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Abstract

In this paper, we present a directly applicable scheme
for electricity consumption shifting and effective de-
mand curve flattening. The scheme can employ the
services of either individual or cooperating consumer
agents alike. Agents participating in the scheme, how-
ever, are motivated to form cooperatives, in order to
reduce their electricity bills via lower group prices
granted for sizable consumption shifting from high to
low demand time intervals. The scheme takes into ac-
count individual costs, and uses a strictly proper scor-
ing rule to reward contributors according to efficiency.
Cooperative members, in particular, can attain vari-
able reduced electricity price rates, given their different
load shifting capabilities. This allows even agents with
initially forbidding shifting costs to participate in the
scheme, and is achieved by a weakly budget-balanced,
truthful reward sharing mechanism. We provide four
variants of this approach, and evaluate it experimentally.

Introduction
The expanding application of Smart Grid and “clean” energy
production technologies necessitates the adoption of novel,
“intelligent” techniques to better coordinate and run the fu-
ture power production and distribution process [Fang et al.,
2011; Ramchurn et al., 2012]. As technology evolves and
electricity demand rises, the task to keep it precisely bal-
anced with supply at all times becomes especially challeng-
ing [MIT authors, 2011]. Maintaining demand curve stabil-
ity, in particular, can alleviate the risk of disastrous electric-
ity network collapses, and leads to financial and environ-
mental benefits—as then some generators can be run on idle,
or even be shut down completely [MIT authors, 2011].

To this end, several load control programs have been
proposed, where electricity consumers are encouraged to
abridge their consuming activities, or shift them to off-peak
hours in order to reduce peak-to-average ratio (PAR) [MIT
authors, 2011; Davito, Tai, and Uhlaner, 2010]. Apart from
industrial and other large-scale consumers, the participation
of residential customers is also possible, provided that smart
meters or similar electricity management systems are avail-
able [Sastry et al. 2010, van Dam et al. 2010]. Typically,
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such schemes either involve an intermediary company which
manages consumers who agree to contribute to the “trim-
ming down” of the demand curve in the event of an im-
pending critical period; or provide a reduced “flat” electric-
ity consumption rate or rebate to consumers for lowering
their consumption over a prolonged time period; or require
the use of dynamic, real-time pricing (RTP) [Albadi and El-
Saadany, 2008; Asmus, 2010; Bushnell et al. 2009]. Most of
the “flat-rate” based schemes can be easily manipulated by
individuals, however [Bushnell et al. 2009]; while RTP has
been strongly criticized for promoting the complete liberal-
ization of household energy pricing. In addition, due to in-
creased levels of consumer uncertainty regarding imminent
price fluctuations, RTP can require user manual response or
the continuous monitoring of smart meters, leading to dif-
ficulties in application. Recent work also shows that RTP
mechanisms do not necessarily lead to PAR reduction, be-
cause large portions of load may be shifted from a typi-
cal peak hour to a typical non-peak hour [Mohsenian-Rad
and Leon-Garcia, 2010]. Other approaches aim to optimize
consumption schedules via searching for Nash equilibria in
specific game settings [Ibars et al. 2010, Mohsenian-Rad et
al. 2010], but require players to retain fixed strategies, which
is unrealistic for large, open environments.

At the same time, recent work in the multiagent systems
community has put forward the notion of Virtual Power
Plants (VPPs). These correspond to coalitions of electric-
ity producers or consumers, who cooperate in order to meet
market demands, mimic the reliability characteristics of tra-
ditional power plants, and deal efficiently with the issues
that accrue [Asmus, 2010; Ramchurn et al., 2012]. In par-
ticular, the work of [Kota et al., 2012] has proposed the for-
mation of consumer Cooperatives for Demand Side Man-
agement (CDSMs), with the aim of “selling back” to the
electricity market the amount of load that was not consumed
due to proactive reduction measures. In their scheme, which
comes complete with certain incentive compatibility guaran-
tees, consumers form cooperatives with the purpose to par-
ticipate in the wholesale electricity markets as if they were
producers, essentially selling energy nega-watts in the form
of reduction services. Though visionary, their approach re-
quires a legislature change in order to be applied in real life.
Moreover, no guidelines whatsoever as to where to shift con-
sumption to are provided by that model, and deals agreed
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there involve reduction promises only.
In contrast, here we propose a simple power consumption

