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Abstract

The multiagent systems community has adopted game
theory as a framework for the design of systems of mul-
tiple self-interested agents. For this to be effective, effi-
cient algorithms must be designed to compute the solu-
tions that game theory prescribes. In this paper, I sum-
marize some of the state of the art on this topic, focus-
ing particularly on how this line of work has contributed
to several highly visible deployed security applications,
developed at the University of Southern California.

Introduction
How should an agent choose its actions optimally? The stan-
dard decision-theoretic framework is to calculate a utility for
every possible outcome, as well as, for each possible course
of action, a conditional probability distribution over the pos-
sible outcomes. Then, the agent should choose an action that
maximizes expected utility. However, this framework is not
straightforward to apply when there are other rational agents
in the environment, who have potentially different objec-
tives. In this case, the agent needs to determine a probability
distribution over the other agents’ actions. To do so, it is
natural to assume that those agents are themselves trying to
optimize their actions for their own utility functions. But this
quickly leads one into circularities: if the optimal action for
agent 1 depends on agent 2’s action, but the optimal action
for agent 2 depends on agent 1’s action, how can we ever
come to a conclusion? This is precisely the type of prob-
lem that game theory aims to address. It allows agents to
form beliefs over each other’s actions and to act rationally
on those beliefs in a consistent manner. The word “game”
in game theory is used to refer to any strategic situation, in-
cluding games in the common sense of the word, such as
board and card games, but also important domains that are
not so playful, such as the security games that we will dis-
cuss towards the end of this paper.

Social scientists and even biologists use game theory to
model behaviors observed in the world. In contrast, AI re-
searchers tend to be interested in constructively using game
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theory in the design of their agents, enabling them to reason
strategically. For this to work, it is essential to design effi-
cient algorithms for computing game-theoretic solutions—
algorithms that take a game as input, and produce a way to
play as output.

The rest of this paper is organized as follows. We first dis-
cuss various ways to represent games. We then discuss vari-
ous solution concepts—notions of what it means to solve the
game—and whether and how these solutions can be com-
puted efficiently, with a focus on two-player normal-form
games. Finally, we discuss exciting recent developments in
the deployment of these techniques in high-value security
applications.

Representing Games
We first discuss how to represent games. This is important
first of all from a conceptual viewpoint: we cannot have gen-
eral tools for analyzing games precisely without making the
games themselves precise. There are several standard repre-
sentation schemes from the game theory literature that al-
low us to think clearly about games. Additionally, the rep-
resentation scheme of course has a major impact on scala-
bility. From this perspective, a good representation scheme
allows us to compactly represent natural games, in the same
sense that Bayesian networks allow us to compactly rep-
resent many natural probability distributions; and it allows
for efficient algorithms. While the standard representation
schemes from game theory are sufficient in some cases, in
other cases the representation size blows up exponentially.

In this section, we review standard representation
schemes from game theory, as well as, briefly, representa-
tion schemes that have been introduced in the AI commu-
nity to represent families of natural games more compactly.
Discussion of compact representation schemes for security
games is postponed towards the end of the paper.

Normal-form games
Perhaps the best-known representation scheme for games is
the normal form (also known as the strategic form, or, in the
case of two players, the bimatrix form). Here, each player i
has a set of available pure strategies Si, of which she must
choose one. Each player i also has a utility function ui :
S1 × . . . × Sn → R which maps outcomes (consisting of a
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pure strategy for each player) to utilities. Two-player games
are often written down as follows:

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

This is the familiar game of rock-paper-scissors. Player 1
is the “row” player and selects a row, and player two is the
“column” player and selects a column. The numbers in each
entry are the utilities of the row and column players, respec-
tively, for the corresponding outcome. Rock-paper-scissors
is an example of a zero-sum game: in each entry, the num-
bers sum to zero, so whatever one player gains, the other
loses.

Extensive-form games
Extensive-form games allow us to directly model the tempo-
ral and informational structure of a game. They are a gener-
alization of the game trees familiar to most AI researchers.
They allow chance nodes (often called “moves by Nature” in
game theory), non-zero-sum outcomes, as well as imperfect
information. In a perfect-information game, such as chess,
checkers, or tic-tac-toe, nothing about the current state of
the game is ever hidden from a player. In contrast, in (for
example) most card games, no single player has full knowl-
edge of the state of the game, because she does not know the
cards of the other players. This is represented using infor-
mation sets: an information set is a set of nodes in the game
tree that all have the same acting player, such that the player
cannot distinguish these nodes from each other.

