
Learning to Efficiently Pursue Communication
Goals on the Web with the GOSMR Architecture

Kevin Gold
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

Abstract

We present GOSMR (“goal oriented scenario modeling
robots”), a cognitive architecture designed to show co-
ordinated, goal-directed behavior over the Internet, fo-
cusing on the web browser as a case study. The archi-
tecture combines a variety of artificial intelligence tech-
niques, including planning, temporal difference learn-
ing, elementary reasoning over uncertainty, and natu-
ral language parsing, but is designed to be computa-
tionally lightweight. Its intended use is to be deployed
on virtual machines in large-scale network experiments
in which simulated users’ adaptation in the face of re-
source denial should be intelligent but varied. The plan-
ning system performs temporal difference learning of
action times, discounts goals according to hyperbolic
discounting of time-to-completion and chance of suc-
cess, takes into account the assertions of other agents,
and separates abstract action from site-specific affor-
dances. Our experiment, in which agents learn to prefer
a social networking style site for sending and receiving
messages, shows that utility-proportional goal selection
is a reasonable alternative to Boltzmann goal selection
for producing a rational mix of behavior.

Introduction
This paper describes a cognitive architecture designed to ac-
complish goals on the Internet in the face of adversity. The
GOSMR architecture models users in large-scale cyber se-
curity experiments who attempt to accomplish tasks on their
machines despite adversarial attempts to disrupt their activ-
ity. From a cybersecurity point of view, the goal of the work
is to accurately characterize how vulnerable to attack the
workflows carried out on a particular network are. For ex-
ample, if one means of communication is disrupted, what
are the users likely to use instead? While the users in these
experiments are simulated, the operating systems and appli-
cations in these experiments are not; accurately assessing
system vulnerability requires the real software, with all its
security loopholes.

When we began work on this problem of a cognitive archi-
tecture for emulating normal goal-directed Internet behav-
ior, we considered whether ACT-R (Anderson et al. 2004)

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and SOAR (Jones et al. 1999), two of the most widely used
cognitive architectures, would be appropriate for our appli-
cation. We decided to start fresh for a few reasons. First,
ACT-R and SOAR are both rule-based production systems,
but we felt that cybersecurity was a domain sufficiently full
of uncertainty that it would be better to assume that at some
point, the architecture’s knowledge base would be proba-
bilistic at its core. Second, our agents needed the ability to
rapidly produce whole new plans during experiments, eval-
uating the likely time-to-payoff before the plan is executed,
which is not a feature of rule-production systems. Third, our
system had to emphasize computational efficiency, because
it was intended to be only a part of larger experiments that
were measuring impact on CPU, memory, and bandwidth.
Two other features produced by some architectures but not
all were diversity of behavior – a network of agents should
not all produce the same plan in the same situation – and
the ability to communicate in language that was also un-
derstandable by a human observer, since the agents would
sometimes coexist with human network operators participat-
ing in or observing experiments. Starting afresh gave us the
chance to integrate various modern approaches to problems
in artificial intelligence, though in some cases, we found
some classic approaches more suited to our needs than more
recent work in the relevant subfields.

This is the second paper to be written about GOSMR; the
first focused on how the architecture could be trained to fit
and explain network data (Gold et al. 2013). The following
developments have been added since that first publication: a
reinforcement learning module that learns the times to per-
form actions; the planner’s approach of sampling multiple
plans and selecting between them according to the expected
time to completion and probability of success; the system’s
handling of uncertain belief in evaluating plans; and the way
the system separates the abstractions of actions from their
realizations on particular websites, allowing the same plans
and actions to be reused on very different websites. We will
describe a demonstration in which agents learn which of sev-
eral websites to use to most efficiently communicate. Our
results also justify our use of utility-proportional goal selec-
tion instead of the more common Boltzmann selection.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

1227



Figure 1: GOSMR is designed to produce goal-directed, co-
ordinated behavior on the network while driving real web-
sites and applications, such as this (locally hosted) social
networking site. The agents can inform each other of predi-
cate logic facts and instruct each other to achieve goals using
a recursive grammar that maps to agent beliefs and actions.

