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Abstract

Broad-scale spatiotemporal processes in conservation
and sustainability science, such as continent-wide ani-
mal movement, occur across a range of spatial and tem-
poral scales. Understanding these processes at multiple
scales is crucial for developing and coordinating con-
servation strategies across national boundaries. In this
paper we propose a general class of models we call
AdaSTEM, for Adaptive Spatio-Temporal Exploratory
Models, that are able to exploit variation in the den-
sity of observations while adapting to multiple scales in
space and time. We show that this framework is able
to efficiently discover multiscale structure when it is
present, while retaining predictive performance when
absent. We provide an empirical comparison and analy-
sis, offer theoretical insights from the ensemble loss de-
composition, and deploy AdaSTEM to estimate the spa-
tiotemporal distribution of Barn Swallow (Hirundo rus-
tica) across the Western Hemisphere using massively
crowdsourced eBird data.

Introduction
Many environmental and ecological signals arise as the com-
bined effects of simultaneous processes operating across a
range of spatiotemporal scales. In his MacArthur Award
Lecture, Levin (1992) stated that: “ ... there is no single nat-
ural scale at which ecological phenomena should be stud-
ied... systems generally show characteristic variability on a
range of spatial, temporal and organizational scales”. We
attempt to automatically discover multiple scales by propos-
ing flexible exploratory models based on adaptive spatiotem-
poral partitioning using tree data structures. Understanding
patterns across different scales is crucial for sustainability,
conservation management and decision making under un-
certainty as it allows us to appropriately inform policy at
different levels of granularity.

The motivation for this work is to estimate the daily dis-
tribution of long-distance migrant birds across the West-
ern Hemisphere with the finest spatial resolution possible
to date, Fig. 1. Understanding distributional patterns in fine
detail across broad extents is a key concern for biodiver-
sity studies. Ecologists and land managers need to know
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how local-scale patterns of habitat usage vary throughout a
species’ range to identify critical habitat requirements.

Consider how birds migrating across the Western Hemi-
sphere are affected by processes operating at different scales.
At very large spatial and temporal scales, climatic events like
the El Niño and The North Atlantic Oscillation (Grosbois
et al. 2008) determine when birds begin migrations and the
routes they take. During the breeding season, the location
of good foraging habitat and nest sites determine bird occur-
rence at the same location at much smaller scales (Fortin and
Dale 2005). The notion of scale is formalized here as the ef-
fective spatiotemporal range φs, the distance from location1

s at which the correlation becomes negligibly small (Baner-
jee, Carlin, and Gelfand 2004). Thus, what is observed at
s may be simultaneously affected by processes operating at
different ranges, e.g. φmigration

s � φforagings .
In addition, the scale of the observation process must also

be considered because it determines the smallest scale at
which empirical quantities may be estimated. Broad-scale
observational data are often irregularly and sparsely dis-
tributed. For example, by allowing participants to select the
locations where data are collected, the distribution of crowd-
sourced data tend to follow patterns of human activity, Fig.
2a. In general, as the range of the signal φs decreases the
minimum data density ρs necessary to estimate it increases.
In the limit lim

φs→0
ρs =∞.

Modeling spatial correlation has been an active research
area in statistics and machine learning for the past two
decades (Cressie 1993; Rasmussen and Williams 2006).
Methodologies such as kriging (Cressie 1986), Gaussian
processes (Paciorek and Schervish 2004), Gaussian Markov
random fields (Rue and Held 2005), splines (Pintore, Speck-
man, and Holmes 2006; Kammann and Wand 2003), and
autoregressive models (Huang, Cressie, and Gabrosek 2002;
Tzeng, Huang, and Cressie 2005) have been proposed to
estimate and account for spatial correlation in stationary
settings. More recently, research has focused on account-
ing for nonstationary spatial correlation. Non-stationary co-
variance functions have been proposed for GPs and kriging
models (Stein 2005; Paciorek and Schervish 2004; Jun and
Stein 2008; Pintore and Holmes 2004), and spline methods
have been developed with spatially varying penalties (Pin-

