
Optimal Manipulation of Voting Rules∗

Svetlana Obraztsova
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

svet0001@ntu.edu.sg

Edith Elkind
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

eelkind@ntu.edu.sg

Abstract

Complexity of voting manipulation is a prominent research
topic in computational social choice. The voting manipula-
tion literature usually assumes that the manipulator is only
concerned with improving the outcome of the election from
her perspective. However, in practice, the manipulator may
also be reluctant to lie, i.e., she may have a preference for
submitting a vote that does not deviate too much from her
true ranking of the candidates. In this paper, we study the
complexity of finding a manipulative vote that achieves the
manipulator’s goal yet is as close as possible to her true pref-
erence order. We analyze this problem for three natural no-
tions of closeness, namely, swap distance, footrule distance,
and maximum displacement distance, and a variety of voting
rules, such as scoring rules, Bucklin, Copeland, and Max-
imin. For all three distances, we obtain polynomial-time al-
gorithms for all scoring rules and Bucklin and hardness re-
sults for Copeland and Maximin.

1 Introduction
Mechanisms for aggregating the preferences of heteroge-
neous agents play an important role in the design of multi-
agent systems (Ephrati and Rosenschein 1997). Such mech-
anisms are typically implemented by voting rules, i.e., map-
pings that, given the rankings of the available alternatives
by all agents, output an alternative that best reflects the col-
lective opinion. There are many different voting rules that
are used for group decision making; see, e.g., (Brams and
Fishburn 2002) for an overview.

A weakness shared by all reasonable voting rules is their
susceptibility to manipulation: for any voting rule over a set
of alternatives C, |C| ≥ 3, that is not a dictatorship, there
are voting situations where some voter would be better off
if, instead of submitting her true ranking of the alternatives,
she submitted a vote that did not quite match her true prefer-
ences. This was observed by Gibbard (1973) and, indepen-
dently, by Satterthwaite (1975) more than 30 years ago, and
a lot of research effort since then has been spent on iden-

∗An earlier version of this paper, which contains many—though
not all—of the proofs omitted from the current version, appeared
in AAMAS’12. Compared to the AAMAS’12 version, the current
version provides a more up-to-date literature survey.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tifying voting rules that are at least somewhat resistant to
manipulation.

In their pioneering paper, Bartholdi, Tovey and
Trick (1989) proposed to use computational complexity as
a roadblock in the way of manipulative behavior: they ob-
served that, in practice, the manipulator needs an efficient
method to find a successful manipulative vote, and a vot-
ing rule that does not admit such a method may be viewed
as being relatively less vulnerable to manipulation. How-
ever, most classic voting rules, with the notable exception
of STV, turn out to be susceptible to manipulation in this
sense (Bartholdi, Tovey, and Trick 1989; Bartholdi and Or-
lin 1991).

In this paper, we study a refinement of the question asked
by Bartholdi, Tovey and Trick. We observe that, while the
manipulator is willing to lie about her preferences, she may
nevertheless prefer to submit a vote that deviates as little as
possible from her true ranking. Indeed, if voting is public (or
if there is a risk of information leakage), and a voter’s pref-
erences are at least somewhat known to her friends and col-
leagues, she may be worried that voting non-truthfully can
harm her reputation—yet hope that she will not be caught
if her vote is sufficiently similar to her true ranking. Alter-
natively, a voter who is uncomfortable about manipulating
an election for ethical reasons may find a lie more palatable
if it does not require her to re-order more than a few candi-
dates. Finally, a manipulator may want to express support
for candidates she truly likes, even if these candidates have
no chances of winning; while she may lie about her ranking,
she would prefer to submit a vote where her most preferred
candidates are ranked close to the top.

These scenarios suggest the following research question:
does a voting rule admit an efficient algorithm for finding a
manipulative vote that achieves the manipulator’s goals, yet
deviates from her true ranking as little as possible? To make
this question precise, we need to decide how to measure the
discrepancy between the manipulator’s true preferences and
her actual vote. Mathematically speaking, votes are permu-
tations of the candidate set, and there are several distances
on permutations that one can use. In our work, we consider
what is arguably the two most prominent distances on votes,
namely, the swap distance (Kendall 1938) (also known as
bubble-sort distance, Kendall distance, etc.) and the footrule
distance (Spearman 1904) (also known as the Spearman dis-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

2141

tance), as well as a natural variation of the footrule distance,
which we call the maximum displacement distance.