Related Work
The goals of the system are somewhat similar to those of
the SOAR (Jones et al. 1999) and ACT-R (Anderson et al.
2004) systems, two cognitive architectures designed to sim-
ulate human performance in real-world tasks. GOSMR di-
rectly borrows ACT-R’s hyperbolic discounting of future
payoffs (Fu and Anderson 2006). Our modular behaviors
are loosely based on the DAMN autonomous vehicle archi-
tecture (Rosenblatt 1997). The idea of affordances is due to
(Gibson 1977), and has been long used in robotics to re-
fer to the representation of how to interact with an object
(Jäppinen 1981). The fact that partial order planners avoid
some of the shortcomings of (PO)MDPs in dealing with con-
tinuous time and actions that consume time has been previ-
ously observed by NASA roboticists (Bresina et al. 2002).
In computer security, a planner has been previously used to
solve for security vulnerabilities in situations described in
a planning language (Boddy et al. 2005). A simple simula-
tion of how user machine compromise would impact net-
work administrator workload was discussed in (Blythe et
al. 2011). However, planners have not been used previously
in large-scale network emulation experiments. The LAR-
IAT architecture (Rossey et al. 2002) is the standard for
such experiments. It models users with Petri Nets (Peterson
1981), Markov-like models in which tokens progress asyn-
chronously and probabilistically from one state to another,
creating side effects as they progress. Our planner imple-
mentation follows the partial order planner implementation
in (Russell and Norvig 2003) except in its time and probabil-
ity of success estimation. The approach to sentence creation
here closely resembles the Prolog approach to classic natural
language processing (Pereira and Shieber 1987). Boltzmann
payoff selection is widely used but has received little critical
attention, with no comparisons even of ε-greedy payoff se-
lection to Boltzmann selection in the single-agent case (Sut-
ton and Barto 1998). A very recent summary of multiagent
learning is given in (Tuyls and Weiss 2012). The problem
of a goal-directed agent on unstructured websites has been

previously addressed in the shopping domain (Doorenbos,
Etzioni, and Weld 1997), but most work on web agents in
the past decade has optimistically assumed adoption of the
Semantic Web (Shadbolt, Hall, and Berners-Lee 2006).

Architecture
Because of its intended application in cybersecurity exper-
iments, the GOSMR agent is designed to act reasonably
when faced with unreliable websites – sites that are down
or slow – and model how long it would take users to ac-
complish their goals in spite of these setbacks. At its heart,
GOSMR is a replanning agent; it selects a goal, makes a
few different plans with which to accomplish that goal, then
follows one of those plans until it either accomplishes its
goal or replans. The goals are either internally generated by
agent behaviors, or externally given to the agent by another
agent or human who tells it what to accomplish. Along the
way, it may learn facts from other agents or its environment
that change its decisions; this communication is not partic-
ularly evaluated here, but is important to the long-term goal
of modeling the effects of attacks on information availabil-
ity, reliability, and privacy.

Behaviors and goal generation
One goal of the project was to make agent behaviors mod-
ular, so that a particular aspect of agent behavior such as
passive web surfing could be added or removed without sig-
nificantly changing the rest of the agent’s behavior. Thus,
the agent’s goal generation works like an ensemble system.
When the agent is idle, each Behavior object recommends
a goal – which can be either an Action to take or a set
of Beliefs to satisfy – and a payoff. Behavior objects that
have been implemented include a CheckMessagesBehavior,
which increasingly wants to check an inbox as time passes;
a NewsBrowsingBehavior, which wants to go to news sites
to click on stories of interest; and an InformDownBehavior,
which tells other agents when sites are down.

The agent then attempts to form plans for each recom-
mended goal to determine whether it is feasible and estimate
how long achieving it would take. Each goal’s payoff is dis-
counted by a hyperbolic discounting function:

u(t) =
u

1 + kt
(1)

Hyperbolic discounting has the effect of creating a steep
slope in the payoff discounting curve in the immediate fu-
ture, but the curve flattens out for longer delays.

