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Abstract

Active learning traditionally assumes that an oracle
is capable of providing labeling information for each
query instance. This paper formulates a new research
problem which allows an oracle admit that he/she is in-
capable of labeling some query instances or simply an-
swer “I don’t know the label”. We define a unified ob-
jective function to ensure that each query instance sub-
mitted to the oracle is the one mostly needed for label-
ing and the oracle should also has the knowledge to la-
bel. Experiments based on different types of knowledge
blind spot (KBS) models demonstrate the effectiveness
of the proposed design.

Introduction
Recently, several works argue that it is too strong to assume
that oracles may always behave perfectly. Some studies fo-
cus on multiple annotators scenario where multiple oracles
provide labels with varying expertise (Donmez and Car-
bonell 2008; Yan et al. 2011). While works in this category
assume oracles are subject to different levels of expertise,
they inherently disregard whether an oracle can label an in-
stance or not, and will still require all oracles to label in-
stances which may be out of their domain knowledge.

In this paper, we formulate a new active learning setting,
which allows an oracle to admit that he/she is incapable of
labeling some query instances and will not provide labels for
those instances. Meanwhile, if we assume that each query
process is subject to a certain amount of cost, answering “I
don’t know the label” may also involve necessary cost be-
cause the oracle has spent effort and time to investigate the
instances.

Motivated by the above observations, we propose, in this
paper, a mutual information theory based framework to
query the instance which has the maximum mutual infor-
mation according the knowledge blind spot of the oracle. To
characterize the oracle’s knowledge blind spot, we use di-
verse density to transform instances into a new feature space,
through which we can accurately assess the likelihood of
each unlabeled instance belonging to the oracle’s KBS.1
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1For more information about our approach and experiments, see
http://mengfang.wordpress.com/2012/02/03/alokbs/

Information-theoretic Model
Consider a data set with n instances {x1, x2, . . . , xn}, where
the label for the ith instance is denoted by yi. Our objec-
tive is to query the instance that has the most information,
given the labeled data, as defined in Eq.(1), where U de-
notes the set of unlabeled instances and H represents the
entropy/uncertainty of instance xi with respect to the class
labels predicted from a classifier ~(.) trained from labeled
set L.

argmax
xi∈U

H(yi; ~(L)) (1)

Definition A Knowledge Blind Spot (KBS) is defined as a
collect of instances to which a labeler (or an oracle) does not
have knowledge assigning class labels.

Denote B+ the set of KBS of an oracle, and B− is the set
of knowledge that the oracle has already acquired. Then the
expected entropy of an unlabeled instance xi with respect to
sets B+ and B− is given in by

H(yi; ~(L)) = P(xi ∈ B
+)H(yi|xi ∈ B

+; ~(L))
+P(xi ∈ B

−)H(yi|xi ∈ B
−; ~(L)) (2)

It is clear that knowledge base B = B+ ∪ B−, and

P(xi ∈ B
+) + P(xi ∈ B

−) = 1 (3)

Combining KBS and instance uncertainty, the objective
function in Eq.(1) can be rewrite as

argmax
xi∈U

(1 − P(xi ∈ B
+))H(yi|xi ∈ B

−; ~(L)) (4)

Eq.(4) represents the trade-off between minimizing the
probability of falling into an oracle’s KBS and maximizing
the conditional mutual information.

Diverse Density for Characterizing KBS
To model an oracle’s knowledge blind spot, we employ the
diverse density concept (Maron and Lozano-Pérez 1998).
We assume that some regions or concept set C exist to repre-
sent an oracle’s KBS. We then define the diverse density of
the target concept C as the probability that concept C is the
target concept given the observed knowledge blind set (B+)
and the acquired knowledge set (B−) of the oracle.

