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Abstract

Homotopy classes of trajectories, arising due to the
presence of obstacles, are defined as sets of trajecto-
ries that can be transformed into each other by grad-
ual bending and stretching without colliding with ob-
stacles. The problem of exploring/finding the different
homotopy classes in an environment and the problem
of finding least-cost paths restricted to a specific ho-
motopy class (or not belonging to certain homotopy
classes) arises frequently in such applications as pre-
dicting paths for unpredictable entities and deployment
of multiple agents for efficient exploration of an en-
vironment. In (Bhattacharya, Kumar, and Likhachev
2010) we have shown how homotopy classes of trajec-
tories on a two-dimensional plane with obstacles can be
classified and identified using the Cauchy Integral The-
orem and the Residue Theorem from Complex Analy-
sis. In more recent work (Bhattacharya, Likhachev, and
Kumar 2011) we extended this representation to three-
dimensional spaces by exploiting certain laws from the
Theory of Electromagnetism (Biot-Savart law and Am-
pere’s Law) for representing and identifying homotopy
classes in three dimensions in an efficient way. Using
such a representation, we showed that homotopy class
constraints can be seamlessly weaved into graph search
techniques for determining optimal path constrained to
certain homotopy classes or forbidden from others, as
well as for exploring different homotopy classes in an
environment. 1

Homotopy Classes and Homology Classes of
Trajectories

Two trajectories τ1 and τ2 connecting the same start and end
coordinates, xs and xg respectively, are called homotopic
iff one can be continuously deformed into the other with-
out intersecting any obstacle (Figure 1). Sets of homotopic
trajectories form homotopy classes.

Give two trajectories, one may naively attempt to check
if indeed one can be deformed into the other. However, such
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1This is a condensed, non-technical overview of work pre-
viously published in the proceedings of Robotics: Science and
Systems, 2011 conference (Bhattacharya, Likhachev, and Kumar
2011).

Figure 1: Illustration of homotopy and homology equiva-
lences in 2 dimensions. In this example τ1 and τ2 are both
homotopic (because of the existence of the sequence of tra-
jectories shown by the dashed curves) as well as homolo-
gous (because of the presence of the area shown by blue
hashing). But τ3 is not homotopic nor homologous to either.

a process is highly non-trivial and may be extremely diffi-
cult to automate. Even if one is able to check, using such
a method, whether of not two trajectories are homotopic, it
is extremely difficult to incorporate the method in search-
based planning algorithms to plan trajectories that are con-
strained to or avoid certain homotopy classes.

Thus, what one desires is to construct a functional of the
trajectories, H(τ) (which we will call the H-signature of
τ ), such that its value will uniquely identify the homotopy
class of the trajectory (i.e. a complete invariant of homotopy
classes of trajectories). We also desire thatH be of the form
of an integration, i.e., H(τ) =

∫
τ

dh (where dh is some dif-
ferential 1-form – a quantity that can be integrated along a
curve). This will let us compute least-cost paths in non triv-
ial configuration spaces with topological constraints using
graph search-based planning algorithms.

It is possible to find such desired 1-forms, dh, as we did
in our previous work for 2-dimensional configuration space
(Bhattacharya, Kumar, and Likhachev 2010), where we ex-
ploited some theorems from complex analysis. However, it
can be shown that by virtue of computing such integrals,
what we end up obtaining from H(τ) are complete invari-
ants for homology classes rather than homotopy classes. Ho-
mology, although a close relative of homotopy and similar
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(a) In same Homotopy
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(b) In different Homo-
topy classes, enclosing
obstacles

Figure 2: Two trajectories in same and different homotopy
classes in 2 dimensions

to it in many aspects, is subtly different from homotopy.
Two trajectories τ1 and τ2 connecting the same start and end
coordinates, xs and xg respectively, are homologous iff τ1
together with τ2 (the later with opposite orientation) forms
the complete boundary of a 2-dimensional region embedded
in the configuration space not containing/intersecting any of
the obstacles (Figure 1).

It can in fact be shown that homotopic trajectories are al-
ways homologous (equivalently, trajectories that are not ho-
mologous are not homotopic either), but the converse may
not always be true. However, the difference between the two
appear infrequently in practical robot configuration spaces,
and as we demonstrate through our results, homology serves
as a fair analog of homotopy in most practical robotics prob-
lems.

H-signature as Topological Invariants
Background: H-signature in 2-D
The basic principle (Bhattacharya, Kumar, and Likhachev
2010) in solving the problem in 2-dimensions was based
on the Residue Theorem from Complex Analysis. We repre-
sented the two dimensional plane in which the robot’s path
is to be planned by the complex plane (i.e. a point (x, y) on
it is represented as z = x + iy). We hence defined the H-
signature (which we previously called the L-value in (Bhat-
tacharya, Kumar, and Likhachev 2010)) of a trajectory, τ ,
as a complex path integral of a complex vector function as
follows,

H2(τ) =

∫
τ


f1(z)
z−ζ1
f2(z)
z−ζ2

...
fM (z)
z−ζM

 dz (1)

The quantity inside the integration (a complex vector) is an
analytic function everywhere in the complex plane, except
for distinct points, ζi, which we called representative points,
placed on the obstacles (Figure 2), where the function has
poles. As a consequence of this it could be shown using
Residue Theorem that for two trajectories τ1 and τ2 con-
necting the same start and goal points in a 2-dimensional
configuration space,H2(τ1) = H2(τ2) if the trajectories are
in the same homotopy class, but the values are different if
they are in different homology classes.

