
Seven Challenges in Parallel SAT Solving∗

Youssef Hamadi and Christoph M. Wintersteiger
Microsoft Research

7 JJ Thomson Avenue
Cambridge CB3 0FB

United Kingdom
{youssefh, cwinter}@microsoft.com

Abstract

This paper provides a broad overview of the situation in
the area of Parallel Search with a specific focus on Parallel
SAT Solving. A set of challenges to researchers is presented
which, we believe, must be met to ensure the practical appli-
cability of Parallel SAT Solvers in the future. All these chal-
lenges are described informally, but put into perspective with
related research results, and a (subjective) grading of diffi-
culty for each of them is provided.

Introduction
Parallelism is the wave of the future.. and always will be.
The previous is a famous quote in the Parallel Comput-
ing community. It conveys a general sentiment that the
coming of parallel architectures would forever be delayed.
This was indeed true at a time where clock-speed growth
seemed always possible, allowing sequential code to seam-
lessly become faster. This remained true until the thermal
wall stopped this free lunch scenario. Chip makers had only
one way to escape: packing processing units on a single CPU
in order to provide support for parallelism. The future was
there, and that’s when problems started for programmers.

Parallelizing code is not straight forward and beyond mere
conceptual difficulties e.g., which part should be paral-
lelized?, it includes low level technicalities like race con-
ditions, deadlocks, starvation, and non determinism, all of
which must be taken into consideration in parallel algorithm
design and implementation.

Historically the Parallel Computing community quickly
adopted Combinatorial Search as a playground for applica-
tions. Search algorithms have the advantage of being con-
ceptually simple (think of the most basic backtrack-style al-
gorithm) and computationally demanding due to the (usu-
ally) exponential size of the search space. Conversely, the
Search community did not really focus its research on par-
allelizing. The lack of proper infrastructure and for many
the feeling that sequential algorithms were still full of re-
search opportunities can explain that. In that community Par-
allelism was often only put in the perspectives of papers with

∗This paper was invited as a Challenge paper to the AAAI’12
Sub-Area Spotlights track.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

no real perspectives. This led to a situation where Parallel
Search algorithms were designed by people with only one
part of the required skills.

Most computational problems solved on a computer have
a deterministic nature. Sometimes, these problems can be
large, and divide-and-conquer Parallelism is a suitable ap-
proach. In that context, if the overhead of dividing is well
controlled, linear or close to linear speedups are possi-
ble. When Parallel Computing researchers started to ad-
dress Search, they reused their main concept and tried the
most efficient way to apply divide-and-conquer techniques.
Research was often about crafting the best load-balancing
strategies in order to avoid the previous starvation problem,
while minimizing the overhead.

Search problems are intrinsically non deterministic, and
this very particular nature was indeed ‘discovered’ by the
aforementioned community. They encountered this fact in
the form of observing superlinear speed-ups. Something so
unusual that they called them speed-up anomalies (Pruul and
Nemhauser 1988; Rao and Kumar 1993).

In divide-and-conquer Parallel Search superlinear speed-
ups are indeed possible when the sequential algorithm is
poorly driven by its heuristics and when the division of the
search space artificially brings solutions to the beginning of
a sub space. This means that a sequential Search algorithm
does not need to exhaust the search-space to find a solution
or often even when proving that a problem has no solution,
as is the case with conflict-driven solvers (Moskewicz et al.
2001; Prosser 1993).

By 2005, it was apparent that the thermal wall had been
hit, not only to researchers but also to the general public.
This gradually prompted the interest of Search researchers
who then started to seriously consider Parallelism as a path
into the future.

This paper presents important challenges in the context of
propositional satisfiability (SAT). This particular Search for-
malism benefits from very mature and advanced algorithms
with large practical impact. Application and research do-
mains like Software and Hardware verification, Automated
Planning, Computational Biology, and many others benefit
from modern SAT solvers. These domains have large and
difficult instances which provide the SAT community with
meaningful benchmarks. Most of the following challenges
are general in such a way that the questions they raise should

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

2120



positively impact not only research in Parallel SAT but in
Parallel Search in general.