Once each plan’s value has been suitably discounted, the
architecture selects from among the plans with probabil-
ity proportional to each plan’s utility. The architecture had
originally used the Boltzmann distribution, P (g) ∝ ec∗u(g),
where g is some goal, u(g) is its discounted utility, and c is
some constant, to choose between plans; this is what ACT-R
does (Anderson et al. 2004), and it is a common action se-
lection scheme in reinforcement learning (Sutton and Barto
1998). However, we have become somewhat disillusioned
with the Boltzmann function for goal selection. It makes the
design of utility functions unintuitive, and it is not scale-
free: utilities less than 1 can produce similar probabilities

1228



even when they differ by an order of magnitude.We show
in the experiment in this paper that choosing proportionally
to utility produces behavior that is at least as intelligent and
adaptive. From a cognitive modeling point of view, one can
argue that if human beings perceive utility logarithmically
(Kahneman 2011), a phenomenon known as “Weber’s Law”
or the “Weber-Fechner Law” when it applies to sensory in-
put (Reber 1985), it cancels with the exponentiation, pro-
ducing utility-proportional choice. The absolute magnitude
of the utilities being compared then does not matter, which
leads to more intuitive behavior design.

Planner
We chose to implement the planner as a partial-order search
through plan space (Russell and Norvig 2003), despite the
recent success of forward-search methods using heuristics
(Russell and Norvig 2011). The Internet often offers a high
branching factor, while the final goal state in GOSMR is of-
ten abstract, such as ”Agent A knows belief B,” which gives
no handholds for heuristics that attempt to greedily achieve
goal objectives. Our planner performs iterative deepening
search over the space of plans, where the successor opera-
tor takes a particular open precondition, searches for an ac-
tion that establishes that fact, and if it is not found, produces
a set of possible Actions that would establish that fact as a
postcondition. This search works backwards from the goal,
which can be either an Action or a set of Beliefs.

Because many GOSMR agents are expected to be operat-
ing at the same time, we wanted to ensure that agents would
not always produce the most efficient plan; on a real net-
work, there would be a variety of behavior. However, this
goal must be traded off with efficiency – we do not neces-
sarily want to produce all possible plans. Our solution was
to sample for a fixed number of plans, randomly shuffling
the order in which Actions are evaluated.

Utility-proportional payoff selection is used to select the
plan that will achieve a goal; the utility of the goal is the
same, but different plans will have different expected times
to completion. This happens before the plan is handed off
to the Behavior system for final goal selection, so that each
goal only gets one plan in that contest. Otherwise, goal se-
lection would be strongly biased toward plans that could be
achieved in many ways.

Perception, Actuation, and Affordances
We use the Selenium web testing framework to allow our
agents to actuate a browser (usually Chrome). At the low-
est level, actions that can be taken with Selenium consist
of clicks, typing in fields, and scrolling. The actual fields
to type in and links to click to perform an action such as
login may be totally different from one site to the next (Fig-
ure 2); one may call the username field “Email” while an-
other calls it “ID.” A classic approach to hierarchical plan-
ning here would be to group the low-level clicks and typing
actions needed to log in into higher-level actions, but they
would necessarily be different high level actions, since each
action’s decomposition would only function on one partic-
ular website. Our “affordance” approach allows planning to

(a) FakeFacebook (b) SlowMail

Figure 2: Affordance structures abstract away the differ-
ences between sites, such as the way FakeFacebook requires
clicking on an icon to reach the inbox (left) while SlowMail
requires typing the agent’s name (right). Affordances allow
plans to be abstract enough to function on multiple sites.

deal with actions such as Login(Site) that abstract away the
differences between the Site symbols.