shifting scheme which can be applied directly, including res-
idential, commercial and industrial customers. Our scheme
motivates self-interested business units, represented by au-
tonomous agents that potentially form coalitions, to shift
power consumption from peak intervals to lower demand
ones, in order to receive lower electricity price rates for their
contribution. In more detail, the independent system oper-
ator (ISO), usually the national Grid, gives information a
day ahead for the time intervals that consumption needs to
be reduced at, and those that it is best to shift consumption
to. Consumption during these preferred non-peak intervals
is granted a better price. Then, consumers weigh own costs
and potential profits, and choose to participate in a shifting
operation or not. The employment of a strictly proper scor-
ing rule, CRPS, incentivizes agents to report their predicted
shifting capabilities as truthfully and accurately as possible.

Now, it is conceivable that the Grid would be willing to
promise significantly lower electricity rates for considerable
shifting efforts only, which cannot normally be undertaken
by any consumer alone (due to small reduction capacity or
high shifting costs). As a result, agents are motivated to join
forces in a cooperative, to coordinate their actions so as to
reach the expected reduction levels and make their partic-
ipation in the scheme worthwhile. This is similar to group
buying in e-marketplaces, where some members can obtain
items that cost more than they are able to pay for alone, but
due to group internal price fluctuations set by correspond-
ing mechanisms, the purchase finally becomes advantageous
to all [Li et al., 2003; Yamamoto and Sycara, 2001]. In-
spired by work in that domain, we devise an individually
rational, incentive compatible, and budget-balanced reward
sharing mechanism which determines variable reduced elec-
tricity prices for coalescing agents via internal money trans-
fers, and incentivizes them to participate in the consumption
shifting scheme. We propose four variants of this mecha-
nism, and evaluate their effectiveness.

To the best of our knowledge, this is the first specific pro-
tocol and mechanism that achieves large-scale electricity
demand shifting under uncertainty, imposing the necessary
constraints to avoid the event of new peaks arising; it does so
without the use of “intermediary parties” or real-time pric-
ing; and provides further testimony to the benefits arising
from the formation of agent cooperatives in the Smart Grid.

Model and Shifting Scheme
The electricity pricing scheme used in many countries con-
sists of two different rates, a daily and a nightly one. In our
model, we also assume that there exist exactly two differ-
ent price levels phigh > plow , that characterize each specific
time interval t, based on a demand threshold τ under which
electricity generation costs are lower. The high demand in-
tervals with phigh price are considered to be peak ones, at
which demand needs to be reduced. We denote these as th
in a TH set, as opposed to low price intervals tl ∈ TL.

Now, given the daily consumption pattern known to the
Grid, it would ideally like consumption to drop to a safety
limit sl that is placed below τ . Consuming at the safety limit

would ensure that some low cost generated load is available
in case of an emergency, minimizing the risk that high-cost
generators would have to be turned on. That is, the Grid ide-
ally wants to curtail consumption by Qth ≥ qthτ , where (i)
Qth is the load normally consumed over the safety limit at
th, and (ii) qthτ is the minimum amount of load whose po-
tential removal can, under the Grid’s estimations, allow for a
better electricity price to be offered to contributing reducers.
Intuitively, qthτ is a sizable load quantity that makes it cost-
effective for the Grid to grant a very low electricity rate, in
anticipation of reaching a demand level that is close to the
safety limit. We denote the load reduced by some agent i at
a th as qthi , and that shifted by i to some tl as qtli . The fol-
lowing must then hold: (1)

∑
i q
th
i ≥ qthτ that is, the amount

of load reduced must be higher than the minimum needed
at th; (2)

∑
tl
qtli ≤

∑
th
qthi ,∀i meaning that every reducer

shifts to a subset of non-peak intervals an aggregate load
amount of at most the load reduced (over the th intervals he
participates in); (3)

∑
i

∑
tl
qtli ≤ Qth ,∀th ∈ TH , i.e., the

sum of all reducing agents shifted load to all non-peak in-
tervals must be at most equal to Qth , assuming that the Grid
has no interest in further reducing consumption, once it has
reached sl; and (4)

∑
i q
tl
i ≤ qtlsl,∀tl ∈ TL, namely, the to-

tal load shifted to each tl must not exceed the qtlsl quantity
originally available under sl at tl. The objective is to keep
demand close to sl in as many intervals as possible.

