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Abstract

The short cruising range due to the limited battery supply of
current Electric Vehicles (EVs) is one of the main obstacles
for a complete transition to E-mobility. Until batteries of
higher energy storage density have been developed, it is of
utmost importance to deliberately plan the locations of new
loading stations for best possible coverage. Ideally the net-
work of loading stations should allow driving from anywhere
to anywhere (and back) without running out of energy. We
show that minimizing the number of necessary loading sta-
tions to achieve this goal is NP-hard and even worse, we
can rule out polynomial-time constant approximation algo-
rithms. Hence algorithms with better approximation guaran-
tees have to make use of the special structure of road networks
(which is not obvious how to do it). On the positive side,
we show with instance based lower bounds that our heuris-
tic algorithms achieve provably good solutions on real-world
problem instances.

Introduction
Battery-powered Electric Vehicles (EVs) play an important
role in reducing the global consumption of fossil fuels. Not
only can they be powered using renewable energies, but also
have the ability to recuperate energy, e.g. when going down-
hill or in deceleration phases. Despite their environmental
advantages EVs still wait for their great breakthrough. One
reason might be their limited cruising range (up to 150km)
due to the battery’s maximal capacity. Making use of load-
ing stations (LSs) is inevitable on longer tours, unfortu-
nately, LSs are still sparse in most countries. Therefore,
deliberate planning of new LSs positions is crucial to ex-
tend practical cruising ranges with EVs – an important step
towards the transition to E-mobility.
Ideally, the set of LSs in a network should allow for trav-
elling from an arbitrary source to an arbitrary target (and
back) when starting fully loaded and choosing an energeti-
cally reasonable route. The problem of computing energy-
optimal routes for an EV was introduced in (Artmeier et al.
2010) and differs from route planning for conventional cars
in two aspects: (a) the underlying graph bears partly nega-
tive edge weights due to energy recuperation and (b) battery
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constraints (no overcharging or running out of energy) have
to be taken into account.

In (Storandt and Funke 2012), graph concepts like reach-
ability and connectivity were extended to the scenario of
energy-aware routing in the context of EVs: Let G(V,E, c)
with |V | = n, |E| = m be a strongly connected (di)graph
with c : E → R being a cost function representing energy
consumption, and M ∈ R+ the battery capacity of the EV.
W.l.o.g. assume that c(e) ≤ M for all e ∈ E and all cycles
in G have positive cost (otherwise we would have a perpet-
ual motion machine).
The maximal battery load that can be achieved at node
w ∈ V when starting fully loaded at v ∈ V is called bv(w).
A path from v to w that realizes a final battery load ≥ 0
is called ev-feasible. Accordingly the set of ev-reachable
nodes of v contains all nodes on ev-feasible paths starting
at v, i.e. R(v) := {w ∈ V : bv(w) ≥ 0}. The minimal
required battery load to reach v when starting at w is de-
noted by b′v(w). Similarly a node w is called inverse reach-
able from v if b′v(w) ≤ M and the respective set contain-
ing all these nodes is called R−1(v). The set of strongly
ev-connected nodes of v is defined as C(v) := {w ∈ V :
bv(w) ≥ b′v(w)} and represents the set of feasible round-
tours v, · · · , w, · · · , v. A loading station (LS) is a node
l ∈ V that leads to a fully loaded battery whenever it is
visited. The set of loading stations is denoted by L ⊆ V .
Of course, the presence of LSs might augment the sets of
ev-reachable or strongly ev-connected nodes for v ∈ V . The
respective sets are calledRL(v) and CL(v) and can be com-
puted efficiently. The topic considered in this paper is how
to choose a small set L of LSs such that the augmented ev-
reachable and ev-connected node sets are V .

Contribution
In this paper we study two problems related to identifying
reasonable sets of LSs. As placing LSs generates costs, we
always aim for computing a minimum subset L ⊆ V that
fulfils certain connectivity requirements. At first we con-
sider the problem of finding L such that for each pair of
vertices s, t ∈ V , there exists an ev-feasible path from s to
t. Next we augment the problem by the constraint that re-
turning back to swithout running out of energy must be pos-
sible as well (which somewhat surprisingly is considerably
harder to achieve). For both of these problems we prove NP-
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hardness and even hardness of approximation, and provide
approximation algorithms. With both problems not only be-
ing NP-hard but also hard to approximate, we develop prac-
tical, heuristic algorithms and prove their good performance
on real-world instances by computing strong lower bounds
on the concrete problem instances.