This document is written in the spirit of (Selman, Kautz,
and McAllester 1997). After a first Section which presents
the current situation in sequential and parallel SAT solving,
we list the different challenges. Each challenge comes with
an overly optimistic estimate of its inherent difficulty repre-
sented as black circles, where we would estimate that every
black circle represents, roughly, about 2 years of research.

The Context
Sequential SAT solvers
State-of-the-art SAT solvers are based on the historical
Davis, Putnam, Logemann and Loveland procedure, com-
monly called DPLL (Davis, Logemann, and Loveland
1962). A modern solver performs a backtrack search; se-
lecting at each node of the search tree, a decision literal
which is set to a Boolean value. This assignment is fol-
lowed by an inference step that deduces and propagates
some forced unit literal assignments. This is recorded in the
implication graph, a central data-structure, which records
the partial assignment together with its implications. This
branching process is repeated until finding a model or reach-
ing a conflict. In the first case, the formula is answered to
be satisfiable, and the model is reported, whereas in the
second case, a conflict clause (called asserting clause) is
generated by resolution, following a bottom-up traversal of
the implication graph (Marques-Silva and Sakallah 1996;
Zhang et al. 2001). The learning process stops when a con-
flict clause containing only one literal from the current de-
cision level is generated. Such a conflict clause (or learnt
clause) expresses that such a literal is implied at a previous
level. The solver backtracks to the implication level and as-
sign that literal to true. When an empty conflict clause is
generated, the literal is implied at level 0, and the original
formula can be reported unsatisfiable. The previous process
is called Conflict Driven Clause Learning (CDCL) and the
acronym is often used as a shortcut to modern SAT solvers.

In addition to this basic scheme, modern solvers use addi-
tional components such as an activity based heuristics, and a
restart policy. The activity of each variable encountered dur-
ing the previous resolution process is increased. The vari-
able with greatest activity is selected to be assigned next.
This corresponds to the so called VSIDS variable branch-
ing heuristic (Zhang et al. 2001). During branching after a
certain amount of conflicts, a cutoff limit is reached and the
search is restarted.

Parallel SAT solvers
There are two main approaches to parallel SAT solving.
The first one implements the historical divide-and-conquer
idea, which incrementally divides the search space into sub-
spaces, successively allocated to sequential DPLL workers.
These workers cooperate through some load balancing strat-
egy which performs the dynamic transfer of subspaces to
idle workers, and through the exchange of learnt clauses
(Chrabakh and Wolski 2003; Chu and Stuckey 2008).

The Parallel Portfolio approach was introduced in 2008
(Hamadi, Jabbour, and Sais 2008). It exploits the comple-
mentarity of different sequential DPLL strategies to let them
compete and cooperate on the same formula. Since each
worker works on the whole formula, there is no need to in-
troduce load balancing overheads, and cooperation is only
achieved through the exchange of learnt clauses. With this
approach, the crafting of the strategies is important, espe-
cially with a small number of workers. In this approach, the
objective is to cover the space of good search strategies in
the best possible way.

Since 2008, Portfolio based solvers are prominent, and we
are not aware of a recently developed divide-and-conquer
approach (the latest being (Chu and Stuckey 2008)). We de-
scribe here the most noticeable approaches:

ManySAT (Hamadi, Jabbour, and Sais 2009b) was the
first Parallel SAT Portfolio. It duplicates the SAT problem
and runs independent SAT solvers differentiated on their
restart policies, branching heuristics, random seeds, con-
flict clause learning, etc. They exchange clauses through ad-
vanced policies (Hamadi, Jabbour, and Sais 2009a).

In plingeling, (Biere 2010) the original SAT instance is
duplicated by a boss thread and allocated to worker threads.
The strategies used by these workers are mainly differen-
tiated around the amount of pre-processing, random seeds,
and variables branching. Conflict clause sharing is restricted
to units which are exchanged through the boss thread.

In SArTagnan, (Kottler 2010b) different SAT algorithms
are allocated to different threads, and differentiated with
respect to, restarts policies, and VSIDS heuristics. Some
threads apply a dynamic resolution process (Biere 2009), or
exploit reference points (Kottler 2010a). Some others try to
simplify a shared clauses database by performing dynamic
variable elimination or replacement.