DD(C) = P(C|b+1 , b
+
2 , . . . , b

+
p , b
−
1 , b

−
2 , . . . , b

−
q ) (5)
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Assume target concept set C consists of a number of small
concepts C = {c1, c2, . . . , cm}, the conditional probability of
each small concept ck, given an instance bτ in the knowledge
base B, can be defined as a feature value of bτ (Chen, Bi,
and Wang 2006). So we form a new set of feature for bτ as

fC(bτ) =
[
fc1 (bτ), . . . , fcm (bτ)

]T
= [P(c1|bτ), . . . , P(cm|bτ)]T (6)

And its conditional probability is defined as

P(ck |bτ) ∝ d̄(ck, bτ) = exp(−
‖ck − bτ‖

2

σ2 ) (7)

We can use a sign function to define new label-
ing information for all instances in B as ł(B) =
[sign(b+1 ), . . . , sign(b+p), sign(b−1 ), . . . , sign(b−q )]T . Then we
form a well defined binary classification problem as

P(xi ∈ B
+) = ~(fC(B), ł(B))[fC(xi); 1] (8)

In Eq.(8), ~(.)[fC(xi); 1] denotes the class distribution of
the classifier ~(.) in classifying fC(xi) into class “1” and one
can use any learning algorithm to train ~(.).

Active Learning with Knowledge Blind Spot
Algorithm 1 lists major steps of the proposed framework for
active learning with knowledge blind spot.

Algorithm 1 Active Learning with Knowledge Blind Spot
Input: (1) Unlabeled instances set: U; (2) An oracle O; (3)

A learner ~(.); and (4) The number (or the percentage) of in-
stances required to be labeled by the oracle O (reqLabeled)

Output: Labeled instance set L
1: L ← Randomly label a tiny potion of instances fromU
2: numLabeled ← |L|; numQueries← 0
3: B− ← L; B+ ← ∅; B ← B+ ∪ B−

4: while numLabeled ≤ reqLabeled do
5: i∗ ← argmaxxi∈U

H[xi] Use Eq.(4) and (8) select instance
with the maximum utility value inU

6: yi∗ ← Query the label of xi∗ from the oracle O
7: if the oracle answers “I don’t know the label” then
8: B+ ← B+ ∪ xi∗ ;
9: else

10: L ← L ∪ (xi∗ , yi∗ ); B− ← B− ∪ xi∗

11: numLabeled ← numLabeled + 1
12: end if
13: U ← U \xi∗ ; B ← B+ ∪ B− Update knowledge base B
14: numQueries← numQueries + 1
15: end while

Experiments
We use 10-fold cross validation for our experiments based
on Wisconsin Breast Cancer Diagnostic Data Set and report
the average results. To the best of our knowledge, there is no
algorithm available for modeling KBS of the oracle for ac-
tive learning. So we implement following KBS modeling ap-
proaches based on the framework in Algorithm 1: ALLCA(a
case-based mining algorithm to model KBS of the oracle),
ORREG(train a regression model for KBS in the original
feature space), OR3NN(calculate P(xi ∈ B

+) by using 3-
NN in original feature space), DD3NN(calculate P(xi ∈ B

+)
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Figure 1: The number of successfully labeled instances (a)
and accuracies of the classifiers (b) vs. the number of ac-
tive learning iterations (x-axis) trained from the data set L
labeled by different methods.

by using 3-NN but in new feature space Rc transformed by
using diversity density) and DDSVM(calculate P(xi ∈ B

+)
by using probability SVMs classifier trained on new feature
space Rc by using diverse density). We also compare our
framework with a baseline method: RANDM(randomly se-
lect and send instances to the oracle for labeling).

In Figure 1(a), DDSVM outperforms others in avoiding
the oracle’s KBS and results in the most number of instances
to be labeled by the oracle. Figure 1(b) presents the learning
curves of the classifiers trained from instance sets labeled
by different methods and indicates that almost all methods
result in better performance than random labeling, this is
mainly because that all approaches except Random involve
the active learning component in the labeling process.

Conclusion
In this paper, we formulated a new active learning paradigm
where the oracle, used for labeling, may be incapable of
labeling some query instances. We used diverse density to
model an oracle’s KBS, and combined the uncertainty of
each unlabeled instance and its likelihood of belonging to
the KBS to select instances for labeling. Empirical results
demonstrate the effectiveness of our approach.

Acknowledgments: This research is supported by Aus-
tralian Research Council Future Fellowship under Grant No.
FT100100971.

References
Chen, Y.; Bi, J.; and Wang, J. Z. 2006. MILES: Multiple-
Instance Learning via Embedded Instance Selection. IEEE
PAMI 28(12):1931–1947.
Donmez, P., and Carbonell, J. G. 2008. Proactive learning:
cost-sensitive active learning with multiple imperfect ora-
cles. In Proc. of CIKM, CIKM ’08, 619–628.
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