Getting Anywhere
For the transition to E-mobility to succeed, a necessary con-
dition is to make sure that any target in the road network can
be reached when starting with a fully charged EV (possibly
with recharging at LSs). Let us formalize this:
Definition 1 (EV-Reachability Cover) Given a (di)graph
G(V,E, c),M ∈ R+, we refer to the problem of converting
a subset L ⊆ V of minimal cardinality into loading stations
such that ∀v ∈ V : RL(v) = V as the EV-Reachability
Cover Problem (ERC).
Note that the following formulation for ERC is equivalent
as soon as at least one LS is required (otherwise the problem
is trivial, of course): Select a minimum subset L ⊆ V as
loading stations such that

1. ∀v ∈ V ∃l, l′ ∈ L : v ∈ R(l), l′ ∈ R(v)
2. ∀l ∈ L : CL(l) ⊇ L.
The first condition assures that for any source vertex a LS
can be reached with the EV, and for any target there is a LS
it can be reached from. The second condition then claims
that one can go from any LS to any other, resulting together
with the first condition in complete pairwise ev-reachability.

Note though, that this formulation does not exclude the
case that one gets stuck at the destination if no loading fa-
cility is available there. We will come back to that problem
later on.

Approximation via Strongly Connected
Dominating Set
The second formulation of ERC implies a close connection
to Strongly Connected Dominating Set (SCDS) (Li et al.
2009), which is a variant of the classical Dominating Set
(DS)(Kann 1992) problem.
Definition 2 (DS) Given a graph G(V,E), select a mini-
mum subset D ⊆ V such that ∀v ∈ V \ D : ∃{v, w} ∈ E
with w ∈ D.
Definition 3 (SCDS) Given a digraph G(V,E), select a
minimum subset D ⊆ V such that ∀v ∈ V \ D :
∃(u, v), (v, w) ∈ E with u,w ∈ D andD induces a strongly
connected subgraph.
The SCDS description differs from ERC in terms of ’dom-
ination distance’; while in SCDS only adjacent nodes can
serve as dominators in ERC all ev-connected nodes are can-
didates for covering or dominating a node. This gap can
be closed by creating the reachability graph for an ERC in-
stance:
Definition 4 (Reachability Graph) Given
G(V,E, c),M ∈ R+, we define the reachability graph
RG(V,E+) with ∀v, w ∈ V : (v, w) ∈ E+ ⇔ w ∈ R(v).

M

M/3

M/4
M/4

M/3

M

M

4M/5

2M/3
3M/4

Figure 1: Left: Instance of ERC. Right: Reachability graph
upon the ERC instance together with a (SC)DS/ERC solu-
tion (red boxes).

So the reachability graph augments the original graph with
direct edges between nodes that are connected via an ev-
feasible path. On that basis ERC can be rephrased as de-
termining a SCDS in the respective reachability graph, see
Figure 1. The two conditions given above are then natu-
rally fulfilled, since choosing L = D for a solution D of
SCDS assures that for any non-loading station there is an ev-
feasible path towards/from a loading stations and moreover
any strongly connected node set in RG implies a strongly
ev-connected node set in G, if the contained nodes are con-
verted into LSs.

This reformulation immediately leads to a 3 lnn approxi-
mation for ERC via the SCDS algorithm in (Li et al. 2009).
Note that this is asymptotically optimal as no polytime algo-
rithm can approximate SCDS within c lnn for c < 1(Kann
1992; Li et al. 2009). To prove that the same inapproxima-
bility bound applies for ERC, we observe that for an instance
of ERC with c(e) = M for every edge e ∈ E the reachabil-
ity graph equals the original one (RG = G). Therefore given
an instance of SCDS, we can construct an instance of ERC
in polytime by augmenting the graph with the cost function
c : E → M for an arbitrary selected M ∈ R+. There is
a one-to-one correspondence between the set of loading sta-
tions L and the strongly dominating set D, with |L| = |D|.
Therefore any approximation guarantee for ERC is transfer-
able to SCDS, and hence ERC must be at least as hard to
approximate:

Theorem 5 ERC can be 3 lnn approximated in polynomial
time; there exists no polynomial time algorithm approximat-
ing ERC within c lnn for c < 1.