Our scheme allows sizable load consumption from peak to
non-peak intervals where an even lower price pgroup < plow

is granted, and which is a function of the actual load reduc-
tion q in a way that for larger load portions, the price be-
comes better. We term this price as pgroup because such re-
duction will likely be possible only by groups of agents. This
price is awarded if the actual quantity of the load shifted
from th exceeds some minimum value qthmin, set by the Grid
given its knowledge of qthτ (e.g., it could be qthmin = qthτ ).

An Efficient Consumption Shifting Scheme An agent
i that wishes to participate in the consumption shifting
scheme, is characterized by (a) its reduction capacity rti ,
namely the amount of load that it is willing to curtail (e.g., by
shifting) at a time interval t, and (b) its shifting cost cth→tli ,
that is the cost that occurs if consumption of a unit of energy
is shifted from (a peak interval) th to (a non-peak) tl. Given
the above, the exact shifting protocol is as follows.

Every day, the Grid announces the forecasted (accord-
ing to its own information/uncertainty) peak intervals TH
and the most preferable non-peak intervals TL; and also an-
nounces the (quantity-depended) price rates it awards for
consumption in TL (we elaborate below). It then waits for
shifting proposals by business units. Each business unit
(consisting of a single consumer or more), can interact with
the Grid and state its overall load reduction capability during
announced TH intervals, and a number of intervals tl ∈ TL
to which it is willing to shift consumption to. This procedure
is called bidding. Note that for each t ∈ {TH∪TL} there can
be more than one bidders. Furthermore, bidders can pledge
to shift some load from one high consumption th interval to
several low consumption tl ones. Moreover, each bidder has
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to report its confidence regarding its ability to shift rti from
interval t, in the form of a normal distribution describing its
expected relative error regarding its reduction forecast.

Now, to promote efficiency in load shifting and avoid Grid
interaction with unreliable participants, the agents need to be
motivated to precisely report their actual reduction capacity.
To achieve this, we employ a strictly proper scoring rule, the
continuous ranked probability score (CRPS) [Gneiting and
Raftery, 2007], which has also been recently used in [Robu
et al., 2012] to incentivize renewable energy-dependent elec-
tricity producers to accurately state their estimated output
when participating in a cooperative. A scoring rule S(P̂ , x)
is a real valued function that assesses the accuracy of prob-
abilistic forecasts, where P̂ is the reported prediction in the
form of a probability distribution over the occurrence of a
future event, and x the actual occurrence itself. The rule is
strictly proper if it incentivizes forecasters to state their true
beliefs P only, and it does so by maximizing expected re-
ward only when P̂ = P . Use of CRPS allows us to directly
evaluate probabilistic forecasts, and the score is given by:

CRPS(N (µ, σ2), x) =

σ[
1
√
π
− 2φ

(
x− µ
σ

)
−
x− µ
σ

(
2Φ

(
x− µ
σ

)
− 1

)
] (1)

In our setting,N (µ, σ2) is the uncertainty over the expected
relative error regarding the reduction capacity, as reported
by an agent (and estimated given its private knowledge of
consumption requirements and business needs); while x is
the actually observed error, φ the PDF and Φ the CDF of
a standard Gaussian variable. A CRPS value of zero signi-
fies a precise forecast, while a positive value shows the dis-
tance between prediction and occurrence. For convenience,
we normalize CRPS values to [0, 1], with 0 assigned when
we have exact forecast, and 1 assigned when the forecast
gets far from the occurrence. To improve readability, we also
henceforth note CRPS (N (µ, σ2), x) as CRPS , and write
CRPS i to denote the CRPS rule applied to i’s performance.

