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Abstract

This work presents a new algorithm based on the
Bucket Elimination framework that efficiently deter-
mines strong controllability of temporal plans formu-
lated as Labeled Simple Temporal Networks with Un-
certainty (LSTNU) with controllable and uncontrollable
plan branches (choices).

Introduction
This work’s motivation stems from the study of robust task
execution in uncertain environments, grounded in the ap-
plication of robotic manufacturing. Among its many chal-
lenges, it is important to highlight the key role played by
uncontrollable choices. Besides modeling runtime “excep-
tions”, uncontrollable choices are also very useful for rep-
resenting conditional branches in a temporal plan which de-
pend on future sensor readings, as introduced by the Condi-
tional Temporal Plan (CTP) formalism (Tsamardinos, Vidal,
and Pollack 2003). One way of guaranteeing that a plan with
uncertainty will be able to satisfy all required constraints is
by verifying its strong controllability, i.e., checking whether
there is a precomputable assignment to the controllable vari-
ables that is robust to all possible outcomes of uncontrollable
events. However, the algorithm for determining strong con-
trollability of CTPs requires a search through the full space
of uncontrollable plan branches, which grows exponentially
with the number of uncontrollable choices and might be-
come impractical in situations where sensing actions, and
consequently uncontrollable choices, are ubiquitous, such as
in our manufacturing scenario. In addition, CTPs do not han-
dle uncertainty regarding activity durations. In this work, we
leverage the temporal plan representations in (Conrad and
Williams 2011; Effinger et al. 2009) in order to define La-
beled Simple Temporal Network with Uncertainty (LSTNU)
in the next section, where labels are formed by both control-
lable and uncontrollable choices and constraints can be of
any type, including uncontrollable temporal constraints.

In this work, we propose a novel approach to the prob-
lem of checking strong controllability of temporal plans
with uncontrollable choices based on a modified version
of the Directional Resolution (DR) algorithm introduced
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within the Bucket Elimination framework (Dechter 1999).
By extending the latter with several lemmas developed in
this work, we are able to eliminate the dependency of la-
beled temporal constraints on uncontrollable choices while
maintaining their logical consistency without performing
any search on the space of plan branches. Therefore, we
can readily refute strong controllability or rewrite the prob-
lem as a function of only decision variables that are con-
trolled by the plan executive. For additional motivation, a
step-by-step numerical example involving our LSTNU rep-
resentation, and proofs for the lemmas presented in the next
sections, please refer to http://people.csail.mit.edu/psantana/
public/SantanaAAAI12.pdf.

Problem Formulation
This section briefly defines strong controllability and the el-
ements of an LSTNU, which are useful for understanding
the main contributions in the next section.
Definition 1. (Label variable) A label variable (LV) X is
an injection X:D→N between the variable’s domainD and
the set N and is used to represent all possible outcomes of a
plan branch (choice), either controllable or not. The symbol
Xi represents the assignment X=i.
Definition 2. (Label) A label E is a logical expres-
sion written in Disjunctive Normal Form (DNF), i.e.,
E=α1∨. . .∨αn, where αi is the i-th conjunction of assign-
ments to LVs.
Definition 3. (Constraint) A constraint is a pair C=〈S,R〉,
where S represents the constraint’s scope (the set of vari-
ables involved in the constraint) and R is a relation between
the variables in S. IfR holds, then we say that the constraint
is satisfied. Otherwise, we say that it is violated.

Considering the STN model presented in (Dechter, Meiri,
and Pearl 1991), we can write S = {Ti, Tj} and R :
l≤Ti−Tj≤u, where Ti and Tj are the time instants when
two events occur and u and l correspond, respectively, to
upper and lower bounds on their temporal distance.
Definition 4. (Labeled constraint) A labeled constraint
(LC) LC=〈E,C〉 consists of a label E and a constraint C
such that

