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Abstract

Constraint programming has become an important tech-
nology for solving hard combinatorial problems in a di-
verse range of application domains. It has its roots in
artificial intelligence, mathematical programming, op-
erations research, and programming languages. This
paper gives a perspective on where constraint program-
ming is today, and discusses a number of opportunities
and challenges that could provide focus for the research
community into the future.

Introduction
Constraint programming (CP) is a technology for solv-
ing combinatorial optimisation problems (Rossi, Beek, and
Walsh 2006). A major generic challenge that faces CP is
scalability. This is, traditionally, because the problems that
it is usually applied to are computationally intractable (NP-
Hard). While CP has been successfully applied in domains
such as scheduling, timetabling, planning, inventory man-
agement and configuration, many instances of these prob-
lems are extremely challenging for traditional CP methods
due to their hardness.

However, an emerging dimension of scale relates to prob-
lem size, and the volume of data available that is relevant to
solving a particular instance, e.g. extremely large domain
sizes, or very large extensionally defined constraints of high
arity. In 2009 information on the web was doubling every
18 months. It is now believed that this occurs in less than
12 months. This exponential growth in data, often referred
to as the “big data” challenge, presents us with major op-
portunities. For example, McKinsey Global Institute esti-
mates that European government administrations could ben-
efit from over e 250 billion in operational efficiencies by
properly exploiting “big data”.

Another major challenge in real-world application do-
mains is uncertainty (Verfaillie and Jussien 2005). For ex-
ample, in scheduling, the duration of a task might be un-
certain, while in inventory management there might be un-
certainty related to customer demand. Surprising, even pre-
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dicting the future does not imply we can make better de-
cisions. The interactions between the choices that face us
are usually interlinked in complex ways. Being able to re-
act appropriately to risk is more important than knowing
about the risk or even modelling it. The traditional “get data
model implement”-cycle is no longer sufficient in most do-
mains. We often need to deal with large amounts of rapidly
changing data whereby adaptation becomes key. The study
of managing complex sources of data upon which we must
make complex, risky, economic, or environmentally impor-
tant, decisions provides a compelling context for constraint
programming.

The next section will present a brief overview of some
recent advances in constraint programming. The subsequent
sections will highlight some important emerging application
domains which will motivate a set of technical challenges
for constraint programming that offer rich opportunities for
both societal and economic impact.

A Brief State-of-the-Art Review of CP
Advances in constraint programming have been imple-
mented in a variety of software toolkits, languages and
systems. For example, OPL (Hentenryck et al. 1999),
Minizinc (Nethercote et al. 2007) and NUMBERJACK (He-
brard, O’Mahony, and O’Sullivan 2010) provide rich mod-
elling functionalities in a high-level language especially de-
signed for specifying combinatorial optimisation problems.
Other systems, such as CHIP (Dincbas et al. 1988), Prolog
III (Colmerauer 1990), Comet (Van Hentenryck and Michel
2005), Gecode1, IBM ILOG CP, and CPInside (Feldman,
Freuder, and Little 2009), provide general programming ca-
pabilities. Many systems also exist for combinatorial opti-
misation using mixed-integer programming, e.g. IBM ILOG
CPLEX and SCIP (Achterberg et al. 2008).

Significant progress has been made in the develop-
ment of techniques that assist in the acquisition of mod-
els of problems through the use of machine learning tech-
niques (Bessiere et al. 2005; Lallouet and Legtchenko 2005;
Wilson, Grimes, and Freuder 2007; Mizoguchi and Ohwada
1992; O’Connell, O’Sullivan, and Freuder 2002; Coletta et
al. 2003; Bessiere et al. 2004; Vu and O’Sullivan 2008). Ad-
vances in automated reformulation ensure that the resulting

1http://www.gecode.org/
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CSP can be solved as efficiently as possible. Recently a large
number of papers have appeared that study the reformula-
tion of specifications of CSPs (Frisch et al. 2005b; 2005a;
2007; Gent, Miguel, and Rendl 2007; Charnley, Colton, and
Miguel 2006; Colton and Miguel 2001; Bessière, Coletta,
and Petit 2007).

In constraint programming the concept of a “constraint”
is key. A major focus is on the development of ad-hoc con-
straints that provide constraint programmers with an expres-
sive vocabulary for modelling problems (Régin 1994).

