithms that explore a search tree and not a
graph. In the case of Best-First Search this is justified by
theory. Caching for Depth-First Branch-and-Bound allows
to expand less nodes, but could bring significant space over-
head, and this will be studied in future work. We also ran the

1899

c432 [n=432, k=2, w*=28, h=46] (i bound=8)

C
P

U
 t

im
e

 (
se

c)

100

101

102

103

104

m
1 10 50 100 500 1,000 5,000 10,000

m AOBB
m AOBF
m BB
m BF

s953 [n=441, k=2, w*=72, h=99] - (i-bound=12)

C
P

U
 t

im
e

 (
se

c)

10 2

10 1

100

101

102

103

104104

m
1 10 50 100 500 1,000 5,000 10,000

m AOBB
m AOBF
m BB
m BF

s1488 [n=667, k=2, w*=46, h=69] - (i-bound=14)

C
P

U
 t

im
e

 (
se

c)

100

101

102

103

104

m
1 10 50 100 500 1,000 5,000 10,000

m AOBB
m AOBF
m BB
m BF

c432 [n=432, k=2, w*=28, h=46] (i bound=8)

n
o

d
e

s

104

105

106

107

108

109109

m
1 10 50 100 500 1,000 5,000 10,000

m AOBB
m AOBF
m BB
m BF

s953 [n=441, k=2, w*=72, h=99] (i bound=12)

n
o

d
e

s
103

104

105

106

107

108

109109

m
1 10 50 100 500 1,000 5,000 10,000

m AOBB
m AOBF
m BB
m BF

s1488 [n=667, k=2, w*=46, h=69] (i bound=14)

n
o

d
e

s

103

104

105

106

107

108

m
1 10 50 100 500 1,000 5,000 10,000

m AOBB
m AOBF
m BB
m BF

Figure 2: CPU time and nodes expanded as a function of m for the ISCAS networks c432, s953 and s1488, respectively.

solved instances, m 100

n
u

m
b

e
r

o
f

s
o

lv
e
d

 i
n

s
ta

n
c
e
s

0

5

10

15

20

25

30

i bound
10 11 12 13 14 15 16 17 18

m AOBB

m AOBF

m BB

m BF

Figure 3: Number of solved instances as a function of the
mini-bucket i-bound, m = 100.

hybrid BE-Greedy-m-BF described in Section 5.2 (denoted
here as BE+m-BF). All algorithms were guided by pre-
compiled mini-bucket heuristics (Kask and Dechter 2001;
Marinescu and Dechter 2009a) and were restricted to a
static variable ordering which was computed using a min-fill
heuristic iteratively and stochastically (Kask et al. 2011).

We report the CPU time (in seconds) and the number of
nodes expanded during search and all the relevant parame-
ters (n, k, w∗, h). The best runtime performance points are
highlighted.

Table 1 shows the results obtained for 5 hard linkage net-
works, 5 grid networks and 5 ISCAS circuits. The columns
are indexed by the mini-buckets i-bound, the number of so-
lutions considered and for each we report the time and the
number of nodes expanded. The best time for each i-bound
is shown in bold and underlined. We observed that:

1 Best First vs. Branch and Bound. Algorithm m-BF offers the
overall best performance when sufficient memory is avail-
able, winning on 12 out of the 15 test instances shown. For
example, on the s1196 circuit, m-BF with i = 12 found 100
solutions in 49 seconds, about 5 and 133 times faster than
m-BB and m-AOBB, respectively. Algorithm m-BB is oth-
erwise more robust and, therefore, is able to find all 100 so-
lutions to the hardest instance in the dataset (eg, pedigree7)
in about 7 hours, while others aborted due to memory or

time limit. Figure 3 shows that overall m-BB solves more
instances for various i-bounds.

2 Impact of the AND/OR search space: the AND/OR search
algorithm m-AOBB is inferior to m-BB time-wise on most
instances even though it expands significantly less nodes (eg,
c432). Its powerful decomposition strategy does not trans-
late into time savings, apparently due to overhead of com-
bining m partial solutions from different child nodes. Fig-
ure 4 shows the time spent per node, averaged over the pedi-
gree problems. Still, for some instances m-AOBB is more
efficient than m-BB, for example, pedigree38. As for Best-
First search, m-AOBF is competitive and sometimes signif-
icantly faster than m-BF when enough memory is available
(eg, c432, s953), but it runs out of memory quicker than m-
BF because of additional data structures needed to maintain
the AND/OR tree and its OPEN list.

3 Impact of the heuristic information: the B&B algorithms
typically outperform the BFS algorithms for less accurate
heuristics (smaller i-bounds), where the latter run out of
memory relatively quickly (eg, pedigree38, pedigree39). As
the heuristic accuracy increases (larger i-bounds), BFS out-
performs dramatically B&B search (eg, s953, s1196). How-
ever, for the most accurate heuristics (largest i-bounds), the
difference between B&B and BFS is often smaller, perhaps,
because B&B finds almost optimal solutions fast and there-
fore, like Best-First search, will not explore solutions whose
evaluation function is above the optimal one.