In GOSMR, Affordance objects are data structures that
map the abstract Action objects used in planning to primi-
tive action sequences for a particular website. An affordance
is an ordered sequence of webpage elements along with one
of the following three instructions: click, type, or parse. Type
instructions indicate which action argument should be typed
in that field, while parse instructions give a regular expres-
sion for changing the element into a Belief. For each known
website, GOSMR stores a data structure representing the af-
fordances and a site map connecting them. In planning, most
actions typically have an AtAffordance precondition, which
is satisfied by taking a Subnavigate action that simply plans
a short path on the site map at execution time. All of this has
the net result of significant savings in computation for the
planner, since this representation condenses twenty or more
steps with no significant decision points into two steps: a
Subnavigate action to reach the affordance and the execu-
tion of the corresponding action.

Searching a page for a web element takes a nontrivial
amount of computation, particularly in Selenium’s imple-
mentation, so we must be frugal about what GOSMR ac-
tually senses. When it is not carrying out an action affor-
dance, GOSMR follows the following three rules for search-
ing pages for evidence for its Beliefs (below): check for ev-
idence that contradicts existing Beliefs that are deemed cer-
tain; check for evidence that confirms or denies Beliefs that
change Behavior recommendations; and check for evidence
that contradicts preconditions of the next action. The plan-
ner allows the agent to know which beliefs are key to its plan
succeeding, and it can largely ignore most aspects of most
webpages by concentrating on what it had hoped to achieve
with the last action.

Execution Monitoring and Learning
While the agent has a plan to carry out, the agent checks
that the Beliefs that are the preconditions for the next ac-
tion are not contradicted; if they are not, the action is carried
out. Two kinds of errors can happen here: a precondition is
contradicted by the evidence (for example, the agent is ap-
parently logged out when it thought it was logged in); or
during execution of the action, the agent encounters an er-

1229



ror, such as failing to find an expected affordance. There are
far too many things that can go wrong on the Internet to
have a contingency plan for all of them, so the best an agent
can do in either case is to replan, including new goal selec-
tion. The agent will tend to pick up on a partially completed
plan by virtue of its being almost there, resulting in a plan
with utility that is not so heavily discounted by its time-to-
completion. But anything less than goal re-selection presents
the possibility that the agent will get caught in a loop by
virtue of a faulty world model, attempting to achieve a goal
that is impossible.

When an action is completed without noticeable contra-
diction, the expected time to take that action is updated by a
temporal difference rule,

t(a)n+1 = t(a)n + α(t− t(a)n) (2)

where t was the latest time measured, t(a)n is the estimate
after n observations, and α is the learning rate (we use 0.3).
Temporal difference rules effectively calculate a recency-
weighted average over values (Sutton and Barto 1998), mak-
ing them a good fit for learning dynamic values such as
website response times. These expected times are stored in
a two-level hash table, where the first level hashes the Ac-
tion type and returns a second hash table where the expected
time can be looked up by the relevant action arguments.
“Relevant” is an operative keyword; an action SendMes-
sage(Recipient, Site, Message) depends only marginally on
the message sent. The second hash is therefore on a string
that captures only the time-relevant arguments – in the case
of SendMessage, the name of the website.

The two-level hash structure exists so that if no exam-
ples are known of the expected time given particular argu-
ments for an action, the average over known examples is
taken when estimating the time of an action in a plan. Thus,
an agent that has never sent a message via a new site before
estimates that it will take about as long as on other sites.

Beliefs
In order to use our partial-order planning approach, the Be-
liefs of GOSMR are objects that act as statements in predi-
cate logic – for example, SiteUp(Site). Their arguments are
implemented as references, which makes it possible to in-
clude nested beliefs such as Knows(Agent, Belief).

To avoid accidental inconsistencies in the knowledge base
when sites do not work as expected, we mark some Be-
lief arguments such as the Site in AtSite(Site) as unique –
given the other arguments, only one value is allowed to be
believed for the unique argument. To perform efficient Be-
lief lookup, beliefs provide a descriptor string that contains
all non-unique arguments, and this is hashed to look up the
value of the belief. For many beliefs, this is simply true or
false, but in the case of multinomial Belief such as AtSite,
this retrieves the value in question. Note that a predicate such
as FriendsWith(A1,A2,Site) would not be unique in any of
its arguments, since adding such a belief does not contra-
dict any other such belief, so all three arguments would be
hashed to produce a true or false value. Hashing is necessary
to avoid linear time search for beliefs, which does not scale

when agents have a number of beliefs on the order of the
number of users.