Summarizing, the Grid announces peak intervals th that
need consumption reduction, and tl intervals to which shift-
ing is acceptable. The Grid determines and announces a bet-
ter price rate pgroup(q) to offer for the consumption of load q
at (any) tl instead of th. This price is awarded if the quantity
of the load shifted from th exceeds qthmin. Consumers then
make their bid collectively or alone, and state their expected
reduction capacity rthi and corresponding uncertainty, along
with the intervals that they are willing to shift to. Bids are
accepted after consideration of the constraints (1)-(4) stated
above. Finally, an agent iwhose bid was accepted, receives a
reduced electricity billBi given its actual contributed reduc-
tion r̄thi at th, and its final consumption at tl, qtli , as follows:

Bi = (1 + CRPS i)q
tl
i pgroup(r̄thi ) (2)

Strict propriety is maintained in Eq. 2, since the only factor
depending on agent forecasts is the 1 + CRPS i one.

Agent Incentives and Decisions The participation of each
agent in the scheme obviously depends on its individual

costs and potential gains. Suppose that an agent i ponders
the possibility of altering its baseload consumption pattern1

by shifting some electricity consumption q from an inter-
val th to tl. This shifting is associated with a cost cth→tli
for the agent. The gain that an agent would have for shift-
ing q to tl given tl’s lower price plow , would be equal to
gain(i|plow ) = q(phigh − plow − cth→tli ) since the agent
would be able to consume q at tl for a lower rate. How-
ever, under normal circumstances this gain is negative for
the agent; if not, then the agent would have already been able
to make that shift (and its baseload pattern would have been
different). Now, if an even lower rate pgroup is granted for
consumption of q ≥ qthmin at tl s.t. pgroup + cth→tl ≤ phigh ,
then the agent is incentivized to perform the shift.

Agent Cooperatives
In the general case, it is very rare even for large industrial
consumers to have reduction capacity≥ qthmin. Therefore, the
agents need to organize into cooperatives in order to coordi-
nate their actions and achieve the better rates promised by
the Grid for effective consumption shifting. At every given
time interval th earmarked for potential consumption reduc-
tion, only a subset Cth of cooperative members might be
available for shifting services. We assume that every mem-
ber agent announces its availability to a cooperative manager
agent, along with its reduction capacity rthi ; its confidence
N (µi, σ

2
i ) on actually reducing that amount at th; and the

set of tl intervals that it pledges to move consumption to.
Even so, more often than not, it is impossible for all agents

in Cth to participate in the cooperative effort. This is be-
cause their shifting costs of some of them might be so high
that do not allow their inclusion in any profitable cooperative
bid. Therefore, only a subset C of Cth will be selected for
participation in the bid. Any such shifting bid is composed
by four parts: th, the high cost interval to reduce consump-
tion from; rC , the amount C pledges to reduce at th; a pair
(Tl, Ql) that determines the set of low cost intervals tl to
move consumption to, along the set of corresponding quan-
tities that will be moved to each tl; and an estimate of its
N (µC , σ

2
C,th

) joint relative error on predicted rC . The bid
is determined so that the collective expected gain from the
shifting operation is non-negative (we provide the details of
how this is ensured below). Assuming that C was selected
and reduced by r̄thC , the bill BC charged to the cooperative
for consuming qtlC is given by Eq. 2 (substituting C for i):
BC = (1 + CRPSC)qtlCpgroup(r̄C).

Now, even if the collective expected gain from the bid is
positive, it is not certain that all individuals in C have a pos-
itive expected gain as well. Nevertheless, with positive col-
lective expected gain, the possibility of internal gain trans-
fers is raised, allowing non-negative (expected) gain for all
participants. These transfers have to be performed in such a
way so that the budget-balancedness of any cooperative bid
is ensured, at least in the weak sense. We now describe the
process by which the cooperative determines its bid at th.

1Note that this is constantly monitored by the Grid given agent
consumption over long time periods, and not “stated” by the agent.
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Cooperative Bid Determination Since the Grid-awarded
group rate depends on quantity reduced, we (originally) as-
sume that the cooperative attempts to select a subset C with
maximal reduction capacity (we modify this assumption in
subsequent algorithm variants). We now present an algo-
rithm that achieves this, while ensuring that C and each one
of its members has a non-negative gain, and that budget-
balancedness is ensured. In what follows, we drop time in-
dices where these are clearly implied.

