
A New Operator for ABox Revision in DL-Lite

Sibei Gao1 Guilin Qi1 Haofen Wang2

1 Key Laboratory of Computer Network and Information Integration of State Education Ministry
School of Computer Science and Engineering, Southeast University, China, gqi@seu.edu.cn

Postal Address:SiPaiLou #2, Nanjing, 210096, P.R. China
Phone: 86-25-52090910

2 Shanghai Jiao Tong University, Shanghai, China

Abstract

In this paper, we propose a new operator for revising
ABoxes in DL-Lite ontologies. We present a graph-
based algorithm for ABox revision in DL-Lite, which
implements the revision operator and we show it runs in
polynomial time

Introduction
Revising ontologies in Description Logics (DLs) deals with
the problem of incorporating a new ontology into an old one
consistently. This problem is important as DLs underpin
W3C standard Web ontology language OWL and ontologies
may evolve during their construction. Existing revision op-
erators in DLs are mostly generalizations of belief revision
operators in propositional logic.

Recently, there has been some work on revising ontolo-
gies in DL-Lite family, which is a family of DLs that pro-
vides tractable reasoning services. In (Qi and Du 2009;
Kharlamov and Zheleznyakov 2011), some model-based re-
vision operators in DL-Lite are proposed. These operators
suffer from the inexpressibility problem, i.e., the result of
revision may not be expressed in DL-Lite anymore. In (Cal-
vanese et al. 2010), the authors propose algorithms for TBox
revision and ABox revision respectively. The algorithm for
TBox revision suffers from the problem of non-determinism,
i.e., the output of the algorithm may change if we run it
several times. In contrast, the result of ABox revision is
uniquely defined. The algorithms for ABox revision run in
polynomial time. However, they need to compute the ABox
closure w.r.t. the TBox, which will hinder their applicability
for ontologies with large ABoxes, as it needs much space
and time (even if done off-line), especially when the ABox
is frequently changed. Here we restrict our attention to the
problem of ABox revision, which captures many scenarios,
such as database, ontology-based data management, etc.

In this paper, we first define a new operator for ABox re-
vision in DL-Lite. We then present a graph-based algorithm
for ABox revision in DL-Lite. Our algorithm has potential
to scale to ontologies with large ABoxes as it leverages a
graph structure and some efficient graph operators on top of

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it. Details of our work can be found in the technical report,
which is available at http://gqi.limewebs.com/aaaist12.pdf.

Preliminaries
DL-Lite
In our work, we consider DL-LiteFR, which is an important
fragment of DL-Lite. We start with the introduction of DL-
Litecore, which is the core language for the DL-Lite family.
The complex concepts and roles of DL-Litecore are defined
as follows: (1) B −→ A | ∃R, (2) R −→ P | P−, (3)
C −→ B | ¬B, (4) S −→ R | ¬R, where A denotes an
atomic concept, P an atomic role, B a basic concept, and
C a general concept. A basic concept which can be either
an atomic concept or a concept of the form ∃R, where R
denotes a basic role which can be either an atomic role or
the inverse of an atomic role.

In DL-Litecore, an ontology O = 〈T , A〉 consists of a
TBox T and an ABox A, where T is a finite set of concept
inclusion assertions of the form: B v C; and A is a finite
set of membership assertions of the form: A(a), P (a, b).
DL-LiteFR extends DL-Litecore with inclusion assertions
between roles of the form R v E and functionality on roles
or on their inverses of the form (functR). To keep the logic
tractable, whenever a role inclusion R1 v R2 appears in T ,
neither (functR2) nor (functR−2) can appear in it. We call
assertions of the form B1 v ¬B2 or R1 v ¬R2 as negative
inclusions (NIs).

The semantics of DL-Lite is defined in a standard way.
Given an interpretation I and an assertion α, I � α denotes
that I is a model of α. An interpretation is called a model
of an ontology O, iff it satisfies each assertion in O. An on-
tology is satisfiable if it has at least one model. An ontology
O logically implies an assertion α, written O |= α, if all
models of O are also models of α. The deductive closure of
an ABox A (of a TBox T), denoted clT (A) (resp., cl(T)),
is the set of all ABox (resp., TBox) assertions α such that
(T ∪ A) |= α (T |= α).

A New Operator for ABox Revision in DL-Lite
We consider the problem of ABox revision in DL-Lite.
Given an ontology O = 〈T , A〉 and a new ABox A′, sup-
poseO is consistent and T ∪A′ is consistent, but T ∪A′∪A
may be inconsistent. The problem of ABox revision is, how

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

2423

do we modify (by deletion or insertion of assertions) A such
that T ∪ A′ is consistent with the modified ABox? We
present a revision operator that removes one assertion from
each minimal inconsistent subset of A w.r.t. A′ and T .
Definition 1. Given an ontology O = 〈T , A〉 and an ABox
A′. A minimal inconsistent subset (MIS) D of A w.r.t.A′
and T is a sub-ABox of A which satisfies (1) D ∪ T ∪ A′is
inconsistent; (2) ∀D′ ⊂ D, D′ ∪ T ∪ A′ is consistent. We
denote the set of all the MISs of A w.r.t. A′ by MISA′(A)
(we omit T to simplify the notation).
Example 1. (originally from (Giacomo et al. 2009)) Given
an ontology O = 〈T , A〉 and a new ABox A′, where T =
{∃WillP lay v AvailableP layer, AvailableP layer v
Player Injured v ¬AvailableP layer}. A =
{WillP lay(Peter, game06)}, A′ = {Injured(Peter)}.
It is easy to check that there exists one MIS of A w.r.t.
A′ : {WillP lay(Peter, game06)}.
Lemma 1. (Calvanese et al. 2010) Let T ∪ A be a DL-Lite
ontology. If T ∪ A is unsatisfiable, then there is a subset
A0 ⊂ A with at most two elements, such that T ∪ A0 is
unsatisfiable.