Some beliefs are about quantities that should change over
time without the agent’s intervention – for example, Un-
readMessages(Site, N). We track the expectation instead of
the full distribution for efficiency reasons, taking advantage
of linearity of expectation. These Beliefs are stored along
with timestamps of their last direct observation, and as the
agent is rechecking its beliefs between plans, it also updates
the expectation using a simple linear model. When evidence
for the belief is next directly observed, such as when an
agent checks its email, the temporal model itself is updated
with a temporal difference rule. Thus, if the flow of mes-
sages dries up on a site, the agent will take this new expected
rate into account during goal selection.

The other way in which the architecture currently incor-
porates probability is through beliefs that represent Pois-
son processes, of which SiteUp(Site) is an example. From a
user’s perspective, resources on the Internet are usually up,
occasionally briefly down, and there is no telling when they
will be fixed if they are down. When rechecking its beliefs
before beginning a plan, an agent updates all Poisson pro-
cess beliefs that are not currently directly observed accord-
ing to a formula derived from the cumulative distribution
function of an exponential distribution:

P (b)t+∆t = P (b)t ∗e−λT ∗∆t+(1−P (b)t)∗(1−e−λF ∗∆t)
(3)

where P (b)t is the probability that the belief is true at time
t, ∆t is the time elapsed since the last update, 1/λT is the
expected time for the belief to remain true if it is true (for
SiteUp, the expected uptime), and 1/λF is the expected time
for the belief to remain false if it is false (for SiteUp, the
expected downtime). These uncertain beliefs are allowed to
be used in the creation of plans, but the expected payoffs of
such plans are multiplied by the probability that the belief
holds (before applying temporal discounting). Thus, agents
may choose plans that involve going to a site that is probably
down, but usually only if the action is both very important
and can’t be achieved another way.

Communication
Communication in GOSMR allows two special kinds of ac-
tions: Inform actions, in which a Belief is turned into a
string and sent to another agent, and Delegate actions, in
which Actions are turned into strings and sent (Figure 1).
An agent reading a Belief adds the belief to its own, while
an agent reading an Action request adds it as a possible goal
to achieve. A grammar file is used to specify how Beliefs
and Actions are turned into strings, or vice versa.

Demonstration
It is difficult to demonstrate all possible use cases of an
architecture such as GOSMR, so the experiment here sim-
ply demonstrates its newest capability, that of dynamically
learning the time to complete actions and factoring them into
plans. We demonstrate here GOSMR’s ability to adapt its
communication preferences in the face of sites that are slow,

1230



down, or have an upfront cost to use. We also show an exam-
ple in which the system shows qualitatively smarter adapta-
tion when using proportional instead of Boltzmann goal se-
lection; we choose c = 1 as the most comparable Boltzmann
parameter to parameterless utility-proportional selection.

Methodology
Twenty GOSMR agents were allowed to run for an hour with
the goal of sending and receiving as many messages as pos-
sible; each agent believed it would score 1 point of utility
every time either a message was read, or a message was
sent. Four websites were set up for the agents to use. One
such website was “FakeFacebook,” a site using the Elgg so-
cial networking site framework that required login and nav-
igation to a messages page to send and receive messages
(Figure 2a). One website was “DownMail,” a site which the
agents believed was usually up (expected uptime 30 days,
expected downtime 2 hours), but remained down for the du-
ration of the experiment. Two other websites were “Quick-
Mail” and “SlowMail,” sites which consisted of only a front
page and no login, but which required the bots to type their
own names every time they checked messages (Figure 2b);
they differed in that SlowMail would wait for 10 seconds be-
fore responding to a request. They also differed from Fake-
Facebook in that the “social” site was designed to handle
many users at one time, while “QuickMail” and “SlowMail”
were single-threaded in responding to requests; thus “Quick-
Mail” became a misnomer when agents accessed it simulta-
neously.