In more detail, the swap distance counts the number of
candidate pairs that are ranked differently in two preference
orderings. Thus, when the manipulator chooses her vote
based on the swap distance, she is trying to minimize the
number of swaps needed to transform her true ranking into
the manipulative vote. We remark that for swap distance, our
problem can be viewed as a special case of the swap bribery
problem (Elkind, Faliszewski, and Slinko 2009); however,
our question is not addressed by existing complexity results
for swap bribery (Elkind, Faliszewski, and Slinko 2009;
Elkind and Faliszewski 2010; Dorn and Schlotter 2010;
Schlotter, Faliszewski, and Elkind 2011) (see Section 7 for
a discussion). The footrule distance and the maximum dis-
placement distance are based on computing, for each can-
didate, the absolute difference between his positions in the
two votes; the footrule distance then computes the sum of
these quantities, over all candidates, while the maximum
displacement distance returns the largest of them. We be-
lieve that each of these distances captures a reasonable ap-
proach to defining what it means for two votes to be close
to each other; therefore, we are interested in analyzing the
complexity of our manipulation problem for all of them.

We study our problem for several classic voting rules,
namely, Bucklin, Copeland, Maximin, as well as all scor-
ing rules. For all these rules, the algorithm of Bartholdi et
al. (1989) finds a successful manipulation if it exists. How-
ever, this algorithm does not necessarily produce a vote that
is optimal with respect to any of our distance measures: in
particular, it always ranks the manipulator’s target candidate
first, even if this is not necessary to achieve the manipu-
lator’s goal. Thus, we need to devise new algorithms—or
prove that finding an optimal manipulation is computation-
ally hard.

For all three distances, we obtain the same classifica-
tion of these rules with respect to the complexity of find-
ing an optimal manipulation: our problem is easy for Buck-
lin and all polynomial-time computable families of scoring
rules (see Section 2 for definitions), but hard for Copeland
and Maximin. For swap distance and footrule distance, we
strengthen these hardness results to show that our problem
is, in fact, hard to approximate up to a factor of Ω(logm),
where m is the number of candidates.

Our results provide a fairly complete picture of the com-
plexity of finding an optimal manipulative vote for the three
distances and four types of voting rules that we consider. In-
terestingly, they indicate that scoring rules (and the Buck-
lin rule, which is closely related to a subfamily of scor-
ing rules known as k-approval) are fundamentally easier to
manipulate than Copeland and Maximin; we remark that
this observation is also suggested by the recent work of
Obraztsova et al. (Obraztsova, Elkind, and Hazon 2011;
Obraztsova and Elkind 2011) on the complexity of manip-
ulation under randomized tie-breaking. Thus, we believe
that, besides being interesting for its own sake, our work
contributes to the broad agenda of understanding the intrin-
sic complexity—and, therefore, practical applicability—of
various voting rules.

2 Preliminaries
An election is given by a set of candidates C =
{c1, . . . , cm} and a vector R = (R1, . . . , Rn), where each
Ri, i = 1, . . . , n, is a linear order over C; Ri is called the
preference order (or, vote) of voter i. We will sometimes
write �i in place of Ri. If a �i b for some a, b ∈ C, we
say that voter i prefers a to b. We denote by r(cj , Ri) the
rank of candidate cj in the preference order Ri: r(cj , Ri) =
|{c ∈ C | c �i cj}|+1. We denote the space of all linear or-
ders overC byL(C). We denote by (R−i, L) the preference
profile obtained fromR by replacing Ri with L.

A voting correspondence F is a mapping that, given a
candidate set C and a preference profile R over C outputs
a non-empty subset of candidates S ⊆ C; we write S =
F(R). The candidates in S are called the winners of election
(C,R). A voting correspondence F is said to be a voting
rule if it always produces a unique winner, i.e., |F(R)| = 1
for any profileR.

A voting correspondence can be transformed into a vot-
ing rule with the help of a tie-breaking rule. A tie-breaking
rule for an election (C,R) is a mapping T = T (R, S) that
for any S ⊆ C, S 6= ∅, outputs a candidate c ∈ S. A tie-
breaking rule T is lexicographic with respect to a preference
ordering � over C if for any preference profile R over C
and any S ⊆ C it selects the most preferred candidate from
S with respect to �, i.e., we have T (S) = c if and only
if c � a for all a ∈ S \ {c}. In the context of single-voter
manipulation problems, where there is one voter that consid-
ers lying about his vote to obtain a better outcome, of par-
ticular interest are benevolent and adversarial tie-breaking
rules: the former breaks ties in the manipulator’s favor while
the latter breaks ties against the manipulator’s wishes (i.e.,
tie-breaking is lexicographic with respect to, respectively,
the manipulator’s true preference ordering and its inverse).
In the traditional computational social choice terminology
benevolent and adversarial tie-breaking correspond to, re-
spectively, non-unique and unique winner settings.
Voting rules We will now describe the voting correspon-
dences considered in this paper. All these correspondences
assign scores to candidates; the winners are the candidates
with the highest scores. In what follows, we will assume that
these correspondences are transformed into voting rules by
breaking ties adversarially; however, all of our results can be
adapted in a straightforward manner to benevolent or, more
generally, lexicographic tie-breaking.
Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm such
that α1 ≥ · · · ≥ αm defines a scoring rule Fα as follows.
Each voter grants αi points to the candidate she ranks in
the i-th position; the score of a candidate is the sum of the
scores he receives from all voters. The vector α is called
a scoring vector; we assume without loss of generality that
the coordinates of α are nonnegative integers given in bi-
nary. We remark that scoring rules are defined for a fixed
number of candidates, and therefore do not quite fit our def-
inition of a voting rule. Thus, one needs to consider fami-
lies of scoring rules (one for every possible number of can-
didates). From the algorithmic perspective, it is natural to
restrict our attention to polynomial-time computable fami-