In Antom (Schubert, Lewis, and Becker 2010) the SAT
algorithms are differentiated on decision heuristic, restart
strategy, conflict clause detection, lazy hyper binary resolu-
tion (Biere 2009), and dynamic unit propagation lookahead.
Conflict clause sharing is implemented.

In general, the interleaving of computation can lead to the
previously mentioned problem of non determinism. This is
true for solvers which use a divide-and-conquer or a Port-
folio approach. In (Hamadi et al. 2011), the authors pro-
pose a new technique to efficiently ensure the determiniza-
tion of any Parallel Portfolio algorithm. Their method im-
plements an original dynamic rendez-vous idea which min-
imizes waiting time at synchronization barriers. This tech-
nique preserves the performance of the Portfolio approach
and allows it to always return the same solution (or UNSAT
proof) in about the same runtime.

Performance Evaluation
We suggest that performance evaluation of parallel SAT
solvers is conducted on practically relevant benchmark sets
as is done in the bi-annual SAT competitions. We consider
randomly generated benchmarks of mostly theoretical in-
terest, but not necessarily as an indicator of the perfor-
mance of a parallel SAT solver in practice. Especially non-
deterministic solvers may benefit from an evenly distributed

2121



set of benchmarks, which may translate into performance
figures that are only achievable in theory but not in practice.

Naturally, there are two different categories of applica-
tions for parallel SAT solvers in practice with different ob-
jectives. The speedup

S =
Ts

Tp

that a parallel solver that runs in time Tp obtains over a se-
quential solver which runs in time Ts, is not considered an
indicative measure for either of these categories. Instead, in
the first category of applications, the runtime efficiency

E =
S

r
=

Ts

r · Tp
,

where r is the number of resources available to the solver, is
of the greatest interest. For example, in applications where
energy consumption is an issue, a solver that performs at lit-
tle efficiency may be considered inferior to a solver that per-
forms efficient, even if the speedup is smaller. We expect this
will be the case for many software and hardware verifica-
tion applications in the near future, where limited-size clus-
ters are used to verify designs overnight. In the second cat-
egory of applications, the absolute wall-clock time required
to solve a problem is of paramount importance; we call this
the runtime effectiveness of the solver, which we consider a
better measure of performance in applications where energy
consumption is of little or no importance. For example in
cryptographic applications, especially for code breaking, we
may assume that energy consumption or the available size
of the cluster are irrelevant.

In general, the trade-off between efficiency and effective-
ness highly depends on the application and it is ultimately a
decision that the community of SAT solver developers can-
not make for the end-user. We therefore suggest to provide
both, measures of efficiency and effectiveness in a perfor-
mance evaluation of parallel SAT solvers.

We wish to remark upon the number r in efficiency com-
putations. In many evaluations as well as the theoretical
analysis of algorithms, this number is simply taken to be
the number of computing elements available to the paral-
lel solver. This is fully justified for theoretical purposes.
In practice, this is not realistic, especially for multi-core
machines (cf e.g., (Wintersteiger, Hamadi, and de Moura
2009)). It is sometimes assumed that an n-core machine is
able to perform n times the work of the corresponding sin-
gle core machine, which is simply not true due to memory
and cache congestion issues, but also because modern pro-
cessors change their behavior when multiple cores are under
load, e.g., by reducing the clock speed to avoid overheating
(Arbelaez and Hamadi 2011). We therefore propose to com-
pute the efficiency of a parallel multi-core SAT solver with
respect to its true capacity which is to be measured in a prior
calibration experiment. For example, this may be estimated
by running n copies of a sequential SAT solver in parallel
with an observed runtime of Tns, which will be greater than
Ts. To compute the efficiency of a parallel n-core solver we
propose to use

r = n · Ts

Tns
,

which we consider more realistic. In what follows we refer
only to the general performance of a solver. Depending on
the intended application, this is to be take as either the effi-
ciency or the effectiveness of the solver.

The Challenges
Dynamic Resource Allocation
As presented in the Introduction, a divide-and-conquer ap-
proach can be lucky. A run can benefit from a good split
which brings a solution to the beginning of some subspace
and allows an early stop. By contrast, a different division
can decrease performance. What is interesting here, is that
adding resources can decrease the performance since it can
produce more demanding subspaces.