E ⇒ C. (1)
If E is TRUE, we say that LC is active. Otherwise, LC is
said to be inactive.
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It should be noticed that (1) is general enough to repre-
sent DTPs. In order to write a disjunctive constraint as (1),
it suffices to represent each constraint disjunct as a differ-
ent assignment to an LV. Depending on whether the plan
executive or the environment picks which constraint should
be satisfied, the LV can represent either a controllable or
uncontrollable choice. In addition to the strong controlla-
bility definitions of (Morris, Muscettola, and Vidal 2001;
Tsamardinos, Vidal, and Pollack 2003), we use the follow-
ing in our results.
Definition 5. (Strong controllability) Let Ei⇒Ci,
i∈{1, . . . , n}, be the set of all LCs that involve the LV X .
In addition, define LX :=

∧n
i=1(Ei⇒Ci). Then, we say that

the planning problem is strongly controllable with respect
to X if LX always holds.

Determining strong controllability
The original DR algorithm is meant to perform variable res-
olution in logical expressions written in Conjunctive Nor-
mal Form (CNF). However, due to the disjunctive nature
of choices, the labels in (1) are written in DNF. In addi-
tion, eliminating uncontrollable LVs has a direct impact on
the constraints that the resulting LCs imply, which is also
not handled by DR. In order to overcome these issues, we
present the following lemmas, enunciated without proof.
Lemma 1. (Label separation) Let E1 and E2 be two possi-
bly distinct labels and C a constraint such that E1 ∨ E2 ⇒
C. Then the following holds

(E1 ∨ E2 ⇒ C)⇔ (E1 ⇒ C) ∧ (E2 ⇒ C).

Lemma 2. (Resolution in DNF) Let α1, . . . , αn, be a set of
possibly distinct conjunctions of literals and X1, . . . , Xn, a
set of predicates representing all possible n values of an LV
X . Then the following holds

(α1 ∧X1) ∨ . . . ∨ (αn ∧Xn)⇒ α1 ∨ . . . ∨ αn.

Lemma 3. (Strong controllability) Let E1, . . . , En be a set
of possibly distinct labels, each one of them consisting of
exactly one conjunction of literals. In addition, assume that
Ei contains the literal Xi, the i-th assignment to a choice
variable with n possible values. Assuming that Ei labels the
constraint Ci, the following holds

(E1 ∨ . . . ∨ En ⇒ C1 ∧ . . . ∧ Cn)⇒
n∧

i=1

(Ei ⇒ Ci).

Lemma 3 provides a sufficient condition for strong con-
trollability explored in Algorithm 2. A method for checking
strong controllability of an LSTNU is given in Algorithm 1.

Conclusions and Future Work
Algorithms 1 and 2 have been successfully implemented and
tested on example LSTNUs using (1) and consisting of both
controllable and uncontrollable choices. Future work will in-
vestigate similar algorithms for dynamic and weak control-
lability of LSTNUs, since they will be readily applicable to
robust task execution in uncertain environments and plan-
ning with sensing actions.

Algorithm 1 Strong Controllability of LSTNU
- Run Algorithm 2 in order to eliminate the dependency of LCs

on uncontrollable LVs.

- IF (the output of Algorithm 2 is non-null)

- FORALL (full assignments to controllable LVs)
- IF (The set of activated LCs is consistent) THEN

- RETURN The problem is strongly controllable and the
corresponding LCs

- RETURN The problem is NOT strongly controllable

- RETURN The problem is NOT strongly controllable

Algorithm 2 Modified DR
- Rewrite the LCs’ labels as single conjunctions of assignments

to LVs (Lemma 1).

- Generate an ordered partition Bucket1, . . . , Bucketm, where
Bucketi contains all the LCs whose highest LV is i. Create also
a special bucket, Bucket0, which will hold all LCs that do not
depend on any LVs being eliminated.

- FOR (i = 1 to m)

- Cconj ← Conjunction of all constraints within the bucket
(Lemma 3)

- IF (Cconj ≡ FALSE) THEN RETURN NULL
- ELSE

- FORALL (LC within the bucket)
- Eliminate the assignment to i from its label (Lemma 2)
and replace the constraint by Cconj

- Move it to the next appropriate bucket

- RETURN Content of Bucket0
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