To begin, let p̂i = (phigh − ci) be agent i’s (implicitly
stated) reservation price, that is, the highest price that i is
willing to pay for moving from th to tl (in order to not suffer
a loss). The algorithm then proceeds as follows.

First, for every i, we check whether p̂i ≤ 0. If that holds
for all i, we stop; the problem is infeasible (as all agents need
to be paid with a rate equal at least p̂i in order to participate).
If that is not the case, then there exist some agents in Cth for
which there is a price they can accept to pay so as to move
some of their consumption to tl without suffering a loss.

The algorithm then sets ri := ri − σiri for all agents
in Cth , that is, the cooperative makes a pessimistic estimate
of an agent’s expected performance, given its stated uncer-
tainty. The algorithm then ranks the agents by rip̂i in de-
creasing order. Then, starting from the agent with the high-
est rip̂i value, we sum these values up in decreasing order,
and add the respective agents in a group C. Intuitively, the
algorithm attempts to add in the coalition members with
high “potential” to contribute to reduction—that is, mem-
bers with potentially high qi to contribute, while being able
to accept a relatively high (though reduced) energy price p̂i.
This process continues until both of the following conditions
are met for the maximum possible group of agents C:

(i)
∑
i∈C rip̂i ≥ rCpC ; and (ii) rC ≥ qmin

where qmin is the minimum quantity admitting a “group
price”, rC =

∑
i∈C ri, and pC = pgroup(rC) is the price

rate offered by the Grid for reduction rC .
To provide further intuition, note that the expected gain

of every agent in some group C given pC is gain(j|pC) =
rj(p̂j − pC). If we were simply given a C for which this
gain was positive for every member, then each agent would
have been able to just pay pC and enjoy the corresponding
gain. However, the reducing set C and individual effective
price of its members have to be dynamically determined by
the cooperative, so that individual rationality is ensured.

Now, if all agents in Cth are inserted in C and rC is still
lower than qmin, the problem is infeasible and we stop. Like-
wise, if all agents are in C and

∑
i∈C rip̂i − rCpC < 0, the

problem is again infeasible and we have to stop.
Assume that this has not happened, and both conditions

have been met for maximal C.2 This means that there is at
least one agent j in C with positive expected gain, given
pC . That is, gain(j|pC) = rj(phigh − cj − pC) = rj p̂j −
rjpC > 0; if not, then no agent has a positive gain, and thus∑
iC
rip̂i − ripC ≤ 0, leading to

∑
iC
rip̂i ≤ rCpC , con-

tradicting condition (i) above. This also means that agents in

2That is, after a subset C has met rC ≥ qmin, we kept adding
agents to C until by adding some k we constructed a C′ for which∑

i∈C′ rip̂i − r′Cp
′
C < 0, in which case k is removed from C′.

C are collectively willing to pay a total amount for moving
their ri consumptions to tl, which is greater than what their
group will be asked to pay for, given the offer pC for rC .

Thus we have ended up with the maximalC so that (i) and
(ii) hold, and which contains some agents with positive and
some with negative gain given pC , and which we can now
use to implement a gain transfer scheme so that all individual
agents in C end up with non-negative gain themselves.

Setting variable effective prices At this point the cooper-
ative pre-assigns different effective price rates peff

i to each
contributor, producing bills that must sum up at least to BC .
This is done with the understanding that a member’s final
effective price will eventually be weighted according to its
individual contribution, given also that C will receive an ac-
tual price rate that will be dependent on its CRPS score.

Thus, the cooperative initially sets peff
i = pC , ∀i ∈ C,

given the price pC expected, and proceeds to rank in de-
creasing order agents in C according to their expected gain,
that is gain(i|peff

i = pC) = ri(p̂i−pC). If all agents already
have non-negative gain, then everyone pays pC and expects
gain(i|pC) without need of balancing. If negativities exist,
then we must rearrange peff

i s.t. agents with the highest gain
provide some of their surplus to those with negative, to make
their participation individually rational. The first step is to
count the total negative gain existing and assign negative
gain agents a reduced peff

i s.t. their gain becomes exactly
zero. Then, we increase peff

i of the top agent until its gain is
equal to the gj gain of the j = i+ 1 agent below (as long as
gj ≥ 0). Then we do the same for the second top agent, until
its gain reaches that of the third. We continue this way until
all requested gain is transferred, or one’s gain reaches zero.
If the latter happens, we move to the top again and repeat.

