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Abstract

As growing numbers of real world applications involve
imbalanced class distribution or unequal costs for mis-
classification errors in different classes, learning from
imbalanced class distribution is considered to be one
of the most challenging issues in data mining research.
This study empirically investigates the sensitivity of
bagging predictors with respect to 12 algorithms and 9
levels of class distribution on 14 imbalanced data-sets
by using statistical and graphical methods to address
the important issue of understanding the effect of vary-
ing levels of class distribution on bagging predictors.
The experimental results demonstrate that bagging NB
and MLP are insensitive to various levels of imbalanced
class distribution.

Introduction
Imbalanced class distribution refers to the training samples
that are non-uniformly distributed with unequal cost among
classes. Typically, in a binary classification, the minority
class and majority class are regarded as a positive class
and a negative class, respectively. A growing number of
researchers focus on solving imbalanced class distribution
problems in real world applications in a variety of domains,
such as, credit card fraud detection, medical diagnosis, and
biological data analysis.

(Weiss and Provost 2001) evaluated the effect of class dis-
tribution on classifier learning by assessing the relationship
between training class distribution and performance of C4.5
learner to draw their conclusions as to which distribution
is best for training based on two evaluation measures: error
rate and Area Under the ROC curve (AUC). They however
did not evaluate which learner is sensitive when the levels
of class distribution vary. Moreover, imbalanced class distri-
bution or the unequal cost of mis-classification errors often
causes learning algorithms to perform poorly on the minor-
ity class; the mis-classification error rate cannot distinguish
the accuracy of the minority class (He and Garcia 2009;
Weiss and Provost 2001). Two evaluation measures, Re-
ceiver Operating Characteristic (ROC) Curve and Geometric
mean (G-mean) of the accuracy rates for both positive and
negative classes are therefore adopted for this study.
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Figure 1: Designed framework

Bagging (Breiman 1996) uses bootstrap samples to build
a set of classifiers to form a prediction model; the final de-
cision is aggregated by a majority vote of the predictions of
the individual classifiers in the ensemble. It has been applied
to a variety of real world applications. Our previous studies
investigated the performance of bagging predictors in natu-
ral class distribution (Liang, Zhu, and Zhang 2011); but we
did not investigate the sensitivity of bagging, so it is unclear
which bagging predictors are sensitive to various levels of
class distribution.

Our main contribution is to conduct a intensive evaluation
of the sensitivity of bagging predictors to understand the ef-
fect of varying levels of class distribution. The experimental
results provide a useful guide for data mining practitioners
to understand the sensitivity of the bagging predictors and to
solve imbalanced class distribution problems for their appli-
cations.

Designed Framework
Figure 1 represents designed framework to investigate the
sensitivity of bagging predictors as follows: (1) a random
under-sampling (RUS) method is used to change original
data-set into 9 new data-sets with different imbalanced class
distribution, (2) a 10-trial 10-fold cross-validation (CV) is
performed on each altered data-set, (3) statistical methods
are applied to draw validated conclusions, and (4) two eval-
uation metrics are adopted to further visualize the sensitivity
of bagging predictors.

Statistical Method: the Friedman test with the Post-hoc
Nemenyi test (Demšar 2006) are used to compare multiple
bagging predictors: Step1. calculate the changed G-mean
(CG) between two adjacent levels of class distribution; Step
2. using CG to rank bagging predictors on each data-set
(lowest value ranked as 1); Step 3. the Friedman test is used
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Figure 2: Comparison of all bagging predictors against each other
with the Nemenyi test, where the x-axis indicates the average rank
of the bagging predictors, the y-axis indicates the ascending order
of the average rank of CG performance, and the horizontal bars
indicate the CD.

to obtain the average rank of CG among 12 bagging predic-
tors over all data-sets; Step 4. Post-hoc Nemenyi test is used
to calculate “critical difference” (CD).

Evaluation Metrics: Two evaluation metrics are used to
visualize the performance of selected bagging predictors to
further examine the statistical results:

(1) A ROC curve is used to plot the False Positive Rate
(FPR), and True Positive Rate (TPR) on the x-axis and y-
axis, respectively. The point (0,1) stands for “perfect point”.
In the ROC space, one point is better than another if it is
close to the “perfect point” (Provost and Fawcett 1997). In
this study, a 10-trial 10-fold cross-validation is performed on
each altered data-sets to obtain nine pairs of (FPR, TPR)
to form a ROC curve for each original data-set, so a ROC
curve is used to represent the performance of each bagging
predictor at 9 different levels of class distribution.

(2) G − mean monitor the accuracy rates of both TPR
and True Negative Rate (TNR) for the minority and major-
ity classes, respectively (Ng and Dash 2006).

G−mean =
√
TPR ∗ TNR (1)

Experimental Results
Figure 2 presents comparison of all bagging predictors
against each other with the Nemenyi test, where the x-axis
indicates the average rank of CG performance of the bag-
ging predictors; the y-axis indicates the ascending order of
the average rank of CG performance, which represents bag-
ging predictors from insensitive to sensitive; and the hori-
zontal bars indicate the CD. Groups of bagging predictors
that are not significantly different (at p = 0.05), when the
horizontal bars are overlapped. The results indicate that the
group of bagging predictors, Multi-layer Proceptron (MLP)
and Naı̈ve Bayes (NB) is the most insensitive predictors,
that means the performance of those bagging predictors
change gradually between adjacent levels of class distribu-
tion, so they are insensitive to varying levels of class dis-
tribution; while the group of bagging predictors, Decision
Table (DTable), RepTree and OneR is the most sensitive pre-
dictors, that means the performance of those bagging predic-
tors change sharply between adjacent levels of class distri-
bution, so they are sensitive to varying levels of class distri-
bution. The ranking order of CG performance of those sen-
sitive bagging predictors is therefore greater than those in-
sensitive bagging predictors, when the levels of class distri-
bution change. There are statistically significant differences
between the two groups.
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Figure 3: Comparison of ROC curve and G−mean among three
selected bagging predictors on diabetes data-set.

Figure 3 presents graphical comparisons of G-mean and
ROC curve of three selected bagging predictors at 9 lev-
els of class distribution on diabetes data-set in two subfig-
ures. When the levels of class distribution are changed, the
G-mean of bagging predictors, NB and MLP change gradu-
ally, while bagging predictors, DTable changes sharply. The
ROC curves indicate that Bagging predictors, MLP and NB
have more points close to the ”perfect point” and better per-
formance than bagging DTable at same level of imbalanced
class distribution, eg., at 10%, 20%, 80%, and 90% levels
imbalanced class distribution. The graphical observations
confirm that bagging predictors, MLP and NB are insensi-
tive to various levels of class distribution and perform rel-
atively well with extremely imbalanced class distribution.
The graphical results therefore are consistent with the statis-
tical results.

Conclusion
This paper empirically investigated the sensitivity of bag-
ging predictors with respect to various levels of imbalanced
class distribution. Both graphical observations and statistical
results demonstrated that the group of bagging predictors,
MLP and NB is insensitive to different levels of imbalanced
class distribution.
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