2142

lies of scoring rules, where the scoring vector αm for an m-
candidate election can be computed in time poly(m). Two
well-known examples of such families are Borda, given by
α = (m − 1, . . . , 1, 0), and k-approval, given by αi = 1 if
i ≤ k, αi = 0 if i > k.
Bucklin Given an n-voter election, the Bucklin winning
round is the smallest value of r such that the r-approval
score of at least one candidate exceeds n/2. The Bucklin
score of a candidate c ∈ C is his r-approval score, where r
is the Bucklin winning round.
Copeland A candidate a is said to win a pairwise election
against b if more than half of the voters prefer a to b; if
exactly half of the voters prefer a to b, then a is said to tie
his pairwise election against b. Under the Copelandα rule,
α ∈ Q∩ [0, 1], each candidate gets 1 point for each pairwise
election he wins and α points for each pairwise election he
ties.
Maximin The Maximin score of a candidate c ∈ C is given
by the number of votes c gets in his worst pairwise election,
i.e., mind∈C\{c} |{i | c �i d}|.
Distances A distance on a space X is a mapping d :
X × X → R that has the following properties for all
x, y, z ∈ X: (1) non-negativity: d(x, y) ≥ 0; (2) iden-
tity of indiscernibles: d(x, y) = 0 if and only if x = y;
(3) symmetry: d(x, y) = d(y, x); (4) triangle inequality:
d(x, y) + d(y, z) ≥ d(x, z).

In this paper, we will be interested in distances over votes,
i.e., mapping of the form d : L(C) × L(C) → R. In fact,
since we are interested in asymptotic complexity results, we
will consider families of distances (dm)m≥1, where dm is
a distance over the space of all linear orderings of the set
{c1, . . . , cm}. Specifically, we will consider three such fam-
ilies (in the following definitions, C = {c1, . . . , cm} and R
and L are two preference orders in L(C), also denoted as
�R and �L):

Swap distance. The swap distance dswap(L,R) is given
by

dswap(L,R) = |{(ci, cj) | ci �L cj and cj �R ci}|.
This distance counts the number of swaps of adjacent can-
didates needed to transform L into R.

Footrule distance. The footrule distance dfr(L,R) is
given by

dfr(L,R) =
m∑
i=1

|r(ci, L)− r(ci, R)|.

This distance calculates by how much each candidate
needs to be shifted to transform L into R, and sums up
all shifts.

Maximum displacement distance. The maximum dis-
placement distance dmd(L,R) is given by

dmd(L,R) = max
i=1,...,m

|r(ci, L)− r(ci, R)|.

This distance is similar to the footrule distance; the only
difference is that instead of summing up all shifts it only
considers the maximum shift.

It is not hard to verify that the swap distance, the footrule
distance, and the maximum displacement distance fulfill all
distance axioms. It is also known (Diakonis and Graham
1977) that the swap distance and the footrule distance are
always within a factor of two from each other: we have
dswap(L,R) ≤ dfr(L,R) ≤ 2dswap(L,R) for any space
of candidates C and any L,R ∈ L(C).

3 Our Model
We will now formally describe our computational problem.

Definition 3.1. Let D = (dm)m≥1 be a family of
integer-valued distances, where dm is a distance over
L({c1, . . . , cm}). Let F be a voting rule. An instance of
(D,F)-OPTMANIPULATION is given by an election (C,R)
with C = {c1, . . . , cm}, R = (R1, . . . , Rn), a voter i ∈
{1, . . . , n}, a candidate p ∈ C, and a positive integer k. It
is a “yes”-instance if there exists a vote L ∈ L(C) such that
F(C, (R−i, L)) = {p} and dm(Ri, L) ≤ k, and a “no”-
instance otherwise.

Remark 3.2. The problem (D,F)-OPTMANIPULATION is
in NP as long as all distances in D and the rule F are poly-
time computable: one can guess a vote L and check that
F(C, (R−i, L)) = {p} and dm(Ri, L) ≤ k. In particular, it
is in NP for all distance families and voting rules considered
in this paper.