4 Impact of the number of solutions: algorithms m-BF and m-
BB are able to scale to much larger m values than 100 due
to their bounded computational overhead compared with m-
AOBB/m-AOBF. Figure 2 displays the CPU time and num-
ber of nodes expanded as a function of m, for three ISCAS
circuits. Algorithm m-BF is the fastest algorithm across all
reportedm values, outperforming m-BB by up to four orders
of magnitude while exploring a significantly smaller search
space. Algorithm m-AOBF is competitive with m-BF but

1900

Average time cost (in sec) per node for pedigrees vs number of solutions m

a
v
e

ra
g

e
 t

m
e

 c
o

s
t

p
e

r
n

o
d

e
,

s
e

c

0

0 01

0 02

0 03

0 04

0 05

0 06

number of solutions m

0 20 40 60 80 100

m AOBB

m AOBF

m BB

m BF

Figure 4: Average time (in sec) per node as a function of m.

only for relatively smallm values, because of computational
overhead issues. Algorithm m-AOBB scaled up to m = 10
on c432 and s953, and up to m = 100 on s1488, while
exceeding the time limit for larger m values, even though
the search space explored was far smaller than that of m-BB
again, due to node overhead.

5 Algorithm BE+m-BF: solved only 5 test instances and failed
on the rest due to the memory implied by the very large
induced widths. We expect a similar performance from
the variable elimination based approaches (e.g., (Nilsson
1998)), because they all require memory exponential in the
induced width w∗ and lack an efficient pruning mechanism.

8 Conclusion
Most of the work on finding m best solutions over graphi-
cal models was focused on either iterative schemes based on
Lawler’s idea, or on dynamic programming (e.g., variable-
elimination or tree-clustering). In this paper we showed
for the first time that for combinatorial optimization de-
fined over graphical models the traditional heuristic search
paradigms are superior. In particular, we extended Best-First
and Branch-and-Bound search algorithms to solving the m-
best optimization tasks, presenting m-A* and m-BB, and
proved analytically that m-A* is superior to any other search
scheme. We also introduced BE-Greedy-m-BF, a hybrid of
variable elimination and Best-First scheme and showed that
it has the best worst-case time complexity amongst all m-
best algorithms over graphical models known to us. How-
ever, we empirically demonstrated the superiority of m-A*
over the BE-Greedy-m-BF scheme in practice, and thus can
infer general superiority over many of the other algorithms.

Finally, we also demonstrated empirically that since both
Best-First Search and the elimination-based schemes (e.g.,
BE-Greedy-m-BF and elim-m-opt reported in (Flerova,
Dechter, and Rollon 2011)) require too much memory when
the graph is dense (e.g., the induced width w∗ is high),
a Branch-and-Bound scheme like m-BB, which can trade
space for time, is a better option. Note, that our implementa-
tions of the search algorithms here were restricted to search
spaces that are trees. One of our main future tasks is to ex-
plore extensions to search spaces that are graphs.

References
Aljazzar, H., and Leue, S. 2011. K : A heuristic search algo-
rithm for finding the k shortest paths. Artificial Intelligence
175(18):2129–2154.

Charniak, E., and Shimony, S. 1994. Cost-based abduction
and map explanation. Artificial Intelligence 66(2):345–374.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73–
106.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM
32:506–536.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme for bounded inference. Journal of the ACM
50(2):107–153.
Elliott, P. 2007. Extracting the K Best Solutions from a Val-
ued And-Or Acyclic Graph. Master’s thesis, Massachusetts
Institute of Technology.
Flerova, N.; Dechter, R.; and Rollon, E. 2011. Bucket
and mini-bucket schemes for m best solutions over graphical
models. In Graph structures for knowledge representation
and reasoning workshop.
Kask, K., and Dechter, R. 2001. A general scheme for
automatic search heuristics from specification dependencies.
Artificial Intelligence 129(1–2):91–131.
Kask, K.; Gefland, A.; Otten, L.; and Dechter, R. 2011.
Pushing the power of stochastic greedy ordering schemes
for inference in graphical models. In 25th Conference on
Artificial Intelligence (AAAI), 54–60.
Lawler, E. 1972. A procedure for computing the k best solu-
tions to discrete optimization problems and its application to
the shortest path problem. Management Science 18(7):401–
405.
Marinescu, R., and Dechter, R. 2009a. AND/OR Branch-
and-Bound search for combinatorial optimization in graphi-
cal models. Artificial Intelligence 173(16-17):1457–1491.
Marinescu, R., and Dechter, R. 2009b. Memory intensive
AND/OR search for combinatorial optimization in graphical
models. Artificial Intelligence 173(16-17):1492–1524.
Nillson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.
Nilsson, D. 1998. An efficient algorithm for finding the
M most probable configurations in probabilistic expert sys-
tems. Statistics and Computing 8(2):159–173.
Pearl, J., and Korf, R. 1987. Search techniques. Annual
Reviews of Computer Science 2:451–467.
Schiex, T. 2000. Arc consistency for soft constraints. In-
ternational Conference on Principles and Practice of Con-
straint Programming (CP) 411–424.
Seroussi, B., and Golmard, J. 1994. An algorithm directly
finding the K most probable configurations in Bayesian net-
works. International Journal of Approximate Reasoning
11(3):205–233.
Yanover, C., and Weiss, Y. 2004. Finding the M Most Prob-
able Configurations Using Loopy Belief Propagation. In Ad-
vances in Neural Information Processing Systems 16. The
MIT Press.

1901