For example, consider the following simple (perhaps the
simplest possible interesting) poker game. We have a two(!)-
card deck, with a King and a Jack. The former is a winning
card, the latter a losing card. Both players put $1 into the pot
at the outset. Player 1 draws a card; player 2 does not get
a card. Player 1 must then choose to bet (put an additional
$1 into the pot) or check (do nothing). Player 2 must then
choose to call (match whatever additional amount player 2
put into the pot, possibly $0), or fold (in which case player 1
wins the pot). If player 2 calls, player 1 must show her card;
if it is a King, she wins the pot, and if it is a Jack, player 2
wins the pot.

Figure 1 shows the extensive form of this game. The
dashed lines between nodes for player 2 connect nodes in-
side the same information set, i.e., between which player 2
cannot tell the difference (because he does not know which
card player 1 has).

It is possible to convert extensive-form games to normal-
form games, as follows. A pure strategy in an extensive-form
game consists of a plan that tells the player which action
to take at every information set that she has in the game.
(A player must choose the same action at every node inside
the same information set, because after all she cannot dis-
tinguish them.) One pure strategy for player 1 is “Bet on a
King, Check on a Jack,” which we represent as BC. Simi-
larly, one pure strategy for player 2 is “Fold on a Bet, Call
on a Check,” which we represent as FC. Given both players’
pure strategies, we can calculate the expected utility for each

Figure 1: An extremely simple poker game.

(taking the expectation over Nature’s randomness). This re-
sults in the following normal-form game:

CC CF FC FF
BB 0,0 0,0 1,-1 1,-1
BC .5,-.5 1.5,-1.5 0,0 1,-1
CB -.5,.5 -.5,.5 1,-1 1,-1
CC 0,0 1,-1 0,0 1,-1

While any extensive-form game can be converted to nor-
mal form in this manner, the representation size can blow up
exponentially; we will return to this problem later.

Bayesian games
In recreational games, it is generally common knowledge
how much each player values each outcome, because this is
specified by the rules of the game. In contrast, when mod-
eling real-world strategic situations, generally each player
has some uncertainty over how much the other players value
the different outcomes. This type of uncertainty is natu-
rally modeled by Bayesian games. In a Bayesian game, each
player draws a type from a distribution before playing the
game. This type determines how much the player values
each outcome.1 Each player knows her own type, but not
those of the other players. Again, Bayesian games can be
converted to normal form, at the cost of an exponential in-
crease in size.

Stochastic games
Stochastic games are simply a multiplayer generalization of
Markov decision processes. In each state, all players choose
an action, and the profile of actions selected determines the
immediate rewards to all players as well as the transition
probabilities to other states. A stochastic game with only one
state is a repeated game (where the players play the same
normal-form game over and over).

Compact representation schemes
One downside of the normal form is that its size is ex-
ponential in the number of players. Several representation
schemes have been proposed to be able to represent “natu-
ral” games with many players compactly. Perhaps the best-
known one is that of graphical games (Kearns, Littman, and

1In general, a player’s private information may also be relevant
for determining how much another player values outcomes.
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Singh 2001), in which players are the nodes of a graph, and
each player’s utility is affected only by her own action and
the actions of her neighbors. Another one is that of action-
graph games (Jiang, Leyton-Brown, and Bhat 2011). In an
action-graph game, the actions that players can take are the
nodes of a graph, and a player’s utility is affected only by the
action she chose, and the number of players choosing each
adjacent action.

Another compact representation scheme is that of MultiA-
gent Influence Diagrams (MAIDs) (Koller and Milch 2003).
These are a generalization of Influence Diagrams, which in
turn are a decision-theoretic generalization of Bayesian net-
works.

Solution Concepts
In this section, we discuss several standard solution concepts
and how to compute their solutions. We focus primarily on
two-player normal-form games.