Even if Portfolio-based approaches are less prone to this
problem, extending the size of a Portfolio can still be detri-
mental to its performance. In general, this increases the over-
head due to more frequent and broader clause-sharing, and
worsen cache congestion issues. A priori, the question of de-
ciding the most effective number of resources to use against
a given formula is a difficult one.

One possible direction of research is to extend Automatic
Tuning techniques. These approaches use Machine Learn-
ing to craft a predictive function which relates the features
of an instance and the parameters of a given solver, to its
expected runtime. This function can be learned and tested
offline, against a large set of representative instances and
used at runtime to configure a solver and maximize its per-
formance. This offline approach assumes that a large and
representative set of instances is available beforehand (Xu
et al. 2008). A more recent approach avoids this problem
by learning the function online (Arbelaez, Hamadi, and Se-
bag 2010). We believe that the previous offline and online
approaches could be extended to consider the number of re-
sources r as an additional parameter of the solver.
Challenge 1. Generalize Automatic Tuning techniques to
decide among other solver parameters, the best amount of
computational resources r. • ◦ ◦ ◦ ◦

Decomposition
In the area of parallel algorithms it is natural to think of de-
composition of the problem into a number of smaller sub-
problems. Most parallel SAT solvers are based on search al-
gorithms and we identify two inherently different types of
decomposition for search algorithms:
• Search-space decompositions and
• Instance decompositions.

In the first category, the search-space of the problem is de-
composed, i.e., the nodes or processes explore different (po-
tentially overlapping) parts of the search-space of the prob-
lem. In the case of SAT, the simplest way of achieving this
is by duplication of the problem and assignment of a vari-
able to contradicting values in the two branches. The set of
assigned literals in any of the leaves of such a decomposi-
tion tree is then called a guiding path (Zhang, Bonacina, and
Hsiang 1996). As we have seen with the previous challenge,
finding a good decomposition prior to solving the formula is

2122



a hard problem as it is hard to predict the hardness of each
of the subproblems.

In the second category of decompositions, the instance
itself is decomposed such that none of the computing ele-
ments has knowledge of the whole problem instance. This
type of decomposition is especially important when large
formulas are considered; for example, deep BMC unwind-
ings (Ganai et al. 2006). Finding an optimal decomposi-
tion which balances the size of the subproblems is easy for
SAT problems, but the resulting subproblems are usually not
balanced with respect to their hardness. On the other hand,
finding a good instance decomposition which minimizes the
number of shared variables is a hard problem in itself and
for this reason approximations may result in better overall
performance. Recently, it has been shown that it is possible
to recover from very crude approximations through the use
of Craig interpolation and that dynamic instance decomposi-
tions may even improve the performance of a sequential SAT
solver (Hamadi, Marques-Silva, and Wintersteiger 2011).

Clearly, for both types of decomposition, the state of the
art is unsatisfactory and further research is needed to find
good decompositions that perform well in practice, both for
large search-spaces and for large problem instances.

Challenge 2. Design a dynamic decomposition technique
for either of the two classes of decomposition which is
efficiently computable and results in decompositions that
enable solvers to consistently outperform currently known
methods. • • • ◦ ◦

Preprocessing
In the recent past, preprocessing for SAT formulas has re-
ceived increased attention and it has been shown that some
types of preprocessing have a great effect on the perfor-
mance of sequential SAT solvers, e.g., (Eén and Biere 2005).
We believe that in the context of parallel SAT solving, new
preprocessing techniques are required. For instance, it may
not be necessary (or even beneficial) to aggressively reduce
the number of clauses in a problem before it is split or dis-
tributed to the computing elements.

Furthermore, preprocessing in the context of parallel SAT
should take into account the nature of the parallelization ap-
proach, especially the type of decomposition that is used,
i.e., search-space or instance decomposition. Depending on
the type of decomposition, different preprocessing tech-
niques may have the best effect on the performance of the
solver. For example, in instance decompositions it may be
much more effective to minimize the set of overlapping vari-
ables between subproblems than to minimize the overall size
of the formula.