The peff
i prices thus determined represent internally pre-

agreed prices set ahead of the actual shifting operations. The
actual bill bi that an agent i ∈ C will be called to pay, how-
ever, is determined after the actual shifting operations have
taken place, and depends on its actual performance wrt. the
performance of other agents also, as follows:

bi =
(1 + CRPS i)p

eff
i qi

(
∑
j∈C\{i}(1 + CRPSj)p

eff
j qj) + peff

i qi
BC (3)

Strict propriety is ensured by this rule, as it is an affine trans-
formation of a member’s CRPS i score; and the sum of the bi
bills is always at least as much as the overall billBC charged
to C, making the mechanism weakly budget balanced, and
generating some small cooperative surplus.

Properties and Algorithm Variants The reward transfer
scheme and the overall cooperative bid determination al-
gorithm presented above have several desirable properties.
Apart from (weak) budget balancedness, individual ratio-
nality is ascertained for all agents in C, as they all have non-
negative expected gain from participation.

Moreover, the transfer scheme presented is truthful. Of
course, since the agents operate in a large, dynamic, and
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open environment, one cannot determine an incentive com-
patible mechanism in the Bayes-Nash sense, since analysing
Bayes-Nash equilibria properties is computationally infeasi-
ble in this setting. Indeed, it is next to impossible for a mem-
ber agent to reason on the unknown capabilities or availabil-
ity of thousands of other agents, and no common prior de-
termining such properties can be reasonably assumed. Given
this uncertainty, the best that an agent can do is to be truthful
regarding its shifting costs, capacity, and corresponding con-
fidence: If the agent states inflated shifting costs, it runs the
danger of not being selected for C. Similarly, if the agent
states shifting costs lower than its real ones, then it risks
suffering a high reduction in expected gain (since the lower
these costs are, the higher its peff

i effective price). In addi-
tion, the sheer size and dynamic nature of the problem makes
it improbable that a rational consumer would be willing to
utilize, on a daily basis, the resources necessary to estimate
“potentially beneficial” fake shifting costs, in order to game
the scheme. Also, in practice the cooperative could use esti-
mates of industry-dependent shifting cost limits, to fend off
any such attempts. Finally, an agent has to be as accurate as
possible regarding shifting capacity and corresponding un-
certainty, or will suffer a gain loss due to a bad CRPS score.

Last but not least, the computational cost of the overall
bid determination process (which is in any case actually per-
formed offline and a day in advance) is quite reasonable.
Specifically, it is proportional to the cost of sorting at most
|Cth | agents in every th twice (once when ranked according
to rip̂i, and once when ranked according to perceived gain).

Now, the scheme presented aims to achieve the lowest
possible group price, through the addition of as many agents
as possible into the reducing set of agents in any given th,
as long as budget balancedness and individual rationality are
respected. Though this is clearly efficient for the Grid (since
it apparently promotes the maximum possible reduction at
any th), it is not necessarily efficient for the reducing coali-
tion at th. That is, it does not necessarily maximize the sum
of the members expected gains: since agents with potentially
high costs keep being added until it is possible for the coali-
tion to sustain them through “gain transfers”, there might
exist different reducer sets with higher overall gain.

The bid determination mechanism proposed above can
thus be summarized as Method 1: Rank agents by potential
and maximize expected capacity. We now proceed to con-
sider 3 variants of that approach. We note that all variants
include a reward transfer phase, and that, unless stated other-
wise, retain all the good properties of our original approach.

Method 2: Rank by potential, meet minimum capacity re-
quirement. This method is exactly the same as the original
one, with the difference that we stop adding agents in C the
moment when the qmin requirement is met.