The lemma implies that every MIS of MISA′(A) con-
tains only one assertion. Thus, to restore consistency, we
can simply remove ∪Ai∈MISA′ (A)Ai. However, this may
delete much more information than necessary. Consider
Example 1 again, we can find that Peter is injured im-
plies that he is not an available player anymore, but he re-
mains a player, and this would not be captured by sim-
ply removing ∪Ai∈MISA′ (A)Ai. Consequently, we will add
Player(Peter) to the result of revision as it does not contra-
dictA′∪T and it can be inferred from∪Ai∈MISA′ (A)Ai∪T .

Definition 2. Given an ontology O = 〈T , A〉 and an ABox
A′, a maximal consistent set S of clT (∪Ai∈MISA′ (A)Ai)
w.r.t. A′ is a sub-ABox of clT (∪Ai∈MISA′ (A)Ai) which
satisfies (1) S ∪ T ∪ A′ is consistent; (2) ∀α ∈
clT (∪Ai∈MISA′ (A)Ai) and α /∈ S, S ∪ {α} ∪ T ∪ A′ is
inconsistent.
Theorem 1. Given an ontology O = 〈T , A〉 and an ABox
A′, the maximal consistent set S of clT (∪Ai∈MISA′ (A)Ai)
w.r.t. A′ is uniquely defined.
Definition 3. Given an ontology O = 〈T , A〉. The revision
operator ◦ for O is defined as follows: for each ABox A′

(T ∪ A) ◦ A′=T ∪ (A\ ∪Ai∈MISA′ (A) Ai) ∪ S ∪ A′

We can show that the deductive closure of the resulting
ABox of our operator is the same as the ABox obtained by
the algorithm FastEvo given in (Calvanese et al. 2010).

Consider Example 1 again. We have (T ∪ A) ◦ A′ =
T ∪ {Injured(Peter), P layer(Peter))}.
Theorem 2. The result of ABox revision (T ∪ A) ◦ A′ is
uniquely defined.

A Graph-based Algorithm
In order to compute MISA′(A), we need to compute all the
NIs axioms implied by T . We define a hierarchical graph to
compactly represent cl(T).

Definition 4. (HG) Given an ontology O = 〈T , A〉, a hi-
erarchical graph (HG for short) corresponding to O, de-
noted as G〈T ,A〉 = 〈V,E〉, is defined by the following rules
(functionality axioms are excluded and will be treated sepa-
rately):

1. 〈C,B〉 ∈ E and C,B ∈ V if B v C is in T ;
2. 〈¬C,B〉 ∈ E and ¬C,B ∈ V if B v ¬C is in T ;
3. 〈∃R2,∃R1〉 ∈ E, 〈∃R−2 ,∃R

−
1 〉 ∈ E and

∃R2,∃R1,∃R−2 ,∃R
−
1 ∈ V if R1 v R2 is in T ;

4. 〈A, a〉 ∈ E and A, a ∈ V if A(a) is in A;
5. 〈∃P, a〉 ∈ E, 〈∃P−, b〉 ∈ E and ∃P,∃P−, a, b ∈ V if
P (a, b) is in A.
Our algorithm GraphRevi takes as input O = 〈T ,A〉 and
A′. Let Aall = A ∪ A′. Then, it computes the set D of all
the membership assertions in A that conflict with function-
ality axioms and A′. It constructs a HG from 〈T ,Aall\D〉
and uses a function Search to compute the set of all the
membership assertions in A that conflict with some NIs
assertions and some assertions in A′, and use this set to
update D. Thus, D is actually ∪Ai∈MISA′ (A)Ai). Let
M = clT (D)\D. The algorithm deletes all the member-
ship assertions in M that conflict with NIs assertions and
A′. Finally, T ∪ (A\D) ∪M ∪ A′ is the result of revision.
Theorem 3. Algorithm GraphRevi runs in polynomial time
and (T ∪ A) ◦ A′=GraphRevi(T , A, A′).

Conclusion
In this paper, we proposed a new operator for ABox revi-
sion in DL-LiteFR and a graph-based algorithm to imple-
ment this revision operator. As a future work, we will dis-
cuss the logical properties of our revision operator. We will
also carry out comprehensive experiments to verify the effi-
ciency and effectiveness of our approach.

Acknowledgement
Guilin Qi is partially supported by NSFC (61003157),
Jiangsu Science Foundation (BK2010412), Excellent Youth
Scholars Program of Southeast University, and Doctoral
Discipline Foundation for Young Teachers in the Higher
Education Institutions of Ministry of Education (No.
20100092120029).

References
Calvanese, D.; Kharlamov, E.; Nutt, W.; and Zheleznyakov,
D. 2010. Evolution of dl-lite knowledge bases. In Proc. of
ISWC, 112–128.
Giacomo, G. D.; Lenzerini, M.; Poggi, A.; and Rosati, R.
2009. On instance-level update and erasure in description
logic ontologies. J. Log. Comput. 19(5):745–770.
Kharlamov, E., and Zheleznyakov, D. 2011. Capturing in-
stance level ontology evolution for dl-lite. In Proc. of ISWC,
321–337.
Qi, G., and Du, J. 2009. Model-based revision operators
for terminologies in description logics. In Proc. of IJCAI,
891–897.

2424