Hence, if the goal are algorithms with better approximation
guarantees (like a constant factor approximation or even an
approximation scheme), one has to take into account the spe-
cial structure of the underlying graph, e.g. (near) planarity,
or other graph properties like treewidth etc. (which is far
from obvious how to do it).

Getting Anywhere and Back
While ensuring EV-reachability might allow us to get any-
where we want, we might be stuck there forever if no reload-
ing facility is available at the destination. So what we re-
ally want is to get anywhere and back again – without get-
ting stuck. Hence for any source/target pair s, t ∈ V there
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must exist an ev-feasible roundtour s, · · · , t, · · · , s. This re-
quirement implies strong ev-connectivity between any pair
of nodes.

Definition 6 (EV-Connectivity Cover) Given a (di)graph
G(V,E, c) and M ∈ R+, we refer to the problem of con-
verting a subset L ⊆ V of minimal cardinality into loading
stations such that ∀v ∈ V : CL(v) = V as EV-Connectivity
Cover (ECC).

Again the problem can be rephrased (if L = ∅ is not a so-
lution), leading to the following alternative formulation: Se-
lect a minimum size subset L ⊆ V as loading stations such
that:

1. ∀v ∈ V ∃l, l′ ∈ L : p = l, · · · , v, · · · , l′ is ev-feasible

2. ∀l ∈ L : CL(l) ⊇ L.

The first condition assures that there exists a LS from which
the node v can be reached with a sufficient high final battery
load such that continuing to another (or the same) loading
station is possible for sure. The second condition is identical
to the ERC problem formulation.

Let us first define three related problems of the above: in
the weak ECC (wECC) problem, we only require condition
one (existence of l, l′). In the simple ECC (sECC) problem,
we insist on both conditions but additionally require for the
first condition l = l′. Note that sECC is a rather natural
problem variant, as nodes with differing l and l′ only seem
to be required in mountainous areas or very long one-way
streets. Also observe that sECC is equivalent to ECC if the
input graph is undirected. Finally, in the simple weak ECC
(swECC) problem, only the first condition has to be met with
l = l′.

Approximation Algorithms
Obviously any solution to ECC is also feasible for ERC.
Hence the necessary number of loading stations to solve the
ECC problem is lower bounded by the optimal ERC solution
for the same input. As we have seen a SCDS in the respec-
tive reachability graph solves ERC and in particular ensures
the second condition. The goal is now to augment this set
of loading stations to extend the ERC solution to an ECC
solution.

Lemma 7 Given an instance of (s)ECC. A solution for the
respective (s)wECC problem together with a solution for
SCDS in the respective reachability graph provides a fea-
sible solution for (s)ECC.

Proof. Let L′ be the solution for the (s)wECC problem, D
the SCDS in RG and L = L′ ∪ D their union. The first
condition is naturally fulfilled by L because of the nodes in
L′, hence it remains to show that L is strongly ev-connected.
Observe that any node l ∈ L′ is either contained in D or
has an in-neighbour d1 and an out-neighbour d2 in RG with
d1, d2 ∈ D. Therefore there exists an ev-feasible path to
and from any loading station in D, hence the nodes in L are
pairwise strongly ev-connected.

Assuming we can solve (s)wECC with an approximation
guarantee of α, we would obtain (3 lnn + α) approxima-
tion guarantee for (s)ECC (since SCDS as well as (s)wECC
lower bound (s)ECC).
We first consider swECC. Here the task is placing a mini-
mum number of loading stations such that their strongly ev-
connected node sets cover the whole network. This can be
solved via an instance of Set Cover (SC) which is known to
be approximable within lnn using a standard greedy algo-
rithm and inapproximable to anything better than c lnn for
c < 1 (Feige 1998):

Definition 8 (Set Cover) Given a universe of elements
U = {1, · · · , n} and a collection of subsets S =
{S1, · · · , Sk}, Si ⊆ U , select a minimum subset S′ ⊆ S
with

⋃
Si∈S′ Si = U .