Maximin/minimax strategies
Consider the following paranoid approach to playing a two-
player zero-sum game: suppose player 1 assumes that player
2 will predict player 1’s strategy perfectly, and respond to
minimize player 1’s utility (equivalently, to maximize his
own utility). While this might seem like a relatively hopeless
situation, we do allow player 1 to choose a mixed strategy,
which is a probability distribution over pure strategies. We
assume that player 2 can predict player 1’s mixed strategy,
but not the pure strategy that realizes from this distribution.
Using Σi to denote player i’s set of mixed strategies, player
1 can still guarantee that she receives at least her maximin
utility, that is,

max
σ1∈Σ1

min
s2∈S2

u1(σ1, s2)

Switching roles, it may be player 2 who adopts such a para-
noid perspective. If so, he can guarantee that player 1 gets at
most her minimax utility, that is,

min
σ2∈Σ2

max
s1∈S1

u1(s1, σ2)

One might expect that this second situation is more advanta-
geous to player 1. Amazingly, however, these two quantities
are guaranteed to be the same! This is von Neumann’s min-
imax theorem (von Neumann 1928), and it provides a very
strong rationale for playing such a conservative strategy.

For example, consider the following zero-sum game.

L R
U 1,-1 -1,1
D -2,2 1,-1

If the row player plays Up .6 of the time and Down .4 of
the time, this guarantees her an expected utility of at least
−.2. If the column player plays Left .4 of the time and Right
.6 of the time, this guarantees him an expected utility of at
least .2 (and thus guarantees the row player gets at most
−.2).

As another example, in the poker game above, if player 1
plays BB 1/3 and BC 2/3 of the time, this guarantees her an

expected utility of at least 1/3. If player 2 plays CC 2/3 and
FC 1/3 of the time, this guarantees him an expected utility
of at least −1/3.

A maximin strategy of a normal-form game can be com-
puted in polynomial time using a linear program (and the
minimax theorem can be derived using this linear pro-
gram, as a corollary of strong duality). Two-player zero-
sum games can nevertheless be challenging to solve: a
good example is that of heads-up (two-player) poker (say,
Texas Hold’em). As pointed out above, converting such an
extensive-form game to normal form results in an exponen-
tial increase in size. Fortunately, the sequence form (Ro-
manovskii 1962; Koller and Megiddo 1992; von Stengel
1996) can be used to avoid this exponential increase while
still allowing for a linear programming solution. Unfortu-
nately, it is not even feasible to write down the entire exten-
sive form! To address this, researchers have focused on tech-
niques for shrinking a game tree into a smaller game tree
that is close to or exactly equivalent (Billings et al. 2003;
Gilpin and Sandholm 2007).

While many recreational games are zero-sum, most real-
world strategic situations are not. Even in the security games
that we will consider towards the end of this paper, which
might seem to be the closest that we are likely to get to
a truly adversarial situation in the real world, it is consid-
ered important to allow for the game not to be zero-sum
(though, as we will discuss, these games share important
properties with zero-sum games). Unfortunately, playing a
maximin strategy is not necessarily a good idea in a general-
sum game. For example, consider the following game:

L R
U 0,0 3,1
D 1,0 2,1

If the row player paranoidly believes that the column
player is out to minimize her utility, then she should play
Down, to guarantee herself a utility of 1. However, it is easy
to see that the column player has every incentive to play
Right, so that the row player is in fact better off playing Up.

Dominance and iterated dominance
Perhaps the strongest argument for not playing a strategy is
that it is strictly dominated. We say that strategy σ1 strictly
dominates strategy σ′

1 if it performs strictly better against
every opponent strategy, that is, for all s2 ∈ S2, we have
u1(σ1, s2) > u1(σ′

1, s2).2 A variant is weak dominance,
where the strict inequality is replaced by a weak inequal-
ity, with the additional condition that the inequality be strict
for at least one s2. Of course, dominance is defined anal-
ogously for player 2. For example, in the previous game,
Right strictly dominates Left. Based on this, we can remove
Left from the game; after doing so, Up strictly dominates
Down, and we can remove Down. This process of repeatedly
removing dominated strategies is known as iterated domi-
nance. As another example, in the poker game above, CB,
CC, and CF are all weakly dominated, and FF strictly.

2It does not matter if we replace “s2 ∈ S2” by “σ2 ∈ Σ2”.
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Whether a particular strategy is dominated (weakly or
strongly) by a pure strategy can be computed straightfor-
wardly by checking every pure strategy for that player. It is
possible, though, that a strategy is not dominated by any pure
strategy, but it is dominated by a mixed strategy. Whether
this is the case can be checked using a linear program. This
also allows us to efficiently perform iterated dominance:
simply keep checking whether any pure strategies are dom-
inated and remove them if they are, until nothing more can
be removed. However, one may wonder whether the order in
which we remove dominated strategies affects what remains
in the end. It turns out that for iterated strict dominance it
does not, but for iterated weak dominance it does—and be-
cause of this, in the latter case, problems such as determining
whether a particular strategy can be removed through some
sequence of eliminations are NP-hard. For more detail on
computational aspects of (iterated) dominance, see (Gilboa,
Kalai, and Zemel 1993; Conitzer and Sandholm 2005a;
Brandt et al. 2011).