1A location s may be spatial, temporal, or spatiotemporal.
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Figure 1: AdaSTEM distribution estimates (Color bar: relative probability of occurrence Ps) for Barn Swallow during the
breeding season (June 14, Left), fall migration (October 6, Center), and the winter distribution (December 31, Right). The
transitions between the three dates highlights how AdaSTEM captured the southward movement of the population.

tore, Speckman, and Holmes 2006; Crainiceanu et al. 2007).
However, the computational complexity of many of these
models is high, e.g. GP’s and kriging have a dominating
term O(N3), where N is the number of observations or lo-
cations. Thus, many of these methods can be computation-
ally prohibitive for Big Data (Cressie and Johannesson 2008;
Gelfand 2012) and crowdsourcing settings where the num-
ber of observations and locations is in the millions.

In this paper we present a general class of mod-
els designed to discover scale-dependent, non-stationary
predictor-response relationships from large numbers of ob-
servations with irregular and sparse spatiotemporal density.
It is a highly automated ensemble model with a ’pleasingly
parallel’ implementation. The large-scale experiments were
conducted on the Lonestar cluster through an allocation on
XSEDE (www.xsede.org). Our contributions are:

• An adaptive modeling framework designed to capture
multiscale signal from crowdsourcing data.

• Theoretical and empirical analysis of AdaSTEM.

• The first hemisphere-wide population-level spatiotempo-
ral estimate of a long-distance migration Fig. 1.

We start by describing the fixed-scale framework STEM
and then the adaptive extension that yields AdaSTEM.

STEM: Spatio-Temporal Exploratory Models
STEM (Fink et al. 2010) is a mixture model designed to
adapt to non-stationary, scale dependent processes. This is
achieved by creating a dense mixture of local regression
models with compact overlapping support. A user-specified
regression model, the base model, accounts for variation as
a function of predictor values within its support set, which
we call a stixel for spatiotemporal pixel. Because the stix-
els are compact sets the regression model can adapt to local
predictor-response associations while limiting long-range
extrapolation. Utilizing the fact that stixels overlap, predic-
tions at a specified location, s, are made by taking an aver-

age across all base models whose stixels include that loca-
tion, see Fig. 2b. This combines the bias-reducing properties
of local models (e.g. decision trees, (Breiman et al. 1984))
with the variance-reducing properties of randomized ensem-
bles (e.g. bagging, (Breiman 1996)).

The Mixture Model
Let {yn(s),xn(s)}Nn=1 be the set of observed responses and
predictors xi(s) = [xi,1(s), · · · , xi,d(s)] indexed by space-
time coordinates s ∈ Rk within the study area D ⊂ Rk.
Formally y(s) is modeled as an ensemble response:

ŷe(s) =
M∑
m=1

αm(s)fm (x(s), Dm, s) (1)

with M base models fm, estimated as ŷm(s) =
fm (x(s), Dm, s), each defined on its own stixel Dm ⊂ D
with mixture weights αm(s).

The approach described here is based on ensemble mod-
eling (Kuncheva and Whitaker 2003; Hastie, Tibshirani, and
Friedman 2009) with a focus on prediction for large data
sets. To this end we treat the estimation of the base mod-
els independently. The estimated ensemble response ŷe(s) is
computed as the weighted average taken across base models
with shared support, Fig. 2b. For simplicity, all supporting
base models are weighed equally. The mixture weights at
coordinates s are αm(s) = n−1(s)I(s ∈ Dm)

where I(s ∈ Dm) =

{
1 if s ∈ Dm

0 if s 6∈ Dm
. (2)

The ensemble support n(s) is the number of base models
that support coordinate s: n(s) =

∑M
m=1 I(s∈Dm). Note

that am(s) ≥ 0 ∀m, s ∈ D and
∑M
m=1 am(s) = 1 ∀ s ∈ D.

STEM can be considered as a spatiotemporal wrapper for
any base model. Each base model fm is independently fit
within its stixel Dm from Nm, the number of observations
falling within Dm. In this paper we consider linear models
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fit via least squares for the synthetic experiments, and logis-
tic Generalized Additive Models (GAM) (Wood 2006) for
the binary classification of eBird.
STEM uses a simple ensemble design with fixed size stix-

els. First, the study extent D is partitioned into a regular set
of Mp square stixels Dm with sides of length λ. Secondly,
P such partitions are sampled, by randomizing the position
of each left corner πp, to form an ensemble of overlapping
stixels. We require thatNm meet a minimum sample size, γ,
for the given class of base models. Stixels where Nm < γ
are omitted from the ensemble. Thus, every location s has
max(n(s)) = P . The algorithm is given in Alg. 1.