For our application the universe is the set of nodes U = V
and the collection of subsets is defined as the strongly ev-
connected node sets of all nodes, i.e. Si = C(vi) for
i = 1, · · · , n. Therefore swECC can be solved with an ap-
proximation guarantee of lnn in polynomial time via the
standard greedy SC algorithm. Hence sECC can be solved
within a factor 4 lnn of the optimal solution in polynomial
time.
Again the question arises whether a better approximation
guarantee might be possible. We will prove that the bound
is asymptotically optimal by a solution preserving reduction
from DS (which cannot be approximated better than c · lnn
for c < 1 since it is just a variant of SC):
Given an instance G(V,E) of DS, we create an instance
of (s)ECC by choosing M ∈ R+ arbitrarily and setting
c(e) = M/3 for all e ∈ E.

Lemma 9 Every DS D ⊆ V in G(V,E) is a (s)ECC in
(G,V,E, c),M .

Proof. We show that setting L = D, we can guarantee a
battery load of b(v) ≥ 2M/3 for any v ∈ V when starting
at an arbitrary source node s ∈ V . Let p = s, · · · , w
be an arbitrary path in G and v ∈ V the first vertex in
p that is reached with a battery load of M/3. Because D
is a DS either v or one of its neighbours must be a LS.
Therefore visiting this LS and returning to v leads to battery
load of ≥ 2M/3. Hence the successor of v in p can again
be reached with a battery load ≥ M/3. Repeating the ar-
gument, CL(v) = V is obviously fulfilled for every v ∈ V .

Lemma 10 Every non-empty ECC L ⊆ V in
(G,V,E, c),M is a DS in G(V,E).

Proof. We first show that L is empty iff G is a complete
graph. If G is complete every energy-optimal roundtour
from u to v and back uses {u, v} ∈ E twice and there-
fore consumes energy equal to 2M/3, which is of course
ev-feasible. If G is not the complete graph there must
be nodes u,w which are not connected via a direct edge.
Hence the energy-optimal path from u to w and back must
visit at least one other node and therefore consumes in total
4M/3, which is not ev-feasible. Hence if G is incomplete
it follows L ≥ 1. Accordingly if L = ∅ setting D = {v}
for an arbitrary node v ∈ V solves DS in G(V,E). From
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now on assume G is incomplete. Furthermore assume
there exists a star (tree of depth 1) T rooted in v ∈ V and
containing all nodes adjacent to v but no LS. If V (T ) = V ,
i.e. the star contains all graph nodes, then there must exist
neighbours u1, u2 ∈ V of v which are not connected via
a direct edge (because G is incomplete). Therefore one
possible energy-optimal path from one node to the other
passes v and therefore the roundtour from u1 over u2 is
not ev-feasible which contradicts L being a ECC. Now let
V (T ) ⊂ V , therefore there exist w ∈ V \ V (T ), u ∈ V (T )
with {w, u} ∈ E. Accordingly when starting at w the
highest possible battery load in v is b(v) = M/3. Using
any edge {v, x} ∈ E to complete the roundtour back to
w we receive b(x) = 0 and hence the EV is stuck at x.
Hence v /∈ CL(w), contradiction to L is (s)ECC. So if
G is incomplete no induced star in G is free of loading
stations, therefore for any node v either v ∈ L or it ex-
ists u ∈ Lwith {v, u} ∈ E. ThereforeD = L is a DS inG.

Theorem 11 There exists no polytime algorithm that ap-
proximates (s)ECC within c lnn for c < 1.

Proof. According to Lemma 9 and 10 an optimal solution
for DS can be obtained by solving the respective instance of
(s)ECC. Therefore any polytime approximation algorithm
for (s)ECC solves DS with the same approximation guar-
antee. So the inapproximability bound for DS transfers to
(s)ECC.

Again, this result implies that without making use of the
special structure of the underlying road network, there is
little hope to efficiently achieve a provable approximation
guarantee better than O(log n).

For the wECC problem, things get even worse and the
proposed technique to achieve aO(log n) approximation for
swECC does not carry over since the choice of loading sta-
tions is mutually dependent. wECC is closely related to the
much harder Set Cover by Pairs (SCP) (Hassin and Segev
2005) problem.
Definition 12 (Set Cover by Pairs) Given a universe of el-
ements U = {u1, · · · , un}, a set of cover elements A and
for every {a, a′} ⊆ A a subset Sa,a′ ⊆ U , select a minimum
subset A′ ⊆ A such that

⋃
{a,a′}∈A′ Sa,a′ = U .