The agents began the experiment with no knowledge of
how long actions would take on each site, and an Un-
readMessages model for each site that expected 2 messages
per hour but believed the mailbox empty when the experi-
ment started. Agents were slowed to sleep a second between
primitive actions to achieve the right order of magnitude for
human action times and allow better turn-taking between
agent threads. The messages did not convey actual Beliefs;
for this experiment, the agents generated statements from
the “Buffalo+” language, where an agent would tell another
agent the shortest proposition consisting of repetitions of the
word “buffalo” that the other agent did not know yet. (This
was necessary because agents remember what they have told
other agents, and they would consider a goal of informing an
agent of a previously sent Belief to be trivially satisfied.)

The agents used hyperbolic discounting with k = 0.25,
a temporal difference learning rate for action times of α =
0.3, a default number of plans to generate of 4, and in the
case of Boltzmann goal selection, a constant c = 1.

Login on the FakeFacebook site took a sequence of two
text entries and a click to submit, while sending a message
required login, navigation to a mailbox, a click on “Send
Message,” a dropdown menu to select recipient, a click on a
link to make the text entry Selenium-friendly, two text fields,
and a submit button. Checking for new mail required a single
button click on QuickMail, and scanning for red subject lines
on FakeFacebook.

The experiment was run on a MacBook Pro running Snow
Leopard with 2.3 Ghz Intel Core i7 processor and 8GB
1333MHz DDR3 RAM. All webpages were hosted locally,

with FakeFacebook hosted from within a VMWare Fusion
virtual machine and the others run from simple Java threads.

Efficiency Results
We performed some benchmarking to evaluate whether
GOSMR required negligible system resources compared to
the browsers it actuated, since it is a goal of the project that
overall system metrics during network experiments would
remain realistic. On average, GOSMR took only 5% of the
CPU to operate all twenty agents as well as the GUI and
hosted websites. By comparison, each of the twenty in-
stances of Google Chrome reported roughly 5% CPU us-
age; thus all the agents put together did not require as much
computation as a single instance of the browser. (Activity
Monitor does not guarantee that usage sums to 100%.) To-
tal memory for all GOSMR agents plus other Java infras-
tructure was 200MB, while each instance of Chrome took
roughly 45MB. Thus, Chrome’s resource usage would more
likely to be an issue than GOSMR’s footprint when trying to
determine how many virtual machines could be run on the
same physical device.

Adaptation results
Figure 3 shows the total number of Navigate, ReadMessage,
and SendMessage actions executed on each site over the
course of the hour, using the Boltzmann distribution (left)
or utility-proportional payoff selection (right) to select from
various plans. Though agents used the same mechanisms in
each condition to learn the expected time to complete ac-
tions and the expected message rate on each site, the re-
sults of this learning more clearly come through in utility-
proportional payoff selection, with the agents gravitating to-
ward the FakeFacebook site. This is the “correct” behavior
for two reasons: once an agent is logged in there, it is faster
to send messages, because the agent does not need to type
its name; and the response time of the site is faster, because
it does not handle requests in a single-threaded manner. As a
result of this adaptation, the total number of Read and Send
actions complete was nearly double that of the Boltzmann
payoff selection condition – 1604 versus 856.

Times reported are when the action began to be executed
– hence the spike in activity at the start of the “race.” Visits
to SlowMail and DownMail then staggered the agents.

Discussion
Developing a complete cognitive architecture that operates
on things outside itself reminds one of why it isn’t often
done. The devil is often in the details we would like to ab-
stract away; working on abstractions is, after all, a strength
of artificial intelligence. We have only scratched the surface
of the complexity of even operating a web browser,and just
getting the architecture to handle two very different websites
makes one realize just how formidable the problem would
be of having agents understand arbitrary websites. The very
process of evaluating a cognitive architecture is also diffi-
cult. Any particular aspect of the architecture is likely to
look less polished than a standalone tool, and systems that
produce varied behavior are often not optimal.