For very large formulas, it may be infeasible to preprocess
a whole problem instance before solving it. We therefore
consider it worthwhile to investigate parallel preprocessing
algorithms as well.

Challenge 3. Devise new parallel preprocessing techniques
that, with knowledge of the type of decomposition being
used, simplify a problem instance such that the overall per-
formance of the solver is increased. • • • ◦ ◦

Improved Knowledge Sharing
Modern SAT solvers generate conflict clauses to prevent the
occurrence of a conflict and to back-jump effectively in the
list of decisions. Recent parallel solvers have leveraged these
clauses by sharing them. Since search can generate a large
(exponential) number of new clauses, strategies were de-
fined to limit the overhead of communication.

The most basic strategy limits the size of the shared
clauses up to some fixed limit. This has two advantages. It
restricts the overhead, and focuses the cooperation to pow-
erful clauses.

However, the static-size strategy can totally miss situa-
tions where more cooperation would make sense. For in-
stance, when two strategies explore the same subspace. Con-
versely, it can also maintain useless exchanges between
strategies which focus on independent sub problems.

To alleviate these problems, (Hamadi, Jabbour, and Sais
2009a) have introduced a dynamic strategy which uses a
control loop to automatically increase or reduce the quantity
of clauses shared between two search efforts. Their tech-
nique relates the quality of incoming clauses to their ob-
served utility and uses this information to extend or restrict
the cooperation.

Assessing the quality of a redundant clause is difficult.
This question generalizes the clause deletion problem in
modern CDCL solvers. We think that the community should
spend some effort to define better quality measures, in order
to leverage the benefits of clause-sharing, and we therefore
propose the following challenge.

Challenge 4. Define better estimates of the local quality of
incoming clauses. • • ◦ ◦ ◦

Integer Factorization
We believe that it is beneficial to the community to contem-
plate solving challenging problems from related areas for
which SAT solvers may ultimately present an effective solu-
tion. Recently there has been an increased interest in solving
problems related to security applications in the SAT com-
munity. One problem that is particularly challenging and of
utmost importance in practical security applications, is the
(decision version of the) integer factorization problem:

Problem (Integer Factorization (IF)). Given two integers
N and M such that 1 < M ≤ N, determine whether N has
a factor d < M?

This problem is known to be in NP and there exists a
trivial encoding to SAT, e.g., via bit-blasting of a multi-
plier circuit, but the performance of current SAT technology
on such formulas is not competitive with that of dedicated,
sub-exponential algorithms like the quadratic and general
number field sieve (for an introduction see e.g., (Pomerance
1996; Crandall and Pomerance 2001)). It is typical for these
dedicated algorithms to require a large number of resources
for a long time. For instance, the recent success in factoring
a 768-bit integer through a distributed number field sieve
kept many hundred machines busy for almost two years; a
total equivalent of fifteen hundred years of computation on
a single-core processor (Kleinjung et al. 2010).

2123



We consider IF a prime example of a challenging problem
for parallel SAT solving, not only for its potential practi-
cal implications, but also because advances in this direction
would shed more light on the structure of NP. Currently, IF
is believed not to be NP-complete, but also to lie outside
of P. It is a candidate for the NP-intermediate complexity
class (Ladner 1975), which, currently, very little is known
about. Finding practically efficient parallel algorithms for
problems in this class would not only have a great impact
in practice, but for the theory of SAT and parallel algorithms
in general.

Challenge 5. Design an encoding of IF instances and a par-
allel SAT solver that performs competitively with dedicated
algorithms for IF. • • • • •

Specific Encodings
As a final challenge, we suggest to investigate new encod-
ings of the SAT problem. Most SAT solvers support only the
solving of formulas in CNF form and it is possible that this
encoding, while convenient, poses a limitation for parallel
solvers. For example, it is conceivable that, when many pro-
cessors are employed, a pipelined evaluation of assignments
on deep circuits could perform better than a CNF encoding
with clauses held in the usual watchlists, simply because the
locking/synchronization overhead on the watchlists grows
too quickly as the number of processors is increased.