For wECC the universe of elements and the set of cover ob-
jects equal both the set of nodes, so U = A = V . For any
two nodes, the nodes that can be covered are the ones on
ev-feasible paths between them, i.e. Su,w = {v ∈ V |p =
u, · · · , v, · · · , w is ev-feasible} (hence Su,u = C(u)). The
selection of a subset of cover objects instead of a subcollec-
tion of sets allows to take care of the dependencies, so e.g.
choosing the nodes a, b, c automatically all of the nodes in
Sa,a, Sa,b, Sa,c, Sb,b, Sb,c and Sc,c are covered.
The best known SCP algorithm provides a O(

√
n log n) ap-

proximation for the general case, hence wECC and accord-
ing to Lemma 7 also ECC can be solved with the same
guarantee. Moreover SCP was proven to be inapproximable
within 2log

(1−ε) n for any ε > 0 under the assumptionNP *

M/2

M

M/2

M/4

3M/4

M/4

3M/4

3M/4

A1

A2

B1

B2

v0

v1,1

v1,2

v2,2

Figure 2: Derived ECC instance for a given instance of MR
with k = 3 and q = 2. Original edges are coloured green. A
possible solution for ECC is implied by the blue boxes. The
restriction to nodes inside the large black boxes provides the
respective solution for MR.

DTIME(nO(polylog(n))) by reduction from Min Rep (MR)
(Breslau et al. 2011).
Definition 13 (Min Rep (Kortsarz 2001)) Let G(A,B,E)
be a bipartite graph with A and B being partitioned into q
subsets of size k, i.e. A =

⊎
Ai, B =

⊎
Bi, i = 1, · · · , k

with |Ai| = |Bi| = k. The graph SG(A′, B′, E′) is called
the supergraph of G, with A′ and B′ containing a node for
each of the partitions of A or B, and E′ := {(Ai, Bj) ∈
A′ × B′|a ∈ A,b ∈ Bj , {a, b} ∈ E} being the set of su-
peredges. The goal is to select a minimum size W ⊆ V =
A ] B such that the subgraph of G induced by V ′ has the
same supergraph as G.
It was proven that the NP-hardness of MR remains the same
even if G is a collection of stars rooted in A. We will show
that MR with the star-property can be reduced to ECC such
that the inapproximability bound transfers. To that end we
create for a given MR instance an instance G(V ′, E′, c),M
of ECC as follows: First we prune all nodes with a degree
of zero. Then we direct all edges in E from A to B and
augment them with costs c(e) = M for some fixed chosen
M ∈ R+. Furthermore for every superedge (Ai, Bj) we
create a dummy node vij and augment the graph with edges
(b, vij) for b ∈ Bj , (a, b) ∈ E, a ∈ Ai. These edges receive
a cost of M/4. Moreover we insert edges with costs of M/2
between any two nodes in b that are adjacent to the same
dummy node. Finally we insert a further dummy node v0.
We connect v0 to A by adding all edges {v0, a} for a ∈ A
with costs M/2. Also we insert directed edges (vij , v0) for all
previously created dummy node with costs 3M/4; see Figure
2 for an example.
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Lemma 14 Every solution W for MR augmented with v0 is
an ECC.

Proof. We first show that L = W ∪ v0 is a wECC, i.e. for
all nodes exists an ev-feasible path between two LSs in
L that visits this node. For all a ∈ A this is trivially true
because a ∈ C(v0). For all dummy nodes vij at least one
of the adjacent nodes b ∈ B must be in L, otherwise W
would not realize the superedge (Ai, Bj), hence b, vij , v0 is
ev-feasible. Also it follows that for all b ∈ B either b ∈ L or
e = {b, b′} ∈ E′ with c(e) = M/2 and b′ ∈ L. It remains to
show that L is strongly ev-connected. To that end observe
that for any superedge realization ai, bj ∈ W the roundtour
v0, a, b, vij , v0 is ev-feasible.