Algorithm 1 STEM
1: Set λ by cross-validation
2: for p = 1 to P do
3: Randomize partition corner πp ∼ U(0, λ)
4: Partition D into Mp stixels each with length λ
5: for m = 1 to Mp do
6: if Nm ≥ γ then
7: Fit base model fm in Dm, get estimator ŷm
8: ŷe(s) =

∑M
m=1 am(s)ŷm(s) (Eq. 1)

Ensemble Theory
The size and configuration of the stixels {Dm}Mm=1 are
important parameters that delineate the neighborhoods
where predictor-response relationships are constant and
where they may vary. Because the stixels are compact
sets, the size of Dm affects the range of spatiotemporal
correlation φs both within and between base models.
Theoretical results on ensemble models furnish general
guidelines on how to construct Dm to improve predictive
performance. We extend the decomposition of the squared
error loss (Ueda and Nakano 1996) to the STEM ensemble.
Given the ensemble response ŷe(s) at s, we express Eq.
1 as ŷe(s) = n(s)−1

∑
{m|s∈Dm|} ŷm(s). Intuitively,

{m|s ∈ Dm} defines the modeling neighborhood of s

as every model m whose stixel Dm contains s. Dropping
dependence on s, we decompose the loss as:

E
{
(ŷe − y)

T

((ŷe − y)
}
=

(E{ŷe}−y)
T

(E{ŷe}−y) + E
{
(ŷe−E{ŷe})

T

(ŷe−E{ŷe})
}

= n−2
∑

{m|s∈Dm|}

∑
{m′|s∈Dm′}

(E {ŷm} − y)
T

(E {ŷm′} − y)

︸ ︷︷ ︸
BiasTBias

+ n−2
∑

{m|s∈Dm|}

E
{
(ŷm − E{ŷm})

T

(ŷm − E{ŷm})
}

︸ ︷︷ ︸
Variance

+
1

n(n−1)
∑

{m|s∈Dm|}

∑
{m′ 6=m|s∈Dm′}

E
{
(ŷm−E{ŷm})

T

(ŷm′−E{ŷm′})
}

︸ ︷︷ ︸
Covariance

(3)

This is the Bias-Variance-Covariance decomposition of the
STEM framework.

Adaptive Multiscale Modeling with AdaSTEM
As we have seen, λ controls the size of the stixels and in-
directly the minimum range of spatial correlation that can
be modeled, φ̂s. In STEM λ is a fixed, universal parame-
ter that is estimated via cross-validation in order to indicate
the scale of analysis best supported by data. Inspired by the
spatiotemporal BVC decomposition, AdaSTEM proposes an
adaptive scheme based on tree-data structures (Samet 2006),
where λ(s)AdaSTEM = f(ρ(s)) and f is an isotonically de-
creasing function of the data density ρ at locality s. In Fig.
2b two resulting partitions from a Quadtree are depicted
where the leaf nodes define the corresponding stixels and
their density-driven lengths λ(s). Fig 2c shows the Quadtree
stixel length averaged across all partitions and follows the
pattern of data density.

(a) eBird Data Locations (b) Quadtree-generated stixels (c) Average stixel length λ(s)AdaSTEM

Figure 2: Left: (2a) Shows the varying density of observations. (2b) Shows two realizations of QuadTree partions, red and blue.
(2c) Shows how the average QuadTree stixel length (in degrees) follows data density.
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Letting the stixel size λ vary with data density ρ allows
the mixture to better exploit unevenly distributed data in
the presence of multiscale signal. Hence, when λ is small
in densely sampled extents, the base models can adapt to
fine-scale signals producing low bias estimators (term #1
in Eq. 3). The variance (term #2 in Eq. 3) is controlled
by the ensemble averaging (Breiman 1996) and lower co-
variance between the base models in {m|s ∈ Dm} is en-
couraged by bootstrapping the data and randomizing the an-
gle θp ∼ U(0, 360] and center cp ∼ U(D) of each tree
partition p. Given a base model complexity of f(Nm) and
Quadtree complexity O(N log4 T ), where T is number of
nodes, then the complexity for AdaSTEM isO(PN log4 T+
PMpf(Nm)) where P andMp are the numbers of partitions
and stixels. The algorithm is given in Alg. 2.