Nash equilibrium
A Nash equilibrium consists of a profile of strategies—one
for each player—such that no player would want to deviate
to another strategy individually, assuming that the others’
strategies remain the same. That is, each player is playing
a best response to the other players’ strategies. For exam-
ple, consider the following game between a speaker and an
audience, where the former must decide whether to put ef-
fort into her talk (E) or not (NE), and the latter must decide
whether to pay attention (A) or not (NA).

A NA
E 2,2 -1,0

NE -7,-8 0,0

One Nash equilibrium is (A, E), in which both players
are as happy as possible; another one is (NA, NE), which is
worse for both players but no individual player would ben-
efit from deviating; and a third, mixed-strategy equilibrium
has the speaker playing E 4/5 of the time and the audience
playing A 1/10 of the time (!), which leaves both players
exactly indifferent between their choices (so that they do
not mind randomizing) and is even worse for the speaker.
A game may have no pure-strategy equilibria (for example,
rock-paper-scissors), but at least one Nash equilibrium is
guaranteed to exist in any finite game if we allow for mixed
strategies (Nash 1950).

Regarding the computation of Nash equilibria, it is impor-
tant to first precisely define the computational problem that
we aim to solve. If our goal is to compute all Nash equi-
libria of a given game, the output may be exponential in
length. A less ambitious goal is to compute just one—any
one—Nash equilibrium of the game. Whether it is possible
to do so in polynomial time was wide open for a signifi-
cant period of time, leading Papadimitriou to declare settling
the complexity of this problem “together with factoring [...]
in my opinion the most important concrete open question
on the boundary of P today” (Papadimitriou 2001). Eventu-
ally, it was shown that the problem is PPAD-complete with
two players (Daskalakis, Goldberg, and Papadimitriou 2009;

Chen, Deng, and Teng 2009) and FIXP-complete with three
or more players (Etessami and Yannakakis 2010).

Depending on the circumstances, one may not even be
satisfied to just compute any one equilibrium; for example,
this may result in one of the “bad” equilibria in the above
presentation game. Instead, one may wish to find the Nash
equilibrium that maximizes player 1’s utility, or the sum of
the players’ utilities. It turns out that such problems are NP-
hard, and in fact inapproximable unless P=NP (Gilboa and
Zemel 1989; Conitzer and Sandholm 2008).

In spite of these complexity results, researchers have pro-
posed a variety of algorithms for computing Nash equi-
libria. For computing just one Nash equilibrium of a two-
player game, a classic algorithm is the Lemke-Howson al-
gorithm (Lemke and Howson 1964). While it is possible to
construct families of games on which this algorithm’s run-
time is exponential (Savani and von Stengel 2006), it is usu-
ally quite fast. A simpler approach (Dickhaut and Kaplan
1991; Porter, Nudelman, and Shoham 2008) rests on the
following observation. In any Nash equilibrium, some pure
strategies will be optimal for a player to use and others, sub-
optimal, depending on the opponent’s strategy. The optimal
ones are the ones on which she can place positive probability
herself. If it is known which of the pure strategies are opti-
mal in this sense for each player for some equilibrium, then
finding the equilibrium probabilities can be done in polyno-
mial time. So, in a sense, determining which strategies get
positive probability is the hard part. While there are expo-
nentially many possibilities for which subset of strategies
receives positive probability, we can nevertheless attempt
to search through this space, and some heuristics, such as
starting with the smallest subsets and working one’s way up,
and eliminating dominated strategies, turn out to be quite ef-
fective (Porter, Nudelman, and Shoham 2008). Perhaps un-
surprisingly, families of games can be constructed on which
such algorithms scale poorly.3

It is also possible to build on this technique to create a sin-
gle mixed-integer program formulation for finding a Nash
equilibrium. An advantage of this is that it allows for adding
an objective function, so that one can compute the “best”
Nash equilibrium (for example, one that maximizes player
1’s utility, or the sum of the players’ utilities). This ap-
proach significantly outperforms the alternative approach of
first enumerating all equilibria with a version of one of the