Remark 3.3. We formulated OPTMANIPULATION as a de-
cision problem. However, it also admits a natural interpreta-
tion as an optimization problem: in this case, we are given
an election (C,R), a voter i and a candidate p, and the goal
is to find the smallest value of k such that there exists a
vote L ∈ L(C) at distance at most k from Ri that satis-
fies F(C, (R−i, L)) = {p} (k is assumed to be +∞ if there
is no vote L with F(C, (R−i, L)) = {p}). In this version of
the problem, one can relax the optimality condition, and ask
for an approximately optimal manipulative vote: an algo-
rithm is said to be a ρ-approximation algorithm for (D,F)-
OPTMANIPULATION, ρ ≥ 1, if, given an instance of the
problem for which the correct answer is k ∈ R ∪ {+∞},
it outputs a value k′ that satisfies k ≤ k′ ≤ ρk. We will
consider the optimization version of OPTMANIPULATION
(and prove hardness of approximation results) for Copeland
and Maximin under swap distance (Sections 4) and footrule
distance (Section 5).

Remark 3.4. In our definition of OPTMANIPULATION, the
manipulator wants to make a specific candidate elected;
the identity of this candidate is given as a part of the in-
stance description. An alternative approach would be to
ask if the manipulator can obtain what he considers a bet-
ter outcome by submitting a non-truthful vote, i.e., whether
there is a vote L ∈ L(C) such that dm(Ri, L) ≤ k
and F(C, (R−i, L)) �i F(C,R); we will refer to this
problem as OPTMANIPULATION′. Clearly, an efficient
algorithm for OPTMANIPULATION can be used to solve
OPTMANIPULATION′, by determining the winner w un-
der truthful voting, and then running the OPTMANIPULA-
TION algorithm for all candidates that the manipulator ranks
above w. Hence, OPTMANIPULATION is at least as hard

2143

as OPTMANIPULATION′. In what follows, we will provide
polynomial-time algorithms for the “harder” problem OPT-
MANIPULATION. On the other hand, all our NP-hardness
results apply to the “easier” problem OPTMANIPULATION′:
in fact, in all our hardness proofs the manipulator’s goal will
be to make his favorite candidate the election winner. Using
OPTMANIPULATION as our base problem allows for a di-
rect comparison between the problem of finding the optimal
manipulation and the swap bribery problem (see Section 7).

4 Swap Distance
We start by considering optimal manipulability with respect
to what is perhaps the best known distance on votes, namely,
the swap distance dswap.

Scoring Rules and Bucklin
The main result of this section is a simple polynomial-time
algorithm that solves OPTMANIPULATION for swap dis-
tance and an arbitrary scoring rule; we then show that this
algorithm can be adapted to work for the Bucklin rule.

An observation that will be important for our analysis of
scoring rules in this and subsequent sections is that once we
select the position of the manipulator’s preferred candidate
p, we know his final score. Thus, once p’s position is fixed, it
remains to rank other candidates so that their scores remain
strictly lower than that of p (recall that we use adversarial
tie-breaking). More formally, let sα(c) be the total number
of points a candidate c receives from non-manipulators un-
der a voting rule Fα; we will say that a position j is safe
for a candidate c` given that p is ranked in position f if
sα(c`) + αj < sα(p) + αf . Clearly, for a manipulation to
be successful, all candidates other than p should be ranked
in positions that are safe for them.

Fix a scoring rule Fα with α = (α1, . . . , αm). Our algo-
rithm relies on a subroutine A that given an election (C,R)
with |C| = m, a voter i, a candidate p, and a position f in
i’s vote, finds an optimal manipulation for i among all votes
that rank p in position f . More formally, let

Lf (α) = {L ∈ L(C) | Fα(C, (R−i, L)) = {p}, r(p, L) = f};

our subroutine outputs ⊥ if the set Lf (α) is empty and
a vote L̂ such that dswap(L̂, Ri) ≤ dswap(L,Ri) for all
L ∈ Lf (α) otherwise. Given A, we can easily solve
(dswap,Fα)-OPTMANIPULATION: we run A for all values
of f between 1 and m and output “yes” if at least one of
these calls returns a vote L̂ with dswap(L̂, Ri) ≤ k. Thus
the running time of our algorithm is m times the running
time of A. We will now describe A.

For convenience, let us renumber the candidates in C so
that cm = p and c1 �i . . . �i cm−1. A proceeds in m − 1
rounds. In the `-th round, ` = 1, . . . ,m − 1, it determines
the final position of candidate c`; we then say that this can-
didate is pinned to that position, and the position becomes
unavailable. Initially, all candidates are unpinned and all
positions are available.

Initialization: We pin p to position f (thus f becomes
unavailable), and then fill the remaining positions with the
candidates in C \ {p}, in the order of i’s preferences, i.e.,

placing c1 in the highest available position and cm−1 in the
lowest available position. In what follows, we will shift the
candidates around in order to make p the winner.

Round `, ` = 1, . . . ,m − 1 Suppose that in the beginning
of the round candidate c` is ranked in position j. If j is safe
for c`, we pin c` to position j (which then becomes unavail-
able) and proceed to the next round. Otherwise, we find the
smallest value of h such that position h is available and safe
for c`; if no such value of h can be found, we terminate and
return ⊥. If a suitable value of h has been identified (note
that h > j), then c` gets pinned to position h, and all un-
pinned candidates in positions j + 1, . . . , h are shifted one
available position upwards.