1231



0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
  

1	
   3	
   5	
   7	
   9	
   11	
  13	
  15	
  17	
  19	
  21	
  23	
  25	
  27	
  29	
  31	
  33	
  35	
  37	
  39	
  41	
  43	
  45	
  47	
  49	
  51	
  53	
  55	
  57	
  59	
  

Ac
#o

ns
	
  

Minutes	
  

FakeFacebook	
  
QuickMail	
  
SlowMail	
  
DownMail	
  

(a) Boltzmann

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
  

1	
   3	
   5	
   7	
   9	
   11	
  13	
  15	
  17	
  19	
  21	
  23	
  25	
  27	
  29	
  31	
  33	
  35	
  37	
  39	
  41	
  43	
  45	
  47	
  49	
  51	
  53	
  55	
  57	
  59	
  

Ac
#o

ns
	
  

Minutes	
  

FakeFacebook	
  

QuickMail	
  

SlowMail	
  

DownMail	
  

(b) Utility-proportional

Figure 3: Total actions agents performed at the sites (navigation to the site, sending messages, and checking messages), using
different payoff selection schemes. Both schemes gravitate toward the better sites (FakeFacebook and QuickMail), but utility-
proportional selection allows small differences in estimated time to play a larger role, leading to more adaptation and more total
actions taken.

But creating a whole agent that operates in the wild can
often make clearer the common assumptions of various sub-
fields of AI. Reinforcement learning, for example, does not
provide the full infrastructure necessary to explain linguistic
communication, necessitating our planner-based approach
to learning. Classic planning does not elegantly handle the
very real differences between objects that it abstracts into
symbols, necessitating our affordance model. In machine
learning, convergence in the limit is often seen as desirable,
while in a dynamic environment, it would make an agent un-
able to deal with change. While there are both papers that
relax these assumptions and applications that prove their
worth, cognitive architectures work can remind those sub-
fields of what is truly applicable to a whole agent.

One difficulty from an unexpected quarter was the dif-
ficulty of efficient, consistent, general belief maintenance.
Rule engines had the Rete algorithm for efficient assertion
and retraction of facts (Forgy 1982), but this kind of ef-
ficiency has not been reconciled with online probabilistic
reasoning. Popular probabilistic libraries such as Alchemy
(Domingos and Lowd 2009) assume an offline reasoning
process in which inference is performed over all variables
relevant to a query, but clearly this becomes inefficient when
queries are being made many times a second over arbitrary
time-dependent variables. Particle filtering over all possi-
ble uncertain propositions seems wasteful when they are not
queried. There is clearly work that could be done here.

Another place for possible improvement appears to be de-
veloping better semantics that goes beyond logical represen-
tations and handles continuous values and uncertainty. The
agents should be able to tell each other that sites are “slow,”
but even this simple assertion carries some context that log-

ical semantics does not handle well. One day, we hope NLP
will refocus some more attention on the semantics of whole
utterances. We also would like agents to place varying de-
grees of trust in other agents’ assertions, but this feature re-
quires further development.

The affordance system is clearly only a start in dealing
with the variability of webpages; ideally, agents should be
able to use a kind of case-based reasoning to adapt to a new
site’s affordances. We note that reinforcement learning is
oddly unhelpful here, because the perception of the reward
signal itself must be achieved somehow. We are currently
working on machine learning approaches to this problem.

Recently, Barbara Grosz posed the following as a replace-
ment for Turing’s original test: “Is it imaginable that a com-
puter (agent) team member could behave, over the long term
and in uncertain, dynamic environments, in such a way that
people on the team will not notice it is not human?” (Grosz
2012) We fundamentally agree that these are excellent clar-
ifications of Turing’s vision: agents should be able to oper-
ate in dynamic, uncertain environments, cooperating to ac-
complish tasks in a humanlike manner. In creating whole
agent architectures, Turing’s conclusion remains as relevant
as ever: “We can only see a short distance ahead, but we can
see plenty there that needs to be done.” (Turing 1950)

Acknowledgements
This work is sponsored by the Assistant Secretary of De-
fense for Research & Engineering under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