(a) A torus-shaped
genus 1 obstacle.

(b) A genus 2 obsta-
cle.
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(c) A solid cube
does not induce
homotopy classes.

Figure 3: Examples of obstacles in 3-D. (a-b) induce homo-
topy classes, (c) does not.
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(a) Skeleton of a generic
genus 1 obstacle is modeled
as a current-carrying conduc-
tor, Si.
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(b) Theorems from electro-
magnetism then gives us ho-
motopy class invariants for
trajectories.

Figure 4: Skeletons of obstacles in 3-D are modeled as cur-
rent carrying conductor.

H-signature in 3-D
Just as we exploited theorems from complex analysis in 2
dimensions for constructing the homotopy class invariants,
we can exploit certain theorems from Electromagnetism to
achieve the same in 3 dimensions. In 3 dimensions multi-
ple homotopy classes can only be induced by obstacles with
genus 2 one or more, or with obstacles stretching to infinity.
Figure 3 shows some examples of obstacles that can or can-
not induce such classes for trajectories. A sphere or a solid
cube, for example, cannot induce multiple homotopy classes
in an environment.

Analogous to the representative points in the 2-
dimensional case, in 3 dimensions we need to consider
closed curves that represent the obstacles of genus 1 or
higher (Figure 4(a)). These curves are the skeletons of the
obstacles – 1-dimensional curves that are homotopy equiv-
alents (Hatcher 2001) of the obstacles. We represent these
skeletons by Si, where i = 1, 2, · · · ,M .

The key idea in designing a H-signature for solid obsta-
cles in 3-dimensions is to model these skeletons of the obsta-
cles as “virtual conductors” carrying unit current. Upon do-
ing so, using the Biot-Severts Law and Ampere’s Law (Grif-
fiths 1998), one can design the H-signature for trajectories
τ in 3-dimensions as follows,

H3(τ) =

∫
τ


B1(l)
B2(l)

...
BM (l)

 dl (2)

2The genus of an obstacle refers to the number of holes or han-
dles (Munkres 1999).
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where,
Bi(r) =

1

4π

∫
Si

(x− r)× dx
‖x− r‖3 (3)

is a “virtual magnetic field vector” due to the virtual cur-
rent flowing through the skeletons. Using Biot-Severts Law
and Ampere’s Law, it can be shown that for two trajectories
τ1 and τ2 connecting the same start and goal points in a 3-
dimensional configuration space, H3(τ1) = H3(τ2) if the
trajectories are in the same homotopy class, but the values
are different if they are in different homology classes (Fig-
ure 4(b)).

Incorporating H-signature in Graph-search Based
Algorithms
Having designed a H-signature for 3-dimensional configu-
ration spaces in form of an integral, the approach in graph
search-based planning is very similar to the one we adopted
in (Bhattacharya, Kumar, and Likhachev 2010). We con-
struct an augmented graph from the given discrete graph
representation of the environment, such that each vertex in
this new graph has the H-signature of a path leading up to
the coordinate of the vertex from vs (start vertex) appended
to it. The consequence of augmenting each vertex of orig-
inal graph, G, with a H-signature is that now vertices are
distinguished not only by their coordinates, but also the H-
signature of the trajectory followed to reach it. Since the
H-signature is in form of an integration, during expansion
of the vertices in the search algorithm, its value for newly
expanded vertices can be easily computed by adding to the
value of its parent the H-signature of the edge connecting
them. Planning trajectories in this augmented graph thus al-
lows us impose constraints on theH-signature of the desired
trajectories as well as find optimal trajectories in different
homotopy classes in the environment. For more details on
the graph construction the reader may refer to (Bhattacharya,
Likhachev, and Kumar 2011).

Results
Figure 5(a)-(c) shows examples where we find least cost
trajectories in different homotopy classes in a few environ-
ments by searching in the the augmented graphs. In each
of these simulations there were certain pre-computations in-
volved, where we computed the H-signature for every edge
in the original graph. This pre-computation, that needs to be
performed only once for a given environment, takes about
15 minutes. The searches in the augmented graphs for find-
ing trajectories in different homotopy classes itself took less
than a minute.

Figure 5(d) demonstrates a planning problem with H-
signature constraint. The darker trajectory is the global least
cost path found from a search in the original graph for the
given start and goal coordinates. The H-signature for that
trajectory was computed, and hence we computed the signa-
ture of the complementary class (i.e the class corresponding
to the trajectory that passes on the other side of every ob-
stacle). The lighter trajectory is the one planned with that
H-signature as constraint. Thus, this trajectory goes on the
opposite side of each and every pipe in the environment as
compared to the darker trajectory.

(a) Two hoops. (b) A room with windows.

(c) Exploring 10 distinct ho-
motopy classes.

(d) Plan in the complemen-
tary homotopy class of the
least cost path.

Figure 5: Exploring homotopy classes and planning withH-
signature constraints (Bhattacharya 2012).

For more details, results in other interesting configura-
tion spaces (including one in X − Y − Time) as well as
for higher dimensional extensions, please see (Bhattacharya,
Likhachev, and Kumar 2011) and (Bhattacharya 2012).
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