Challenge 6. Devise a new encoding of SAT problems
specifically for parallel solvers. • • • • •

Starting from Scratch
Much of the ongoing research in parallel SAT is focused
on parallelizing existing algorithms and implementations,
many of them based on CDCL solvers. We believe that par-
allelizing existing procedures is not the best way to obtain
a truly well-performing parallel SAT algorithm. Instead we
propose to start from scratch and to investigate completely
new algorithms and data-structures for parallel SAT or to re-
visit techniques which were deemed inefficient in the past.

The root cause of our suggestion is the fact that most mod-
ern sequential SAT solvers are ultimately based on Boolean
constraint propagation (BCP), which is a P-complete prob-
lem and thus suspected to be hard to parallelize. If we
think of a CDCL solver as a dynamic decomposition of the
search-space (through decision variables), then most of the
speedups are likely to be obtained on this higher level of de-
composition and recombination (decision making, conflict
analysis and sharing), but it might ultimately remain difficult
to effectively parallelize the rest of the algorithm. Further
research into parallelizations of existing solvers may help to
gain a better understanding of the challenges of paralleliza-
tions of P-complete problems, but we believe that it will be
hard to design algorithms that perform well in practice. It is
conceivable that there exist other algorithms which are much
easier to parallelize.

For instance, it is conceivable that an algorithm based
on a reduction to a series of bounded-width branching pro-
grams would be considerably easier to parallelize, since it is

known that branching programs of width 5 and of polyno-
mial length recognize exactly those languages in NC1 (Bar-
rington 1986). (For a characterization of P-completeness and
NC1 see, e.g., (Papadimitriou 1993).)

Challenge 7. Devise a parallel algorithm for SAT which is
not based on a reduction to a (set of) P-complete problem(s)
and that performs en par with or better than parallelizations
of CDCL. • • • • •

Conclusion
Today, computers have multiple cores and Cloud computing
allows users to cheaply rent virtual resources on which to
run their applications. Still, most Search researchers restrict
themselves to sequential algorithms. This is paradoxical, es-
pecially when we consider the importance of the Search
Problem and there are two complementary explanations to
this situation: The first one lies in the lack of Parallel Pro-
gramming skills and the second comes from the difficulty of
good intuition building.

The first problem is very general and can only be tack-
led by making progress in Parallel Programming Languages
and Tools, and an increase in Parallelism courses in under-
graduate curricula. Difficult, but feasible. Solving the sec-
ond problem is much more challenging. It requires years of
practice which can only sometimes provide with the exper-
tise and intuition required for significant contributions.

In this paper, we try to address the second point. Our strat-
egy is to share our views and understanding of the evolu-
tion of Parallel Search in general and Parallel SAT Solving
in particular. From that understanding, we present a list of
important challenges. They have different goals and differ-
ent inherent complexities. Our objective is not necessarily to
put the community onto them, but we believe that by sharing
our views we can contribute to fostering an increased inter-
est in Parallel SAT Solving and Parallel Search in general.
We hope that this will eventually result in better Parallel al-
gorithms that further increase the practical applicability of
Search.

References
Arbelaez, A., and Hamadi, Y. 2011. Improving parallel local
search for SAT. In Coello, C. A. C., ed., LION, volume 6683
of Lecture Notes in Computer Science, 46–60. Springer.
Arbelaez, A.; Hamadi, Y.; and Sebag, M. 2010. Continu-
ous search in constraint programming. In ICTAI (1), 53–60.
IEEE Computer Society.
Barrington, D. A. 1986. Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC1. In Proc. of the ACM symposium on theory of com-
puting, STOC ’86, 1–5. ACM.
Biere, A. 2009. Lazy hyper binary resolution. Technical
report, Dagstuhl Seminar 09461.
Biere, A. 2010. Lingeling, plingeling, picosat and precosat
at SAT race 2010. Technical Report 10/1, FMV Reports
Series.