Algorithm 2 AdaSTEM
1: for p = 1 to P do
2: Sample Quadtree center cp and angle θp
3: Quadtree on D, get Mp stixels with lengths λmp

4: for m = 1 to Mp do
5: if Nm ≥ γ then
6: Fit base model fm in Dm, get estimator ŷm
7: ŷe(s) =

∑M
m=1 am(s)ŷm(s) (Eq. 1)

Empirical Analysis
An empirical analysis of STEM and AdaSTEM on synthetic
data illustrates how the quantities φs, ρs, φ̂s interact to affect
predictive performance when the scale of the target function
and the observation density varies. For convenience we con-
struct two dimensional spatial regression examples. For this
experiment the models are a spatial mixture of linear regres-
sion base models. The base model for them-th stixel,Dm is:

zi = fm(x, y) = βm + βx,mxi + βy,myi + εi (4)

with independent Gaussian errors εi ∼ N(0, σ2
m). The pa-

rameters of fm(x, y) are fit by least squares to the obser-
vations (zi, xi, yi) falling within the m-th stixel; (xi, yi) ∈
Dm, and i = 1, . . . , Nm. Stixels where Nm < 10 were
omitted from the mixture and P = 75. The extent under
study is D = [0, 2]2. We perform 100 realizations and set
λSTEM = 0.5 and we let λAdaSTEM vary with a maximum
stixel sample size of S = 38. We examine four cases:

• Case A. Single-scale φs with ρs ∼ U . [Fig. 4: L(a).]
• Case B. Single-scale φs with ρs 6∼ U . [Fig. 4: L(b).]
• Case C. Multiscale φs with ρs ∼ U . [Fig. 4:R(a).]
• Case D. Multiscale φs with ρs 6∼ U . [Fig. 4:R(b).]

Case A: The target function in the single-scale case, see Fig.
4:L, is a surface of undulating, radially symmetric rings with
relatively constant curvature across the region being studied.
Let z be the height of the surface at a location (x, y) speci-
fied by the function:

z = f(x, y) =
sin
(
1.875π

√
x2 + y2

)
cos
(
0.375

√
x2 + y2

) (5)

The set of observations N = 300 used to train the model zi
are i.i.d. and uniformly distributed {xi, yi}Ni=1 ∼ U(0, 2).
Observations are made with independent Gaussian errors,
zi = f(xi, yi) + εi where εi ∼ N (0, σ2 = 0.25), achieving
an SNR ≈ 1.70.

Figure 3: A Bias-Variance trade-off: RMSE vs. S

We evaluate AdaSTEM RMSE as a function of S with
values varying from 20 to 70 for each of the realizations.
Then a GAM was fit (dark black line) as a smooth function
of S, with 95% confidence bounds (dashed) in Fig. 3. We
see that Ŝ = 38 minimizes the GAM estimate of RMSE.
Stixel lengths λ smaller or bigger than Ŝ tend to under or
over-smooth the surface, respectively. For this case there is
a range of λwhere φ̂s matches φs the true scale of the signal.

Comparing AdaSTEM and STEM we find that there is no
significant difference in RMSE from a paired t-test (p-value
= 1) when the stixels have the same expected size (Fig. 5).
Case B: This case has non-uniform observations with
single-scale signal. We add a higher density set of observa-
tions in the center of the extent as xi, yi ∼ U(0.625, 1.375)
to the uniform data for a total of N ≈ 700, see Fig. 4:R.