If A does not abort (i.e., return ⊥), it terminates at the
end of the (m − 1)-st round and returns the vote obtained
at that point. Each round involves O(m) score compar-
isons and shifts, and each comparison can be performed in
time O(log(nα1)). Therefore, the running time of A can be
bounded as O(m2 log(nα1)).

The following theorem states that A is guaranteed to pro-
duce the correct answer.

Theorem 4.1. For any α = (α1, . . . , αm) ∈ Z+
m the pro-

cedure A takes an n-voter m-candidate election (C,R), a
voter i ∈ {1, . . . , n}, a candidate p ∈ C, and a position
f ∈ {1, . . . ,m} as its input, and outputs ⊥ if Lf (α) = ∅
and a vote L̂ that satisfies dswap(L̂, Ri) ≤ dswap(L,Ri) for
all L ∈ Lf (α) otherwise.

Combining Theorem 4.1 with the bound on the running
time, we obtain the following corollary.

Corollary 4.2. For every polynomial-time computable fam-
ily F̂ = (Fmα)m=1,... of scoring rules, the problem
(dswap, F̂)-OPTMANIPULATION is in P.

For the Bucklin rule, the algorithm is essentially the same;
the only difference is in the definition of a safe position.

Theorem 4.3. The problem (dswap,Bucklin)-
OPTMANIPULATION is in P.

Maximin and Copeland
For both Maximin and Copeland, finding an optimal manip-
ulation with respect to the swap distance turns out to be com-
putationally hard. In fact, we will prove that the optimiza-
tion versions of these problems (see Remark 3.3) cannot be
approximated up to a factor of δ log |C| for some δ > 0
unless P=NP; this implies, in particular, that the decision
versions of these problems are NP-hard (and hence, by Re-
mark 3.2, NP-complete).

We provide reductions from the optimization version of
the SET COVER problem (Garey and Johnson 1979). Re-
call that an instance of SET COVER is given by a ground
set G = {g1, . . . , gt} and a collection S = {S1, . . . , Sr}
of subsets of G. In the optimization version of the problem,
the goal is to find the smallest value of h such that G can
be covered by h sets from S; we denote this value of h by
h(G,S). More formally, we are interested in the smallest
value of h such that G = ∪S′∈S′S′ for some collection of

2144

subsets S ′ ⊆ S with |S ′| = h. A ρ-approximation algorithm
for SET COVER is a procedure that, given an instance (G,S)
of set cover, outputs a value h′ that satisfies h(G,S) ≤ h′ ≤
ρ · h(G,S). There exists a δ > 0 such that SET COVER
does not admit a polynomial-time δ log t-approximation al-
gorithm unless P=NP (Raz and Safra 1997).

Theorems 4.4 and 4.5 state our hardness-of-
approximation results for Maximin and Copeland.
Theorem 4.4. There exists a δ > 0 s. t. (dswap,Maximin)-
OPTMANIPULATION does not admit a polynomial-time
δ log |C|-approximation algorithm unless P=NP.
Theorem 4.5. There exists a δ > 0 such that for any
α ∈ Q ∩ [0, 1], (dswap,Copelandα)-OPTMANIPULATION
does not admit a polynomial-time δ log |C|-approximation
algorithm unless P=NP.

5 Footrule Distance
For the footrule distance our analysis turns out to be much
easier than for the swap distance: for scoring rules and
Bucklin, we design a simple matching-based algorithm, and
for Copeland and Maximin we can use the fact that the swap
distance and the footrule distance are always within a factor
of 2 from each other, as this allows us to inherit the hardness
results of the previous section.

Scoring Rules and Bucklin
The overall structure of our argument is similar to the one in
Section 4: for any scoring rule Fα with α = (α1, . . . , αm)
we will design a procedureA′ that, given an election (C,R)
with |C| = m, a voter i, the preferred candidate p, a target
position f for the preferred candidate, and a bound k on the
distance, constructs a voteL such that (a)F(C, (R−i, L)) =
{p}; (b) r(p, L) = f ; (c) dfr(L,Ri) ≤ k, or returns ⊥ if
no such vote exists. We then run this procedure for f =
1, . . . ,m and return “yes” if at least one of these calls does
not return ⊥.