Lemma 15 For every ECC L the set L∩V is a MR solution.

Proof. We have to prove that inW = L∩V every superedge
is realized. Assume for contradiction that (Ai, Bj) is not
covered by W . Observe that any path from v0 to vij has
to traverse one of the candidate edges (ai, bj) (because
of the star property). If ai /∈ L the node bj can not be
reached via this edge, because the summed costs would
exceed M . If ai ∈ L but bj /∈ L the battery load at bj
equals 0, therefore the EV would be stuck there. Hence if
no candidate edge is realized it yields vij /∈ R(v0), C(v0),
which contradicts L being an ECC. Moreover we observe
that v0 always has to be part of L because all paths from
some vij to A have to pass this node and the costs would
otherwise be 5M/4. Finally if L is an optimal solution it
follows |W | = |L| − 1 because any LS placed at some
dummy node vij is superfluous as there exists an ev-feasible
roundtour bj , vij , v0, ai, bj in any case.

Theorem 16 If NP * DTIME(nO(polylog(n))), no poly-
time algorithm can be guaranteed to solve ECC within a
factor of 2(0.5log(n))

1−ε−1.

Proof. From Lemma 14 and 15 we obtain for a given
(approximate) solution L′ of the ECC instance an (approxi-
mate) solution W ′ for MR with |W ′| ≤ |L′| − 1. Moreover
for an optimal solution L equality holds, i.e. |W | = |L| − 1.
Therefore any α approximation for ECC leads to a solution
W ′ for MR with |W ′| ≤ (α + 1)|W | + α ≤ (2α + 1)|W |.
Assume there would exist a polytime algorithm with ap-
proximation factor α < 2(0.5log(n))

1−ε−1 for ECC. Because
the number of nodes for the ECC instance is bounded by
2kq+ k2+1 ≤ 2(kq)2 this would result in a 2α < 2log

1−εn

approximation for MR, which would contradict the known
inapproxmability bound.

In particular the results for ECC are rather discouraging.
Unless one can make use of the special properties of the road
network things seem pretty hopeless. In the following we
will see, that real-world instances do not exhibit this hard-
ness, and results with quality guarantees can be obtained ef-
ficiently – they can only be given on a per instance basis and
not a priori, though.

Heuristics and Instance Based Approximation
Guarantees

Not only do the inapproximability results for ERC and ECC
seem rather discouraging for solving these problems in prac-
tice, but the described approximation algorithms also require
the knowledge of R(v)/R−1(v)/C(v) for all v ∈ V . Nor-
mally these sets are not given explicitly but have to be com-
puted on the basis of G(V,E, c) and M . For large cruis-
ing ranges this task is comparable to solving the all pair
shortest path problem, moreover it would require almost
quadratic space to store the resulting sets. Therefore we aim
for heuristics that need only a (small) subcollection of these
sets.

Figure 3: wERC solution (red) along with a PEC (black)
providing a lower bound, and the two overlayed MSTs (blue
edges) which are the basis for lifting the wERC to an ERC.

To solve ERC/ECC we proceed in two phases: In the
first phase we create a weak ERC/ECC L′ which is aug-
mented in the second phase to a strongly ev-connected su-
perset L ⊇ L′. For the first phase we propose two strategies:
Restricted Random (RR) and k-Greedy (kG). RR selects in
each round a vertex v u.a.r and adds it to the solution. Then
the search space is reduced by all the nodes for which the
weak cover condition is already fulfilled. kG always main-
tains a set of k candidates for the next LS, preferring the one
which increases the number of nodes satisfying the first con-
dition most. Then the list is refilled by selecting an arbitrary
node which is not already weakly covered.
If the resulting set L′ is not already strongly ev-connected
(which can easily be checked in RG), we compute the most
energy-efficient path between each pair of LSs in L′. Then
we build a complete digraph on L′ with edge costs equal to
the costs of the respective energy-optimal paths. On that
basis we select an arbitrary LS s ∈ L′ and compute the
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minimum spanning tree (MST) rooted in s in this auxiliary
graph and the respective MST in the reversed auxiliary graph
(compare (Li et al. 2009)). For all edges contained in one
of the trees we make the respective energy-optimal path be-
tween the LSs feasible by placing additional LSs as required.
Obviously the resulting set of LSs is strongly ev-connected.
In Figure 3, we provide an illustration of our approach on
a small example graph. The MSTs in the image, which are
based on the energy metric, connect sometimes LSs directly
which seem to be very far apart. Note, that this is the result
of some close nodes being only reachable via steep climbs
and therefore being not close in terms of energy costs (the
artificially small cruising range chosen for visualisation pur-
poses amplifies this effect).

