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Abstract

The Nonnegative Least Squares (NNLS) formulation arises
in many important regression problems. We present a novel
coordinate descent method which differs from previous ap-
proaches in that we do not explicitly maintain complete gra-
dient information. Empirical evidence shows that our ap-
proach outperforms a state-of-the-art NNLS solver in compu-
tation time for calculating radiation dosage for cancer treat-
ment problems.

Introduction
Nonnegativity is a natural constraint in modeling many real-
life scenarios, such as when dealing with chemical con-
centrations, brain activations and color intensities. In the
case of linear regression, this leads to the Nonnegative Least
Squares (NNLS) problem. Given inputs corresponding to
vector x and matrix W of size m × n, the NNLS problem
is defined as follows:

min
h≥0

f(h) =
1

2
‖x−Wh‖22 (1)

One of the first algorithms to solve this problem was pro-
posed by Lawson and Hanson (Lawson and Hanson 1974),
and over the last couple of decades other algorithms have
been developed (Kim, Sra, and Dhillon 2006; Bro and
De Jong 1997).

We propose a coordinate descent scheme to solve NNLS.
Our method is similar to the successful approach by Hsieh
et al. (Hsieh et al. 2008) for solving linear SVM, which
has been recently generalized to Nonnegative Quadratic Pro-
gramming (NQP) by Nesterov (Nesterov 2010). Earlier,
Franc, Hlavac and Navara (Franc, Hlavac, and Navara 2005)
proposed a coordinate descent algorithm for NNLS; how-
ever, their approach of applying coordinate descent for solv-
ing NNLS is not optimized for large datasets. In particular,
they compute W>W which can be expensive. Experiments
indicate that we converge quickly to a usable solution.

Coordinate Descent for NNLS
We optimize one coordinate at a time similar to the previ-
ous coordinate descent approach (Franc, Hlavac, and Navara
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2005). However, our method avoids the expensive compu-
tation of the matrix product W>W. (Since we are updating
only one coordinate at a time, computing the full gradient in-
formation is unnecessary.) The plain version of our Frugal
Coordinate Descent algorithm (FCD) is presented in Algo-
rithm 1.

Algorithm 1 FCD(x,W,h)

(If h is not specified, let h = 0.)
Let z =

∑
i Wihi.

repeat
for i = 1, . . . , n do

G = 〈Wi,x− z〉
if hi = 0 then

G← min(G, 0)
end if
if G 6= 0 then

z ← z + (max(hi − G
‖Wi‖2 , 0)− hi)Wi

hi ← max(hi − G
‖Wi‖2 , 0)

end if
end for

until convergence
Output: Vector h.

The convergence condition of the algorithm can be speci-
fied in a couple of different ways. One of them is to specify
the stopping threshold of relative change in the norm of the
current solution or objective value across outer iterations of
the algorithm. Another is to explicitly set the number of
outer loops or total computation time. Finally, one could
use an approximate satisfiability of KKT conditions of the
NNLS problem depending on the required precision of the
solution. The proof of convergence and its rate have been
previously discussed (Nesterov 2010).

There are two important cases for NNLS corresponding
to “tall and thin” (m � n) and “short and fat” (m � n).
Some of the algorithms compute the matrix product W>W
(O(mn2)) while others work with W directly. Our algo-
rithm is especially suitable when the matrix W is not thin.

We suggest three modifications that could potentially fur-
ther speed up our algorithm. They are random permuta-
tions (Nesterov 2010), shrinking (Joachims 1998), and ran-
dom projections (Boutsidis and Drineas 2009).
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Figure 1: (Left) Mean running times for each problem size
where the elements of the matrix W and vector x are drawn
uniformly at random from [0, 1]. The running times for the
solvers should be taken with a grain of salt because of the
different stopping criterion used. (Right) Running times ver-
sus objective values for our (FCD) algorithm and the com-
peting FNNLS and PLB algorithms on the phantom tumor
dataset.

Experiments

In this section, we compare our algorithm with two NNLS
solvers called PLB (Kim, Sra, and Dhillon 2006) and
FNNLS (Bro and De Jong 1997). First, we applied our algo-
rithm FCD and the competing solvers on various synthetic
datasets ranging in size from 300×200 to 9000×6000. Next,
we consider a large dataset obtained from a phantom com-
monly used for benchmarking radiosurgery treatment plan-
ning systems by Luan et al. (Luan et al. 2009). The size of
the input matrix W is 42875 × 20268. Also, we consider a
skull base tumor case that was treated with carbon ion ther-
apy which was obtained from the German Cancer Research
Center (DKFZ), of Heidelberg, Germany. The size of the
input matrix W is 227920 × 6505. Clinically, each column
of the matrix W represents the radiation energy distribution
deposited by a “shot” of radiation in Gamma Knife radio-
surgery. The matrix x represents the ideal radiation energy
deposition as prescribed by the physician. The sought vari-
able h denotes the beam-on time need for each shot (i.e., a
column of W ) to create a radiation dose distribution that is
as close to the ideal as possible. The results of running times
for the synthetic and the phantom datasets are shown in Fig-
ure 1. Similarly, the running times versus objective values
for the real tumor dataset is shown in Figure 2.

Our algorithm was implemented in MATLAB (http://
www.mathworks.com) similar to the PLB algorithm. We
used the default settings for the competing algorithm as
given by the implementation. All of our experiments were
run on a 3.2 Ghz Intel machine with 24GB of RAM and the
number of threads set to one.

We note that our algorithm converges rapidly to within
1% of final value very fast. This accuracy is good enough in
practice for radiation dosage calculations.

Figure 2: Running times verses objective values for FCD
and PLB are shown for the real tumor dataset .

Conclusions and Future Work
We have presented a coordinate-descent algorithm to solve
the NNLS problem. The new algorithm is simple to imple-
ment and its rate of convergence is at least linear. We have
shown its application to two examples of dose calculation
in radiation therapy. Our algorithm has the potential to be
parallelized (Bradley et al. 2011).
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