It is recognised within the CP community that different
solvers are better at solving different problem instances,
even within the same problem class (Gomes and Selman
2001; Xu et al. 2007; Leyton-Brown, Nudelman, and
Shoham 2002; Streeter, Golovin, and Smith 2007; Sayag,
Fine, and Mansour 2006). Several systems have been pro-
posed that use machine learning to select from a portfolio
of solvers the one that is best suited to a given problem in-
stance, e.g. SATZILLA (Xu et al. 2007) and AQME (Pulina
and Tacchella 2007). CPHYDRA (O’Mahony et al. 2008).

Challenge Domains
A number of important application domains are emerging
due to the growth in large-scale and complex computing in-
frastructure, a desire to improve business efficiency, the need
for improved quality in public servies, and smart and sus-
tainable environments. Four examples are briefly discussed
below.

Data Centre Optimisation. The EU Stand-by Initiative
recently published a Code of Conduct for Energy Efficiency
in Data Centres. In 2007 western European data centres con-
sumed 56 Tera-Watt Hours (TWh) of power, which is ex-
pected to almost double to 104 TWh per year by 2020. Such
a rise in energy consumption is likely to present problems
for EU energy and environmental policies. To minimise car-
bon emissions and the strain on energy infrastructure it is
important that the energy efficiency of data centres is max-
imised.

It is possible to minimise the energy needs of a data centre
through energy-aware workload consolidation (Srikantaiah,
Kansal, and Zhao 2008), which is a challenging optimisa-
tion problem. Speed and latency factors motivate geograph-
ically distributing data centres (Greenberg et al. 2009). The
energy cost per unit of computation can vary significantly
between two different locations due to regional demand dif-
ferences, transmission inefficiencies, and generation diver-
sity (Qureshi et al. 2009). Solving such problems is chal-
lenging because of their scale, the level of uncertainly in-
volved in predicting energy price and load, as well as the
requirement for fast response/reconfiguration times.

Innovative Enterprise and Public Service Delivery.
There is a ubiquitous demand for personalised and optimised
public service delivery. For example, in a hospital setting
data is collected on its patients in a patient management sys-
tem (PMS). Based on this data, operational schedules for the
hospital are created. In an ideal hospital, no beds would be
unoccupied and patients would not have to be on a waiting

list for a long period. However, due to the dynamic nature
of the hospital, planning is difficult. By analysing the data
available at the hospital, we can discover weaknesses in its
planning policies; this in turn can lead to recommendations
for improved planning, which can be implemented in im-
proved planning systems. Such intelligence can be used to
support personalised and transparent service delivery to the
patient.

Human Mobility and Smart Cities. This is a challenge
for most large cities, with problems ranging from public
transport planning to controlling dynamic traffic manage-
ment systems (Giannotti et al. 2010). A typical goal is
to satisfy the mobility requirements of a population by, for
example, designing, planning and timetabling transporta-
tion networks. Traces of human mobility can be observed
through a variety of sensing technologies, such as mobile
phone networks, GPS traces, web-based calendars and so-
cial networks, etc. (Giannotti et al. 2010). Data mining
can be used to extract, from individual movement and sen-
sor data, patterns that characterise emerging requirements
that transportation planning should meet. In turn, such re-
quirements are affected by current schedules, which can be
generated using constraint programming technology.

Natural Resource Management. Sustainable develop-
ment focuses on ensuring that current actions do not im-
properly impact upon future generations. Computational
sustainability is an interdisciplinary field that aims to ap-
ply techniques from computer science, information science,
operations research, applied mathematics, and statistics for
balancing environmental, economic, and societal needs for
sustainable development.2 Many optimisation-based chal-
lenges arise in this domain such as the sustainable manage-
ment of forestry, fisheries, and agriculture.

Technical Challenges
In this section a set of specific technical challenges are pre-
sented, motivated by the complexities of decision making in
data-rich domains like those highlighted above. There is the
general challenge of integrating CP with other technical dis-
ciplines to provide a holistic solution to specific classes of
problems, or to address the requirements of particular appli-
cation domains. Therefore, CP must integrate with a vari-
ety of other technical domains in order to meet these chal-
lenges such as: machine learning; data mining; game the-
ory; simulation; knowledge compilation; visualization; con-
trol theory; engineering; medicine and health; bioscience;
and mathematics. Domain-specific integrations must also
emerge in areas such as: life sciences, sustainability, energy
efficiency, the web, social sciences, and finance.

A number of scientific advances are required in order to
address the specific kinds of challenges raised in the con-
text of extremely large and dynamic data sources. In con-
trast to the standard setting in which constraint programming
and operations research is applied, in the domains described
above the data upon which the specific problem instance

2http://www.cis.cornell.edu/ics/
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is defined is subject to constant change, e.g. real-time en-
ergy prices, connections in a social network, which in turn
changes the nature of the objective function of the problem.
As a consequence the features of the optimisation algorithm
must also evolve. Below we present the specific challenges
in constraint programming that are motivated by such do-
main characteristics.