We assume without loss of generality that the manipulator
ranks the candidates as c1 �i . . . �i cm (note that this is
different from the assumption we made in Section 4), and
denote by sα(c) the score of a candidate c ∈ C in election
(C,R−i) under the voting rule Fα. Let r be the rank of p in
i’s truthful vote, i.e., p = cr.
A′ proceeds by constructing a bipartite graphGwith parts

X = C \ {p} and Y = {1, . . . ,m} \ {f}; there is an edge
from cj to ` if and only if position ` is safe for cj , i.e.,
sα(cj) + α` < sα(p) + αf , Each edge has a weight: the
weight of the edge (cj , `) is simply |j − `|. Clearly, there
is a one-to-one correspondence between votes L that rank p
in position f and satisfy Fα(C, (Ri, L)) = {p} and perfect
matchings in this graph. Furthermore, the cost of a match-
ingM is x if and only if the corresponding vote LM satisfies
dfr(LM , Ri) = x + |r − f |. Thus, it suffices to find a min-
imum cost perfect matching in G; our algorithm returns the
vote L that corresponds to this matching if its cost does not
exceed k − |r − f | and ⊥ otherwise. The graph G can be
constructed in time O(m2 log(nα1)), and a minimum-cost
matching can be found in timeO(m3) (Cormen et al. 2001).

We summarize these observations as follows.

Theorem 5.1. For every polynomial-time computable fam-
ily F̂ = (Fmα)m=1,... of scoring rules, the problem (dfr, F̂)-
OPTMANIPULATION is in P.

For the Bucklin rule, it suffices to combine the matching-
based algorithm given above with the definition of a safe
position for the Bucklin rule. We obtain the following corol-
lary.
Corollary 5.2. The problem (dfr,Bucklin)-
OPTMANIPULATION is in P.

Maximin and Copeland
In Section 2 we have mentioned that for any candidate set C
and any pair of votes L,R ∈ L(C) we have dswap(L,R) ≤
dfr(L,R) ≤ 2dswap(L,R) (Diakonis and Graham 1977).

Now, suppose that there exists a ρ-approximation algo-
rithmAfr for (dfr,F)-OPTMANIPULATION for some voting
rule F . Consider an instance (C,R, i, p) of (the optimiza-
tion version of) this problem, and let

L′ = {L ∈ L(C) | F(C, (R−i, L)) = {p}}.

If L′ 6= ∅, let k = min{dfr(L,Ri) | L ∈ L′}. On this
instance Afr outputs a value k′ that satisfies k ≤ k′ ≤
ρk; this value corresponds to a vote L ∈ L′ that satisfies
dfr(L,Ri) = k′.

Now, for any vote L′ ∈ L′ we have

dswap(L′, Ri) ≥
1

2
dfr(L

′, Ri) ≥
k

2
.

On the other hand, for L we obtain

dswap(L,Ri) ≤ dfr(L,Ri) = k′ ≤ ρk.

Consider an algorithm Aswap for (dswap,F)-OPTMANIPU-
LATION that, given an instance of the problem, runs Afr

on it and returns the value reported by Afr. The computa-
tion above proves that Aswap is a 2ρ-approximation algo-
rithm for (dswap,F)-OPTMANIPULATION (note thatAswap

returns +∞ if and only if L′ = ∅). Combining this obser-
vation with Theorems 4.4 and 4.5, we obtain the following
corollaries.
Corollary 5.3. There exists a δ > 0 such that the prob-
lem (dfr,Maximin)-OPTMANIPULATION does not admit a
poly-time δ log |C|-approximation algorithm unless P=NP.
Corollary 5.4. There exists a δ > 0 such that for
any α ∈ Q ∩ [0, 1], the problem (dfr,Copelandα)-
OPTMANIPULATION does not admit a poly-time δ log |C|-
approximation algorithm unless P=NP.

6 Max Displacement Distance
Maximum displacement distance is fairly generous to the
manipulator. Indeed, the optimal manipulation problems
for swap distance and footrule distance become trivial if
the maximum distance k is bounded by a constant: in this
case, there are only polynomially many possible manipu-
lative votes, and the manipulator can try all of them. In
contrast, for the maximum displacement distance, there are
exponentially many votes even at distance 2 from the true
vote (to see this, cut the manipulator’s vote into segments

2145

of length 3; within each segment, the candidates can be
shuffled independently). Nevertheless, from the algorith-
mic perspective maximum displacement distance exhibits
essentially the same behavior as swap distance and footrule
distance: we can design efficient algorithms for all scoring
rules and the Bucklin rule, and derive NP-hardness results
for Copeland and Maximin.

Scoring Rules and Bucklin
For scoring rules, we can use a simplified variant of the min-
cost matching argument given in Section 5. Again, suppose
that we are given a scoring rule Fα with α = (α1, . . . , αm),
an election (C,R) with |C| = m, a manipulator i, a pre-
ferred candidate p and a distance bound k. We assume that
the manipulator ranks the candidates as c1 �i . . . �i cm.
For each f = 1, . . . ,m we try to find a successful manipu-
lative vote L with dmd(L,Ri) ≤ k that ranks p in position
f ; in fact, it suffices to consider only values of f that satisfy
|f−r(p,Ri)| ≤ k. For each such f , we construct a bipartite
graph G with parts C \ {p} and {1, . . . ,m} \ {f}. In this
graph, there is an edge from cj to ` if and only if ` is safe
for cj (we use the same definition of a safe position as in
Section 5) and |`− j| ≤ k. In contrast to the construction in
Section 5, the graph is unweighted. It is immediate that there
is a one-to-one correspondence between perfect matchings
in G and successful manipulative votes at distance at most k
from Ri. Thus, we obtain the following result.