3One such family is exemplified by the following game (Sand-
holm, Gilpin, and Conitzer 2005):

3,3 4,2 2,4 2,0 2,0 2,0 2,0
2,4 3,3 4,2 2,0 2,0 2,0 2,0
4,2 2,4 3,3 2,0 2,0 2,0 2,0
0,2 0,2 0,2 3,0 0,3 0,0 0,0
0,2 0,2 0,2 0,3 3,0 0,0 0,0
0,2 0,2 0,2 0,0 0,0 3,0 0,3
0,2 0,2 0,2 0,0 0,0 0,3 3,0

Games in this family have a unique Nash equilibrium where
about half of the pure strategies are not in the supports, though
none of them can be eliminated using dominance. They can, how-
ever, be eliminated using a slightly weaker notion (Conitzer and
Sandholm 2005b).
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other algorithms and then choosing the best one (Sandholm,
Gilpin, and Conitzer 2005).

Stackelberg strategies
For some games, if one player is able to commit to a strategy
before the other player moves, this gives the former player
a strategic advantage. The following game is often used to
illustrate this point.

L R
U 1,1 3,0
D 0,0 2,1

This game is solvable by iterated strict dominance: Up
dominates Down, and after removing Down, Left dominates
Right, suggesting that the outcome will be (Up, Left) with
utilities (1, 1). However, now suppose that we change the
rules of the game a bit, so that the row player is able to cred-
ibly commit to a strategy before the column player moves.
It can be seen that the row player is better off committing
to Down instead: this incentivizes the column player to play
Right, resulting in a utility of 2 for player 1. Even better
would be to commit to play Down with probability .51. This
still incentivizes player 2 to play Right, but now player 1
gets 3 exactly .49 of the time, resulting in an expected utility
of 2.49. It is easy to see that this can be pushed up as far as
2.5, which is optimal. The corresponding strategy for player
1 is called a Stackelberg mixed strategy.

Intriguingly, in contrast to the hardness results for com-
puting Nash equilibria, for a normal-form game a Stackel-
berg mixed strategy can be computed in polynomial time
using linear programming (Conitzer and Sandholm 2006;
von Stengel and Zamir 2010; Conitzer and Korzhyk 2011).
Unfortunately, computing Stackelberg mixed strategies in
Bayesian games is NP-hard (Conitzer and Sandholm 2006)
(and the optimal utility for the leader is inapproximable
unless P=NP (Letchford, Conitzer, and Munagala 2009)).
Nevertheless, techniques from mixed integer programming
and branch-and-bound search have been used to obtain al-
gorithms for computing Stackelberg strategies in Bayesian
games that scale reasonably well (Paruchuri et al. 2008;
Jain, Kiekintveld, and Tambe 2011), and such an algorithm
underlies the LAX application discussed below. The com-
putation of Stackelberg strategies has also been studied in
extensive-form games (Letchford and Conitzer 2010) and
stochastic games (Letchford et al. 2012).

Application to Security Domains
There are several reasons that it is natural to model secu-
rity domains using game theory. They clearly involve multi-
ple parties with very different (though not necessarily com-
pletely opposed) interests. The idea of playing a mixed strat-
egy is also natural: for example, security personnel want
their patrolling strategies to be unpredictable. Still, there is a
large gap between making such high-level observations and
deploying a system that directly computes a game-theoretic
solution in a high-stakes real-world security application. In
recent years, the TEAMCORE group at the University of

Southern California has done precisely this, in several ap-
plications. One is airport security: they introduced the AR-
MOR system at Los Angeles International Airport (LAX) to
schedule checkpoints on roads entering the airport, as well
as canine units (Pita et al. 2008); their later GUARDS sys-
tem is being evaluated for national deployment (Pita et al.
2011). Their IRIS system schedules Federal Air Marshals to
flights (Tsai et al. 2009). They have also started work with
the US Coast Guard: their PROTECT system is deployed in
Boston’s port to randomize patrols (Shieh et al. 2012).

The Stackelberg model underlies every one of these ap-
plications.4 The typical argument for playing a Stackelberg
mixed strategy in this context is as follows. Every period,
the defender (e.g., security personnel) must take a course of
action, such as allocating scarce security resources to loca-
tions. The attacker, however, does not have to attack every
period; instead, he can just observe the defender’s action a
number of times, for example driving to an airport terminal
to see whether there is a checkpoint, without carrying any-
thing suspect. This way, he can learn the probability distribu-
tion over where the checkpoints are, before finally choosing
a plan of attack. Whether this argument is accurate in all of
these security applications is debatable, and some work has
addressed the case where there is explicit uncertainty about
whether the attacker can observe the mixed strategy (Ko-
rzhyk et al. 2011; Korzhyk, Conitzer, and Parr 2011b).