Method 3: Rank by potential, maximize expected capacity,
exclude agents with negative expected gain. This method is
exactly the same as the original one, but once qmin is met,
an agent in the ranked list is added in the coalition only if its
expected gain is non-negative wrt. pgroup at the moment of
its entry (otherwise the search for contributors continues).

Method 4: Rank by expected gain, maximize expected ca-
pacity. This method ranks prospective contributors by their

expected gain wrt. pgroup offered at the moment they are
checked for entering C. However, whenever an agent enters
C, pgroup changes, and so does the expected gain of every
C member. Thus, it has to be recalculated with every new
entry, which increases computational complexity.

Experimental Evaluation
In our experiments, we use simulated consumption patterns
for 4968 agents, generated from distributions derived after
a statistical analysis of 36 small and medium scale actual
industrial consumers from India3 for a number of (simu-
lated) days. Each simulation day is divided in 48 half-hour
intervals. The τ threshold is fixed to 96.5% of the maximum
demand across all time intervals. The safety limit is set to
99% of τ , while qthmin to 1% of the total load at th; and the
phigh & plow values are set to the day-night prices speci-
fied by the public utility company of a given country. The
pgroup rate (in e/ KWh) ranges from pmax

group = 0.05625 to
pmin

group = 0.0214, depending on reduction size q:

pgroup(q) =
pmin

group − pmax
group

Qth − qthmin

· (q − qthmin) + pmax
group (4)

with q ranging from qthmin to a maximum (th-specific) Qth .
Individual shifting preferences are generated as follows.

A beta distribution (a = 1, b = 43.444) is sampled twice
per agent, giving the means (a higher and a lower) of 2 Gaus-
sians (with σ=0.01) which are then sampled for each inter-
val, resulting to the actual agent shifting cost. The higher-
mean Gaussian is used for shifts from intervals with base-
line consumption above the agent’s daily average to ones
below that average; and the lower-mean one is used for all
other shifting operations. Average shifting costs classify the
agents into 3 cost levels: high / medium / low, numbering
811.86 / 2809 / 1347.14 agents respectively on an average
run. Reduction capacities are estimated based on the vari-
ance of each agent baseline consumption, as this is a good
indicator for its demand elasticity. Agent uncertainty stated
for bidding, is provided by sampling a beta distribution, with
a = 1, b = 5 (i.e., the great mass of the agent population has
low to average uncertainty) and actual agent shifting actions
are provided by sampling another beta, with a = 4, b = 2
(modeling the realistic case that at best the agents deliver
what they promised, but often fail to do so).

In our experiments, we first assume that all 4968 agents
participate in the cooperative. Note that running one simula-
tion day involving all agents takes on average only 1.5 sec on
a 3.3 GHz PC (with a further 110 sec for demand curves and
shifting costs initialization period before simulation starts).

Methods Comparison First, we simulated 100 days and
compared the aforementioned methods, in order to choose
one for further evaluation. Results are shown in Table 1.

Method 2 clearly ranks lower than all others both in terms
of cooperative gains and trimming effectiveness. This is

3The exact same consumers as in the experiments of [Kota et
al., 2012]; we thank that paper’s authors for providing the dataset.
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Method 1 Method 2 Method 3 Method 4
Expected Cooperative Gain (e/day) 2094.72 415.73 2099.40 2139.38
Actual Cooperative Gain (e/day) 895.56 (σ=348.03) -273.89 (σ=77.30) 899.34 (σ=349.36) 933.24 (σ=361.66)
Cooperative “Surplus” (e/day) 6.20 14.81 6.20 6.13
Expected Reduction (KWh) 32856.45 12868.40 32861.60 32919.06
Final Reduction (KWh) 24454.32 (σ=8083.3) 9471.053 (σ=2556.5) 24461.93 (σ=8086.1) 24539.96 (σ=8058.2)
Peak (Demand ≥ τ ) Trimmed (%) 98.616 (σ=0.75) 42.511 (σ=5.86) 98.619 (σ=0.73) 98.639 (σ=0.75)
Avg. Reducing Coalition Size 47.70598 15.49350 47.82045 49.06499
High Cost Participants (%) 5.609709 4.396607 5.384088 4.151038
Medium Cost Participants (%) 57.78608 56.61016 57.91386 55.56619
Low Cost Participants (%) 36.60421 38.99323 36.70205 40.28277

Table 1: Average Results (100 days simulation); σ denotes standard deviation from average values.

because it forms coalitions of a “minimum” size, capable
in expectation to shift just qmin. Thus, due to uncertainty
governing actual agent behaviour, profits suffer when agent
promises fail to materialize (and qmin is not reached).