Theorem 6.1. For every polynomial-time computable fam-
ily F̂ = (Fmα)m=1,..., of scoring rules, the problem
(dmd, F̂)-OPTMANIPULATION is in P.

For the Bucklin rule, we use the same approach as in Sec-
tion 5, i.e., combine the matching-based algorithm with the
definition of a safe position for the Bucklin rule. This results
in following corollary.

Corollary 6.2. The problem (dmd,Bucklin)-
OPTMANIPULATION is in P.

Maximin and Copeland
For Maximin and Copeland, finding an optimal manipula-
tion with respect to the maximum displacement distance
is computationally hard; however, in contrast with our re-
sults in Sections 4 and 5, we are only able to show the NP-
hardness of the decision version of this problem (rather than
inapproximability of its optimization version). The proofs
of the following two theorems are based on (somewhat in-
volved) reductions from SET COVER.

Theorem 6.3. (dmd,Maximin)-OPTMANIPULATION is
NP-complete.

Theorem 6.4. For any α ∈ Q ∩ [0, 1], (dmd,Copelandα)-
OPTMANIPULATION is NP-complete.

7 Related Work
Our work can be placed in the broader context of mech-
anism design with verification (Green and Laffont 1986;
Singh and Wittman 2001; Nisan and Ronen 2001). This
research area deals with the design of mechanisms (voting

rules, auctions, etc.) for selfish agents in settings where
agents cannot misrepresent their private information (type)
arbitrarily, but rather are restricted to submit a report that is
in some way related to their true type. In some settings (most
notably, mechanism design for scheduling problems) impos-
ing natural restrictions on possible misreports enables one to
circumvent known impossibility results (Auletta et al. 2006;
2009). We remark, however, that the Gibbard–Satterthwaite
theorem has been recently shown to be very robust with re-
spect to restrictions on misreporting: every non-dictatorial
voting rule for 3 or more candidates remains manipulable
even if we only allow the manipulative votes that only dif-
fer by a single swap of adjacent candidates from the manip-
ulator’s true preference ranking (Caragiannis et al. 2012).
Viewed from the perspective of mechanism design with par-
tial verification, the hardness results in this paper provide
a complexity-theoretic separation between the unrestricted
manipulation problem for Copeland and Maximin and its
version with partial verification (where the permissible mis-
reports are required to be within a certain distance from the
manipulator’s true ranking). To the best of our knowledge,
this is a first result of this type in the mechanism design with
partial verification literature.

Optimal Manipulability and Swap Bribery
The problem of finding an optimal manipulation with re-
spect to the swap distance can be viewed as a special case of
the swap bribery problem (Elkind, Faliszewski, and Slinko
2009). In the swap bribery model, there is an external party
that wants to make a particular candidate the election win-
ner. This party can pay the voters to change their prefer-
ence orders, with a price assigned to swapping each pair of
candidates in each vote. The goal is to decide whether the
manipulator can achieve his goal given a budget constraint.
Clearly, our problem is a special case of swap bribery, where
for one voter each swap has unit cost, and for the remaining
voters the prices are set to +∞. Swap bribery is known to be
hard, even to approximate, for almost all prominent voting
rules, including such relatively simple rules as 2-approval.
Thus, the easiness results of Section 4 identify a new fam-
ily of easy instances of the swap bribery problem, thus
complementing the results of (Elkind and Faliszewski 2010;
Dorn and Schlotter 2010; Schlotter, Faliszewski, and Elkind
2011). It would be interesting to see if a somewhat more
general variant of the swap bribery problem for scoring
rules, where only one voter can be bribed but swap bribery
prices can be arbitrary, remains tractable; it is not clear if
the algorithm given in Section 4 can be adapted to handle
this setting.

On the other hand, one may wonder if the hardness results
of Section 4 are implied by the existing hardness results for
swap bribery. However, this does not seem to be the case:
the hardness (and inapproximability) of swap bribery for
Copeland and Maximin follows from the hardness results for
the possible winner problem (Xia and Conitzer 2011), and
the latter problem is easy if all but one voter’s preferences
are fixed (it can be verified that the algorithm of Bartholdi
et al. (1989) works even if the positions of some candidates
in the vote are already fixed). Thus, the hardness results for

2146

Copeland and Maximin given in Section 4 strengthen the ex-
isting hardness results for swap bribery with respect to these
rules.

8 Conclusions and Future Work
We have considered the problem of finding a successful ma-
nipulative vote that differs from the manipulators’ prefer-
ences as little as possible, for three distance measures on
votes and four types of voting rules. Our results are sum-
marized in Table 1 (where “NPC” stands for “NP-complete”
and “(logm)-inapp.” stands for “inapproximable up to a
factor of Ω(logm)”).