The paired t-test shows a small (0.0038) but significant
difference in RMSE between AdaSTEM and STEM, (p-value
= 0.004). However, the size of the average difference is very
small compared to the amount of variation across replicates,
sd=0.0280. In Fig. 5 the range of RMSE values for case B
are comparable to those in case A. This demonstrates the
ability of the ensemble averaging to control the increased
variation as AdaSTEM adapts to high density observations.
Case C: The multiscale target function, see Fig. 4:R, is
created by adding fine-scale signal to Eq. 5. The fine-
scale signal is similar to the broad-scale one in that it
too is a smoothly varying, radially symmetric function,
but restricted to the center of D. Let r =

√
((x −

1)2 + (y − 1)2) then the high density signal is fh(r) =
1.5 exp(100r3) sin(12.5r/π)/ cos(2.5r). The fine scale sig-
nal has an SNR ≈ 1.65 over [0.75, 1.25]2.
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(a) ρ ∼ U

Left Panel (L)

Target Data AdaSTEM STEM

Right Panel (R)

Target Data AdaSTEM STEM

(b) ρ 6∼ U

Figure 4: AdaSTEM vs STEM for uniform or non-uniform density of observations and single- or multi-scale signal. Left Panel
(L): In the presence of single-scale signal (φs constant throughout the extent) both models perform comparably for both uniform
(row (a)) and non-uniform (row (b)) data density. Right Panel (R): In the presence of multiscale signal AdaSTEM clearly
outperforms STEM when the density of observations is sufficient (row (b)) to contain the small-scale correlation.

In this case, there is too little data to reveal the fine-scale
signal of the target function. This results in higher overall
RMSE for both models. The paired t-test found no statistical
difference between the models (p-value = 0.996).
Case D: In contrast to above there is now sufficient den-
sity for AdaSTEM to detect fine-scale signal. This results in
lower RMSE values in general and the RMSE for AdaSTEM
is significantly less than that for STEM (p-value < 2.2e-16).
Note that many problems fall into this category including
many species distribution analyses.

Figure 5: RMSE results on all cases. AdaSTEM outperforms
STEM when multiscale structure exists (Case D).

eBird
The ecological goal of this analysis is to estimate the daily
distribution of Barn Swallow across the Western Hemi-
sphere, excluding Greenland, throughout its annual cy-
cle. We compare the predictive performance of STEM and
AdaSTEM estimating these distributions with eBird data
http://www.ebird.org/.

The bird observation data comes from the citizen sci-
ence project, eBird (Sullivan et al. 2009). eBird is a broad-
scale bird monitoring project that collects observations made
throughout the year. Participants follow a checklist protocol,
in which time, location, search effort, and counts of birds are

all reported in a standardized manner. We chose the Barn
Swallow for two reasons: 1) it is an easily identified, con-
spicuous bird commonly seen by birders, and, 2) it has a
well known long-distance migration that stretches over most
of the Western Hemisphere.

Presence-absence data from complete checklists collected
with effort data from January 1, 1900 to December 31, 2011
within the Western Hemisphere were used in this analysis.
The data set, Fig. 2a, consists of approximately 2.5M check-
lists made across 385K unique locations. All models were
trained with 2.25M checklists made across 360K unique lo-
cations, with the remaining for validation. The observations
are most densely distributed in the U.S. where eBird orig-
inated, and are sparser in Central and South America. At
smaller spatial scales, the data density can be seen to corre-
late with human population patterns.

The spatiotemporal distribution of Barn Swallow is mod-
eled as a spatial mixture of local temporal trajectories. We
estimate the trajectory within each stixel using a binary re-
sponse GAM. The binary response Yi indicates the pres-
ence or absence of the bird recorded for the i-th search. The
logit of the probability of occurrence Pi varies as an addi-
tive function of the day of the year and several other factors
describing the effort spent searching for birds. Formally, the
i-th search results are Bernoulli distributed Yi ∼ Bern(pi)

where logit(Pi) = β0 + f(dayi) +
∑4
j=1 βjEi,j . Seasonal

variation is captured by the smooth function f of the day
of the year covariate dayi and fit with penalized splines. To
account for variation in detection rates we include effort co-
variates for the amount of time spent on a search E1,i, the
distance traveled while searching E2,i , and the number of
observers in the search party E3,i. The time of the day E4,i

is used to account for diurnal variation in behavior, such as
participation in the dawn chorus (Diefenbach et al. 2007),
that make species more or less conspicuous. The minimum
sample size per base model is γ = 500 and P = 75.