As heuristics like the ones suggested above cannot guar-
antee to find a good solution a priori, we will provide in-
stance based lower bounds which can be used to prove the
quality of the retrieved solution. These bounds are based on
solving the Partial EV-Cover (PEC) problem.
Definition 17 (Partial EV-Cover) Given a (di)graph
G(V,E, c) and a maximal battery load M , convert a
minimum subset L ⊆ V into loading stations such that
∀v ∈ V ∃l ∈ L : v ∈ R(l).
Observe that any solution of ERC or ECC would also be a
(non optimal) solution for PEC on the same input. Hence
an optimal solution for PEC would be a valid lower bound
for the optimal solution of ERC/ECC. But to solve PEC ex-
actly we must again have knowledge about every R(v) or
R−1(v) respectively. Luckily we can find a lower bound
for the optimal solution of PEC which requires less com-
putational effort: We call two vertices v, v′ ∈ V distinct,
if @w ∈ V : v, v′ ∈ R(w). Observe that this is equal to
demand that R−1(v) ∩ R−1(v′) = ∅, therefore this prop-
erty can be checked efficiently. Note that any set of distinct
vertices provides a lower bound for the solution of PEC. A
maximal set of distinct nodes can be retrieved easily by se-
lecting repeatedly vertices v ∈ V and checking whether they
are distinct wrt to the previously selected ones; if this is the
case they are added to the solution, otherwise they get ex-
cluded from the search space.
We implemented the proposed heuristics and the lower
bound algorithm in C++ and evaluated them on the street
graph of Germany (GER, based on OpenStreetMap1) with
n = 15.015.877,m = 30.771.648 for varying EV cruising
ranges. The edge costs were chosen as proposed in (Eis-
ner, Funke, and Storandt 2011) as a linear combination of
euclidean distance and the difference of the incident node’s
elevations (retrieved from SRTM2). The results of our exper-
iments can be found in Table 1. We observed, that using RR
or kG with k = 10.000 did not produce a very different out-
put for (w)ERC (hence we reported the results of only one
strategy for each problem type). But we could save about
10% of the LSs using kG instead of RR for (w)ECC (but
paying with a twenty times longer runtime, namely about
9h30min instead of 30 min). Because of this redundancy
and due to space restrictions, we did not put all the numbers

1http://www.openstreetmap.org
2http://www2.jpl.nasa.gov/srtm

ACR lower wERC ERC wECC ECC
bound RR +MST kG + MST

75 km 105 194 + 145 808 + 4
100 km 49 96 + 51 372 + 7
125 km 37 61 + 42 255 + 13
150 km 22 39 + 22 170 + 17
175 km 14 26 + 20 118 + 20

Table 1: Experimental results for the GER graph. ACR
denotes the average cruising range of the EV. Values are
the maximum (lower bound) or minimum of three runs.
kGreedy (kG) was performed with k = 10.000.

in the table, but report only the explicit results for solving
ERC with RR and ECC with kG. The ratio of obtained so-
lution and lower bound ranges from 2.7 to 3.3 for ERC and
from 7.2 to 9.8 for ECC. Noticing that the lower bound does
not take connectivity of LSs into account, our resulting sets
seem to be very close to the optimal one in size.

Conclusions
In this paper we investigated the problem of placing as few
loading stations as possible for electric vehicles to achieve
mobility goals like reachability or connectivity. Unfortu-
nately, it turned out that if the special structure of the road
network is not made use of, the respective optimization
problems are all very hard to approximate. In particular,
even for the easier goal of establishing reachability only, it
is not possible to come up with a polynomial-time constant
approximation algorithm. On the positive side, we devised
simple heuristic algorithms which do not provide any priori
approximation guarantee. Still, using instance-based lower
bounds we could prove their results to be close-to-optimal
for our real-world problem instances derived from the road
network of Germany.
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