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Abstract

Evolutionary Strategies (ES) are a class of continuous
optimization algorithms that have proven to perform
very well on hard optimization problems. Whereas in
earlier literature, both intermediate and discrete recom-
bination operators were used, we now see that most ES,
e.g. CMA-ES, use only intermediate recombination.
While CMA-ES is considered state-of-the-art in con-
tinuous optimization, we believe that reintroducing dis-
crete recombination can improve the algorithms’ ability
to escape local optima. Specifically, we look at using in-
formation on the problem’s structure to create building
blocks for recombination.

In evolutionary computation, a population of candidate so-
lutions is evolved by applying mutation and recombina-
tion. Mutation alters elements of a single solution, while
recombination combines elements from different individu-
als to create a new candidate solution. A typical recombi-
nation operator is the crossover operator, where a new so-
lution is produced by essentially copying parts from dif-
ferent parents and glueing them together. When performed
randomly, this process of crossover can disrupt optimized
substructures present in a parent by only inheriting part
of the substructure into the offspring. In the domain of
GAs (genetic algorithms), research into detecting and us-
ing a problem’s structure to improve the performance of
crossover recombination is ongoing (Harik, Lobo, and Sas-
try 2006; Thierens and Bosman 2011; Pelikan, Hauschild,
and Thierens 2011). On the other hand, in Evolutionary
Strategies (ES) (Bäck, Hoffmeister, and Schwefel 1991;
Beyer and Schwefel 2002), research has moved away from
the concept of crossover or discrete recombination. See for
example the state of the art Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)(Hansen 2006), which only
uses intermediate recombination in its optimization, calcu-
lating the point of gravity (weighted average) of the best
current candidate solutions.

When investigating infinite-valued SAT, or satisfiability
in infinite-valued logics, which can be modelled as a contin-
uous optimization problem over the domain [0, 1]

n, with n
the number of variables, we applied the standard CMA-ES
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as a solver and have significantly improved upon the state
of the art (Schockaert, Janssen, and Vermeir 2012) (our re-
sults are to be published). Still, on a number of instances,
the algorithm regularly fails to converge to the global opti-
mum.We hypothesise – and initial experiments confirm this
– that such infinite-valued SAT problems have an inherent
structure to them that could be used to improve the likeli-
hood of convergence to the global optimum. We aim to in-
corporate a more informed discrete recombination operator
into CMA-ES, by explicitly detecting correlations between
variables and creating clusters of variables that can be ex-
changed between candidate solutions, improving the algo-
rithms’ ability to escape local optima. In the next sections,
we explain how this structure can be derived from the covari-
ance matrix used in CMA-ES and used in recombination.

Clustering variables
The CMA-ES algorithm relies on the adaptation of the co-
variance matrix of a multi-variate normal search distribu-
tion, from which new individuals are sampled. The covari-
ance matrix is adapted to fit the search distribution to the
contour lines of the function to be minimized. Thus, in this
covariance matrix is captured an estimation of the correla-
tions between variables, which can be used to derive a clus-
tering of variables to be used in discrete recombination.

The first step to achieve this clustering is building a
weighted graph that represents the structure of the problem.
For that, we use the eigendecomposition of the covariance
matrix, which is already calculated within the CMA-ES. The
correlation between two variables is determined by looking
at the magnitudes of the corresponding components in each
eigenvector. For each eigenvector, we take the product of the
magnitudes of the two components in question. These prod-
ucts are summed, each product weighted by the eigenvalue
of the eigenvector. The result of this method is that variables
that have a relatively large magnitude in the same, important
eigenvectors, will be assigned a larger weight in the structure
graph. Pseudocode is shown in Algorithm 1. The weights
need to be normalized so that, if represented as a matrix, el-
ements on the diagonal equal 1, i.e. full auto-correlation for
variables. Normalization is performed as follows:

weightx,y =
weightx,y√

weightx,x ∗
√
weighty,y

(1)
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Algorithm 1 Correlation between variables/dimensions x
and y
weightx,y = 0
for i = 1→ N do
weightx,y = weightx,y +
(eigenvectori[x] ∗ eigenvectori[y] ∗ eigenvaluei)

end for

Starting with this graph, we can cluster variables based on
the strength of correlations. We start with the highest corre-
lation in the graph and merge the two corresponding vari-
ables into one node. The correlations between the grouped
variables and the others then need to be recalculated, by av-
eraging the original correlations between each variable and
the others. See Algorithm 2. We find the new highest cor-
relation in the graph and repeat until the highest correlation
drops below a threshold. The nodes in de resulting graph
are then the most significant substructures of the problem
and can be used as building blocks to be exchanged during
recombination. This structuring, a set of disjunct sets, is re-
ferred to as the Marginal Product Structure (Thierens and
Bosman 2011) in the context of GAs.

Algorithm 2 New correlation between grouped x,y and rest
for a ∈ nodes\ {x, y} do
weight(x,y),a =

nrV ars(x)∗weightx,a+nrV ars(y)∗weighty,a

nrV ars(x)+nrV ars(y)

end for

Structure-driven discrete recombination
The implementation of the discrete recombination that we
evaluate in this preliminary research, is quite simple. We run
a number of CMA-ES populations in parallel, and each gen-
eration, we allow discrete recombination, based on the prob-
lem derived structure, between populations. This recombina-
tion applies to the following CMA-ES algorithmic parame-
ters: the mean, the covariance matrix and the evolution path.
The two last ones are recombined to keep intact as much
as possible of the meta-information calculated by CMA-ES.
Recombination of the mean and evolution path is trivial, as it
simply involves exchanging the elements of the correspond-
ing dimensions. The recombination of the covariance matrix
is less simple, as it encodes information between variables
that may or may not be kept together during recombination.
The way the matrix crossover is implemented is as follows:
if variables i and j come from the same parent, the covari-
ance information for element (i, j) in the child covariance
matrix comes from the corresponding parent. If the variables
come from different parents, the average of the covariance
information from both parents is calculated for the child.

This method is able to detect the structure of simple
toy examples, functions built over 10 variables by sum-
ming two-dimensional gaussian distributions over several of
the variables, creating correlated substructures, and achieves
convergence in about 9% less function evaluations compared
to the same number of CMA-ES populations running in par-
allel, without discrete recombination.

On the Michalewicz benchmark function, see Equation
2, our method detects that it is dimension-wise decompos-
able and applies uniform crossover. This results in a halving
of the number of function evaluations required to reach the
VTR (value to reach), and more importantly, it reaches this
value in 93 out of 100 runs, compared to 48 without discrete
recombination.

−
l−1∑
i=0

sin (xi) sin
20

(
(i+ 1)x2i

π

)
(2)

Conclusions and future work
Using the extension to CMA-ES as explained in the previ-
ous sections, we are able to detect significant correlations
between variables, and build an approximate model of the
problem’s internal structure. We are currently conducting
experiments to evaluate the effect of discrete recombination
on infinite-valued SAT problems. We also intend to investi-
gate whether discrete recombination can be introduced into
CMA-ES in other ways.

Additional material concerning this paper, including re-
sults of experiments currently being conducted, can be ac-
cessed at the url: http://como.vub.ac.be/tbrys/AAAI2012.
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