Optimisation of Evolving Problems. In the presence
of highly dynamic data, problem models and the associ-
ated objective functions evolve. This is closely related
to Open Constraint Optimisation (Faltings and Macho-
Gonzalez 2003; 2005; Maher 2009), but that framework
makes assumptions about the order in which options are dis-
covered, which can be exploited algorithmically. Problem
models, and their associated solvers, will need to be param-
eterised within a time window within which the model is
considered valid. This is closely related to the use of learn-
ing distributions from historical data in stochastic optimisa-
tion (Bent and Hentenryck 2005), which attempts to study
the effect of relaxing the assumption that a distribution of
future requests is available at “optimisation time”. Other ap-
proaches to this problem relate to filtering historical data to
reflect online observations (Ikonomovska et al. 2009).

Online Optimisation and Optimal Stopping Theory.
Recently there has been a focus on solving combinatorial
problems in an online setting (Hentenryck and Bent 2006),
e.g. reservation systems, allocating jobs dynamically in
a data centre, etc. Optimal stopping theory is concerned
with the problem of choosing a time to take a given action
based on sequentially observed random variables in order
to maximise an expected payoff or to minimise an expected
cost (Bruss 2000; Zheng, Ge, and Zhang 2009). The classic
problem in this domain is the ‘Secretary Problem’ whereby
one must choose the best candidate from amongst n for a
job immediately having conducted an interview, without the
facility of recalling previous candidates or observing future
ones. Such kinds of online problem occur in many domains
such as energy-cost minimisation and the pricing of financial
options. A challenging research direction lies in the devel-
opment of online stochastic optimisation methods that can
exploit the guarantees that optimal stopping theory can of-
fer, or use optimal stopping theory to decide when specific
actions should be taken.

Automated Large-Neighbourhood Search. In our ex-
perience of solving extremely large real-world problems,
large-neighbourhood search (Perron, Shaw, and Furnon
2004) has proven to be an excellent technique. Large-
neighbourhood search (LNS) is a meta-heuristic approach
whereby an incomplete local search algorithm identifies
parts of a solution to be improved by a systematic algo-
rithm. In order to successfully apply LNS to a new problem
one needs to understand how different definitions of neigh-
bourhood affect the objective function. This is extremely
complex in problem settings that are subject to frequent and
substantial change. An interesting research challenge is to
develop LNS methods that use machine learning techniques
to assist in defining useful neighbourhoods as problem scale

rapidly increases. Existing approaches to adaptive LNS,
e.g. (Laporte, Musmanno, and Vocaturo 2010) use weights
during search to try to identify useful subsets of variables
to define the best neighbourhood. Machine learning tech-
niques, especially feature selection methods, have not yet
been applied to this problem. Thus, motivating an integra-
tion of machine learning and constraint programming.

Exploiting Problem Structure. Knowledge compilation
and complexity theory can help us exploit the structure of
real world problems. Compiling parts of the problem of-
fline can also lead to scalable online reasoning (Darwiche
and Marquis 2002). Parameterised complexity deals with
computational intractability by identifying problems whose
exponential worst-case behaviour is only polynomially de-
pendent on the size of the problem n, but exponentially de-
pendent on a parameter k, independent of n (Neidermeier
2006). Many global constraints are fixed parameter count-
able. These results can be used in conjunction with compila-
tion methods to assist in designing very scalable LNS meth-
ods, search heuristics and problem reformulation methods
that can improve the scalability of optimisation.

Online Distributed Stochastic Optimisation. Consider a
road network, which is an example of a shared resource.
Improving the quality of some routes over others can al-
ter the behaviour of drivers. An interesting challenge is
to develop optimisation techniques that reason about the
behaviour that they incentivise so as to maximise the ef-
ficiency with which these resources are utilised, avoiding
phenomena such as Braess’ Paradox (Roughgarden 2006;
Valiant and Roughgarden 2006). Braess’ Paradox arises in
settings, such as network design, where as a consequence
of adding capacity to a system self-interested agents mod-
ify their behaviour in a fashion that reduces overall system
performance. An integration with algorithmic game the-
ory (Nisan et al. 2007) is particularly relevant here.

Conclusion
In this paper a number of general challenges for constraint
programming were presented, motivated by the emergence
of application domains characterised by the availability of
large and complex data sources. Such domains provide
strong motivation for the study of novel hybrid methods in
constraint programming, and novel integrations with other
fields, some within the more general AI family.
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