The structure of security games
It is not clear that the full generality of game theory is needed
to address security games; these games may have special
structure that allows us to avoid some of the difficulties that
game theory faces in general. But what is the defining struc-
ture that makes a game a security game? While it appears
unlikely that the community will soon settle on a single def-
inition of security games that captures all applications that
we may wish to address in this space, nevertheless at least
one fairly general definition has been proposed (Kiekintveld
et al. 2009). Under this definition, a security game consists
of:
• a set of targets, of which the attacker will choose one to

attack;
• a set of resources for the defender;
• a set of schedules, each of which consists of a subset of

the targets, to which a resource may be assigned, possibly
with constraints on which resources can be assigned to
which schedules;

• for each target, two utilities for each of the defender and
the attacker—one for the case where this target is attacked
and at least one resource is assigned to it, and one for the
case where it is attacked and no resource is assigned to it.

For example, in the Federal Air Marshals problem, targets
are flights, resources are FAMs, and schedules are tours of
multiple flights to which FAMs may be assigned.

4The PROTECT system uses a quantal response model for
the attacker’s behavior rather than assuming perfect rationality;
an optimal strategy in this framework is computed using the
PASAQ (Yang, Ordóñez, and Tambe 2012) algorithm.
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It turns out that in such games, the Nash equilibria are
interchangeable, meaning that miscoordination about which
equilibrium to play is impossible; also, under a minor as-
sumption, a Stackelberg strategy for the defender is guar-
anteed to also be a Nash strategy—though this no longer
holds if the attacker also has multiple resources (Korzhyk
et al. 2011). The interchangeability property still holds in a
version with multiple attacker resources (Korzhyk, Conitzer,
and Parr 2011a).

The above definition also provides a compact representa-
tion language for security games. Indeed, a pure strategy for
the defender is an allocation of resources to schedules, and
there are exponentially many such allocations. Therefore, an
efficient algorithm for security games must operate directly
on the security game representation, rather than on the nor-
mal form. A number of algorithmic and complexity results
have been derived for the problems of computing Stackel-
berg and Nash solutions of these games (Kiekintveld et al.
2009; Korzhyk, Conitzer, and Parr 2010; Jain et al. 2010;
Korzhyk, Conitzer, and Parr 2011a).

Extensions of security games
While the security game representation from the previous
subsection elegantly captures many domains of interest,
there are exceptions. One example is the “protecting a city”
problem (Tsai et al. 2010). This problem is motivated by
the attacks on Mumbai in 2008, where terrorists arrived in
Mumbai by speedboats and traveled through the city to a
variety of targets. The Mumbai police subsequently started
setting up checkpoints on roads to prevent such attacks.

The game is modeled as a graph whose edges represent
roads, and some of whose nodes represent targets or entry
points into the graph. The defender chooses a subset of at
most k edges to defend, and the attacker chooses a path from
an entry point to a target (resulting in an exponentially large
attacker strategy space). Even if the game is modeled as a
zero-sum game in which the targets have varying values, it
turns out to be quite difficult to scale. The state-of-the-art
approach is a double-oracle algorithm in which strategies are
generated incrementally, but improvements in scalability are
still needed to be able to scale to (for example) the full graph
of Mumbai (Jain et al. 2011).

Conclusion
The proliferation of deployed security applications in the
last few years suggests that this line of work may have much
more impact yet. It is not difficult to imagine that these appli-
cations may gradually extend beyond security domains. It is
also important to point out that not all of the game-theoretic
work (or, more generally, the “economic paradigms” work)
in the multiagent systems community concerns the problem
of computing solutions of a given game. For example, in
mechanism design, the goal is to design the game in a way
that results in good outcomes when it is played by strate-
gic agents. The boundaries between these lines of work are
still blurry and fluid, considering, for example, recent work
on providing incentives for agents to act in a desired man-
ner in a given domain (Monderer and Tennenholtz 2004;

Zhang, Chen, and Parkes 2009; Anderson, Shoham, and Alt-
man 2010). This leaves this author hopeful that some sur-
prising new applications have yet to emerge!
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