2124



Chrabakh, W., and Wolski, R. 2003. GrADSAT: A parallel
SAT solver for the grid. Technical report, UCSB Computer
Science Technical Report Number 2003-05.
Chu, G., and Stuckey, P. J. 2008. Pminisat: a paralleliza-
tion of MiniSAT 2.0. Technical report, Sat-race 2008, solver
description.
Crandall, R., and Pomerance, C. 2001. Prime numbers: a
computational perspective. Springer.
Davis, M.; Logemann, G.; and Loveland, D. W. 1962. A
machine program for theorem-proving. Communications of
the ACM 5(7):394–397.
Eén, N., and Biere, A. 2005. Effective preprocessing in
SAT through variable and clause elimination. In Bacchus,
F., and Walsh, T., eds., Theory and Applications of Satisfi-
ability Testing, SAT 2005, volume 3569 of Lecture Notes in
Computer Science, 61–75. Springer.
Ganai, M.; Gupta, A.; Yang, Z.; and Ashar, P. 2006. Ef-
ficient distributed SAT and SAT-based distributed bounded
model checking. International Journal on Software Tools
for Technology Transfer (STTT) 8:387–396.
Hamadi, Y.; Jabbour, S.; Piette, C.; and Sais, L. 2011. De-
terministic parallel DPLL. JSAT 7(4):127–132.
Hamadi, Y.; Jabbour, S.; and Sais, L. 2008. ManySAT:
solver description. Technical Report MSR-TR-2008-83, Mi-
crosoft Research.
Hamadi, Y.; Jabbour, S.; and Sais, L. 2009a. Control-based
clause sharing in parallel SAT solving. In Boutilier, C., ed.,
IJCAI, 499–504.
Hamadi, Y.; Jabbour, S.; and Sais, L. 2009b. ManySAT: a
parallel SAT solver. JSAT 6(4):245–262.
Hamadi, Y.; Marques-Silva, J.; and Wintersteiger, C. M.
2011. Lazy decomposition for distributed decision proce-
dures. In Barnat, J., and Heljanko, K., eds., PDMC, vol-
ume 72 of EPTCS, 43–54.
Kleinjung, T.; Aoki, K.; Franke, J.; Lenstra, A.; Thom, E.;
Bos, J.; Gaudry, P.; Kruppa, A.; Montgomery, P.; Osvik,
D. A.; te Riele, H.; Timofeev, A.; and Zimmermann, P. 2010.
Factorization of a 768-bit RSA modulus. Cryptology ePrint
Archive, Report 2010/006. http://eprint.iacr.org/2010/006.
Kottler, S. 2010a. SAT solving with reference points. In
SAT’10, 143–157.
Kottler, S. 2010b. SArTagnan: solver description. Technical
report, SAT Race 2010.
Ladner, R. E. 1975. On the structure of polynomial time
reducibility. J. ACM 22(1):155–171.
Marques-Silva, J., and Sakallah, K. A. 1996. GRASP -
A New Search Algorithm for Satisfiability. In Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design, 220–227.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC’01), 530–535.
Papadimitriou, C. H. 1993. Computational Complexity. Ad-
dison Wesley.

Pomerance, C. 1996. A tale of two sieves. Notices of the
AMS 43:1473–1485.
Prosser, P. 1993. Hybrid algorithms for the constraint satis-
faction problem. Computational Intelligence 9:268–299.
Pruul, E. A., and Nemhauser, G. L. 1988. Branch-and-bound
and parallel computation: A historical note. Operations Re-
search Letters 7(2):65–69.
Rao, V. N., and Kumar, V. 1993. On the efficiency of par-
allel backtracking. IEEE Transactions on Parallel and Dis-
tributed Systems 4(4):427–437.
Schubert, T.; Lewis, M.; and Becker, B. 2010. Antom: solver
description. Technical report, SAT Race.
Selman, B.; Kautz, H. A.; and McAllester, D. A. 1997. Ten
challenges in propositional reasoning and search. In IJCAI
(1), 50–54.
Wintersteiger, C. M.; Hamadi, Y.; and de Moura, L. M.
2009. A concurrent portfolio approach to SMT solving.
In Bouajjani, A., and Maler, O., eds., CAV, volume 5643 of
Lecture Notes in Computer Science, 715–720. Springer.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.
Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Malik,
S. 2001. Efficient conflict driven learning in Boolean satis-
fiability solver. In ICCAD, 279–285.
Zhang, H.; Bonacina, M. P.; and Hsiang, J. 1996. Psato: a
distributed propositional prover and its application to quasi-
group problems. Journal of Symbolic Computation 21:543–
560.

2125