In contrast, Methods 1, 3 and 4 all trimmed more than
98% of peak load, and have similar performance. When
adopting Method 3 though, it is possible for an agent that
could be favoured by the final pgroup price to be excluded
from the coalition, if its contribution potential was checked
early-on in the process, when the pgroup price awarded at
that point happened to grant negative expected gain to that
agent. Method 4 results to the highest cooperative gain,
and highest consumption reduction, but is the most expen-
sive computationally. Moreover, from the Grid’s point of
view, it is probably not worth it to hand over an additional
e 37.28/day, 4.1% of the amount “paid” to Method 1, for a
mere 0.35% increase in consumption reduction. Therefore,
Method 1 appears to be the most appropriate for our pur-
poses, as it is comparable to the rest both in terms of coop-
erative gains and trimming ability; is cheaper for the Grid
to use; and allows even agents with initially negative ex-
pected gains to participate in the scheme. For those reasons,
we chose Method 1 for further evaluation in this paper.

Coalition Size vs. Group Price Range Next, we examine
the average reducing coalition size formed at each th given
different pgroup prices granted for collective consumption
shifting. More specifically, we simultaneously increase the
pmax

group and pmin
group values produced by Eq. 4 up to +0.05 of

their initial values, and observe the average number of agents
in reducing coalitions for each peak interval. Figure 1 shows
this concept, where average coalition sizes over 100 simu-
lation days are plotted against group price range variations.
It is obvious that as pgroup increases to get closer to plow ,
fewer agents decide to contribute—and, subsequently, less
consumption is finally shifted. Thus, in order for shifting to
take place, the Grid must grant a pgroup range that provides
enough gain to the agents, given individual shifting costs.

Other Observations and Further Insights We measured
that an average number of agents participating into each re-
ducing coalition at some th is 47.7 individuals. The 36.6%
of these are low shifting cost agents, whereas 57.8% are
medium and 5.6% high cost. When the reward transfer
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Figure 1: Avg. reducing coalition size vs. pgroup increase.

scheme is enforced, the actual amount transferred on aver-
age during a gain balancing operation at a given th is neg-
ligible, in the order of e 10−5, and is granted by either low
cost or medium cost consumers.

It is worth noting that the Grid each day grants back to
consumers an average of only e 895.56, from its average
daily income of e 354064.3. Note that we cannot account
for the Grid profits emerging due to reduced generation costs
from the evasion of peak intervals, because such an analysis
would require information that is typically not disseminated
by the Grid operators. However, since we observe that in
an average simulation run an 98.616% of the peak load is
“safely” shifted, we can infer that the Grid stands to gain
from the shifting operations. Another positive side-effect is,
of course, that power outages (and resulting costs) become
more distant possibilities as the demand curve flattens out.

We also verified experimentally that CRPS incentivizes
agent accuracy and efficiency. Specifically, we progressively
increased the relative error of reducing agents every 10
simulation days with a step of 0.1 (over a period of 110
days). This leads to an almost linearly increasing (worsen-
ing) CRPS score for the agents and their reducing coalitions,
with a corresponding reduction in their profits.

In a final set of experiments, we considered settings with
considerably fewer consumers participating in the coopera-
tive. With 30% of the agents participating, it is still possi-
ble to shift 98.52% of peak load, while 10% of the popu-
lation manages to shift 93.82% of peak load. With 7% of
agents participating, 75% of the total peak load is shifted;
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while 4% and 3% of all agents shift 51.86% and 12.66%
of peak load respectively. Finally, 2.5% of all agents shift
only 0.8% of the peak load. Thus, membership clearly has
to reach a“critical mass” for the cooperative to be effective.
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