A natural direction for future work is extending our results
to other distances on votes; for instance, it should not be too
hard to generalize our results for weighted variants of swap
and footrule distances; such distances play an important role
in several applications of rank aggregation, and have re-
ceived considerable attention in the literature (see (Kumar
and Vassilvitskii 2010) and references therein). At a more
technical level, we remark that for maximum displacement
distance we only have NP-hardness results for Copeland and
Maximin; it would be interesting to see if this variant of our
problem admits efficient approximation algorithms.

Sc. rules Bucklin Copeland Maximin
dswap P P (logm)-inapp. (logm)-inapp.

dfr P P (logm)-inapp. (logm)-inapp.
dmd P P NPC NPC

Table 1: Summary of results

Acknowledgments This research was supported by Na-
tional Research Foundation (Singapore) under grant 2009-
08 (Edith Elkind) and by Russian Foundation for Basic Re-
search grant 11-01-12135 ofi-m (Svetlana Obraztsova).

References
Auletta, V.; Prisco, R. D.; Penna, P.; Persiano, G.; and Ven-
tre, C. 2006. New constructions of mechanisms with verifi-
cation. In ICALP’06, 596–607.
Auletta, V.; Prisco, R. D.; Penna, P.; and Persiano, G. 2009.
The power of verification for one-parameter agents. Journal
of Computer and System Sciences 75(3):190–211.
Bartholdi, J., and Orlin, J. 1991. Single transferable vote
resists strategic voting. Social Choice and Welfare 8(4):341–
354.
Bartholdi, J.; Tovey, C.; and Trick, M. 1989. The computa-
tional difficulty of manipulating an election. Social Choice
and Welfare 6(3):227–241.
Brams, S., and Fishburn, P. 2002. Voting procedures. In
Arrow, K.; Sen, A.; and Suzumura, K., eds., Handbook of
Social Choice and Welfare, Volume 1. Elsevier. 173–236.
Caragiannis, I.; Elkind, E.; Szegedy, M.; and Yu, L. 2012.
Mechanism design: from partial to probabilistic verification.
In ACM EC’12, to appear.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2001. Introduction to algorithms. MIT Press.
Diakonis, P., and Graham, R. 1977. Spearman footrule as a
measure of disarray. Journal of the Royal Statistical Society
B (Methodological) 39(2):262–268.
Dorn, B., and Schlotter, I. 2010. Multivariate complexity
analysis of swap bribery. In IPEC’10, 107–122.
Elkind, E., and Faliszewski, P. 2010. Approximation algo-
rithms for campaign management. In WINE’10, 473–482.
Elkind, E.; Faliszewski, P.; and Slinko, A. 2009. Swap
bribery. In SAGT’09, 299–310.
Ephrati, E., and Rosenschein, J. 1997. A heuristic tech-
nique for multi-agent planning. Annals of Mathematics and
Artificial Intelligence 20(1–4):13–67.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman and Company.
Gibbard, A. 1973. Manipulation of voting schemes. Econo-
metrica 41(4):587–601.
Green, J., and Laffont, J.-J. 1986. Partially verifiable infor-
mation and mechanism design. Review of Economic Studies
53:447–456.
Kendall, M. G. 1938. A new measure of rank correlation.
Biometrika 30(1-2):81–93.
Kumar, R., and Vassilvitskii, S. 2010. Generalized distances
between rankings. In WWW’10, 571–580.
Nisan, N., and Ronen, A. 2001. Algorithmic mechanism
design. Games and Economic Behavior 35:166–196.
Obraztsova, S., and Elkind, E. 2011. On the complexity
of voting manipulation under randomized tie-breaking. In
IJCAI’11, 319–324.
Obraztsova, S.; Elkind, E.; and Hazon, N. 2011. Ties matter:
Complexity of voting manipulation revisited. In AAMAS’11,
71–79.
Raz, R., and Safra, S. 1997. A sub-constant error-probability
low-degree test, and a sub-constant error-probability PCP
characterization of NP. In STOC’97, 475–484.
Satterthwaite, M. 1975. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for vot-
ing procedures and social welfare functions. Journal of Eco-
nomic Theory 10(2):187–217.
Schlotter, I.; Faliszewski, P.; and Elkind, E. 2011. Cam-
paign management under approval-driven voting rules. In
AAAI’11, 726–731.
Singh, N., and Wittman, D. 2001. Implementation with
partial verification. Review of Economic Design 6:63–84.
Spearman, C. 1904. The proof and measurement of associa-
tion between two things. The American Journal of Psychol-
ogy 15(1):72–101.
Xia, L., and Conitzer, V. 2011. Determining possible and
necessary winners given partial orders. Journal of Artificial
Intelligence Research 41:25–67.

2147