1232



References
Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S.;
Lebiere, C.; and Qin, Y. 2004. An integrated theory of the
mind. Psychological Review 111(4).
Blythe, J.; Botello, A.; Sutton, J.; Mazzocco, D.; Lin, J.;
Spraragen, M.; and Zyda, M. 2011. Testing cyber secu-
rity with simulated humans. In Proceedings of IAAI. AAAI
Press.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical plan-
ning. In Proceedings of ICAPS. AAAI Press.
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and Wash-
ington, R. 2002. Planning under continuous time and re-
source uncertainty: A challenge for AI. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial In-
telligence. Morgan Kaufmann Publishers Inc.
Domingos, P., and Lowd, D. 2009. Markov logic: An in-
terface layer for artificial intelligence. Synthesis Lectures on
Artificial Intelligence and Machine Learning 3(1):1–155.
Doorenbos, R. B.; Etzioni, O.; and Weld, D. S. 1997.
A scalable comparison-shopping agent for the world-wide
web. Proceedings of the first international conference on
autonomous agents.
Forgy, C. L. 1982. Rete: a fast algorithm for the many pat-
tern/many object pattern match problem. Artificial intelli-
gence 19(1):17–37.
Fu, W.-T., and Anderson, J. R. 2006. From recurrent choice
to skill learning: A reinforcement-learning model. Journal
of Experimental Psychology: General 135(2).
Gibson, J. J. 1977. The theory of affordances. In Shaw, R.,
and Bransford, J., eds., Perceiving, Acting, and Knowing:
Toward an Ecological Psychology. Lawrence Erlbaum.
Gold, K.; Weber, Z. J.; Priest, B.; Ziegler, J.; Sittig, K.; and
Streilein, B. 2013. Modeling how thinking about the past
and future impacts network traffic with the gosmr architec-
ture. In Proceedings of AAMAS. International Foundation
for Autonomous Agents and Multiagent Systems.
Grosz, B. 2012. What question would Turing pose today?
AI Magazine 33(4).
Jäppinen, H. 1981. Sense-controlled flexible robot behav-
ior. International Journal of Computer and Information Sci-
ences 10(2).
Jones, R. M.; Laird, J. E.; Nielsen, P. E.; Coulter, K. J.;
Kenny, P.; and Koss, F. V. 1999. Automated intelligent pilots
for combat flight simulation. AI Magazine 20(1).
Kahneman, D. 2011. Thinking Fast and Slow. Farrar, Straus,
and Giroux.
Pereira, F. C., and Shieber, S. M. 1987. Prolog and Natural
Language Analysis. Brookline,MA: Microtome Publishing.
Peterson, J. L. 1981. Petri Net Theory and the Modeling of
Systems. Upper Saddle River, NJ: Prentice Hall.
Reber, A. S. 1985. The Penguin dictionary of psychology.
London: Penguin Books.

Rosenblatt, J. 1997. DAMN: a distributed architecture for
navigation. Journal of Experimental and Theoretical Artifi-
cial Intelligence 9(2-3).
Rossey, L. M.; Cunningham, R. K.; Fried, D. J.; Rabek, J. C.;
Lippmann, R. P.; Haines, J. W.; and Zissman, M. A. 2002.
LARIAT: Lincoln adaptable real-time information assurance
testbed. In Aerospace Conference Proceedings. IEEE.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Upper Saddle River, New Jersey: Pren-
tice Hall, 2nd edition.
Russell, S., and Norvig, P. 2011. Artificial Intelligence: A
Modern Approach. Upper Saddle River, New Jersey: Pren-
tice Hall, 3rd edition.
Shadbolt, N.; Hall, W.; and Berners-Lee, T. 2006. The se-
mantic web revisited. IEEE Intelligent Systems 21(3).
Sutton, R., and Barto, A. 1998. Reinforcement Learning: an
Introduction. Cambridge, MA: MIT Press.
Turing, A. 1950. Computing machinery and intelligence.
Mind 49.
Tuyls, K., and Weiss, G. 2012. Multiagent learning: Basics,
challenges, prospects. AI Magazine 33(3).

1233