Because the objective of this analysis is to study the full
species’ distribution, we measured the coverage of each
model as the proportion of locations within the Western
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Hemisphere landmass, excluding Greenland, that have at
least half the possible ensemble support. Coverage was com-
puted using approximately 3000 locations sampled from a
geographically Stratified Random Design (SRD).

Predictive Performance Comparison
The predictive performance of STEM and AdaSTEM were
compared for five model coverage levels ranging between 70
and 99%. To assess the quality of the distribution more uni-
formly across the study area, the test data were subsampled
across a grid of one degree cells, with a maximum of 10 ob-
servations per cell (Fink et al. 2010). Because of the strong
seasonal variation between distributions computed predic-
tive performance metrics were computed independently for
each month. AUC and RMSE were used to measure the abil-
ity of the model to estimate the expected occurrence rates.
Accuracy and the Kappa statistic were calculated to measure
the ability of the model to estimate the binary outcome.
AdaSTEM outperforms STEM in terms of AUC, RMSE,

Accuracy, and Kappa for all coverage levels tested, Fig. 6.
Qualitatively, these results are the same across all 12 months
although the greatest differences in performance between
STEM and AdaSTEM are achieved during the breeding sea-
son when the Barn Swallow population is in North America
and observation density is the greatest. Because stixel size
decreases with coverage, bias will tend to decrease and vari-
ance will tend to increase. Performance in Fig. 6 improves
monotonically as coverage decreases, indicating that reduc-
ing bias is more significant at these coverage levels, and also
that we control for variance through the ensemble averaging.

Fall Migration Estimates
To develop range-wide estimates of the Barn Swallow dis-
tribution we selected the smallest stixel size necessary to
achieve 90% coverage for AdaSTEM. Then we used this
model to estimate one daily distribution surface per week for
52 weeks of the year. The surface is the probability of occur-
rence on the given day estimated at the SRD locations. All
effort predictors were held constant to remove variation in
detectability. To control for seasonal variation in detectabil-
ity when comparing distributions on different days of the
year we standardize the predicted probability of occurrence
for each day, Fig. 1. The precise quantity estimated is Ps the
relative probability that a typical eBird participant will de-
tect the species on a search from 7-8AM while traveling 1
km on the given day at s.

The northern limit of Barn Swallow’s breeding dis-
tribution extends from Alaska southeast into the Mar-
itime Provinces of Canada (Brown and Brown 1999). The
AdaSTEM estimate provides a good large-scale estimate of
the known northern distribution, Fig 1, Left. Looking south,
the estimate closely matches the documented range of the
species into the conterminous United States and Northern
Mexico, where data density is high. Notably, Barn Swal-
lows are known to be absence from the Sierra Nevada, the
southwestern portion of California and Arizona, and Florida
(AOU 1998). The estimate of the winter distribution also
matches known patterns of occurrence. The winter popula-
tion extends from central Mexico, throughout Central Amer-

ica, in the West Indies mostly in the eastern Lesser Antilles
(Bond 1980), and into South America with lower proba-
bilities in eastern Brazil and the southern portion of South
America (Ridgely and Guy 1989).

Figure 6: Predictive performance as a function of model cov-
erage for the month of July. AdaSTEM values are shown as
blue, solid line and STEM are shown as the red dashed line.

Discussion
We have introduced a spatiotemporal modeling framework
based on tree data structures, called AdaSTEM, and demon-
strated that is capable of adapting to multiscale signal when
there is sufficient data density. Our empirical results sug-
gest that this scheme of density-based adaptation is benefi-
cial for model performance and can be explained with argu-
ments based on the BVC decomposition. Thus, AdaSTEM
will also be applicable in other domains where data are irreg-
ularly and sparsely distributed, such as applications based on
geographic survey and geolocated crowdsourced data. We
are currently considering additional adaptation criteria such
as base model error residuals.

Until recently, most monitoring and biodiversity collec-
tion programs have been national in scope, hindering the
ecological study and conservation planning of species with
broad distributions. Here we use AdaSTEM to produce
the first hemisphere-wide population-level distribution es-
timates of a long-distance migration using 2.25M eBird
checklists. The ability to produce comprehensive year-round
distribution estimates that span national borders will make it
possible to better understand the ecology of these species,
assess their vulnerability under climate change, and coordi-
nate conservation activities.
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