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Abstract
Human driven systems present a unique optimization chal-
lenge for robot control. Generally, operators of these sys-
tems behave rationally given environmental factors and de-
sired goals. However, information available to subsystem
controllers is often incomplete, and the operator becomes
more difficult to model without this input information. In this
work we present a data-driven, nonparametric model to cap-
ture both expectation and uncertainty of the upcoming duty
for a subsystem controller. This model is a modified k-nearest
neighbor regressor used to generate weighted samples from
a distribution of upcoming duty, which are then exploited to
generate an optimal control. We test the model on a simulated
heterogeneous energy pack manager in an Electric Vehicle
operated by a human driver. For this domain, upcoming load
on the energy pack strongly affects the optimal use and charg-
ing strategy of the pack. Given incomplete information, there
is a natural uncertainty in upcoming duty due to traffic, desti-
nation, signage, and other factors. We test against a dataset of
real driving data gathered from volunteers, and compare the
results other models and the optimal upper bound.

Introduction
In this paper we propose a model predictive controller under
uncertainty for subsystems in a human driven system. This
applies to a special class of systems where operator controls
have a significant effect on the inputs to the subsystems, and
upcoming inputs have a significant impact on current deci-
sions. Such systems include heterogeneous battery electric
vehicles, hybrid electric vehicles, laptops, cell phones, and
smart buildings, where smart energy management is highly
dependent on operator usage. It is important that the hu-
man operator exhibits patterned behavior and generally acts
as a rational agent, so predictions can be made at all. Hu-
man factors studies by Kleinman and Baron have shown that
human operators follow an internal optimal control strategy
in response to some inputs and goals (Kleinman and Baron
1970). This suggests that learning a model of a human oper-
ator is possible given access to some of the information that
they react to. In these listed systems, operator actions heav-
ily impact the duty on the battery or energy source which is
managed by a subsystem controller. Despite the natural dif-
ficulty of modeling human behavior, work by Pentland and
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Liu has shown successful prediction of lane changes (Pent-
land and Liu 1999), and work by Prokop has shown success-
ful trajectory estimation given limited inputs (Prokop 2001).
A rule-based environment with limited inputs and outputs
facilitates prediction of driver behavior.

Model predictive control (MPC) uses a system model to
generate an optimal control sequence for some lookahead
in time. When the environment is controlled, or is very pre-
dictable, MPC can perform very well given a suitable model.
A prediction of duty, or load, is necessary to model how our
subsystem will react to various control sequences. A more
accurate prediction generally yields better control results, as
the effective model for MPC was closer to reality. Our pre-
diction approach uses a data-driven model, or predictor, with
no semantic knowledge of the external system nor human
operator. This approach has the benefit of being dynamic
over time, but it has the downside of requiring good histor-
ical data coverage to yield accurate predictions. Work by
Aggelogiannaki and Sarimveis, using radial basis function
neural nets, has demonstrated data-driven MPC yields good
performance in complex chemical systems (Aggelogiannaki
and Sarimveis 2008). With enough data, the learned model
is a powerful tool for control.

Human operated systems have a natural uncertainty due
to incomplete information. While the operator is likely a ra-
tional agent, choosing optimal actions for some internal cost
function, the information measured and given to the model
is incomplete. For example, in a vehicle driving domain, the
model might not know the driver’s ultimate destination. A
fork in the road, where the driver has historically gone ei-
ther direction, cannot be predicted without this information.
Forming an accurate deterministic model is impossible when
information is incomplete. If multiple, divergent predictions
are likely, using a mean or mode prediction gives insufficient
information and can yield poor results. Therefore, it is im-
portant to model and exploit this uncertainty when control-
ling these systems, and we use a modified model predictive
control approach to encapsulate uncertainty in the model.
Work by Oldewurtel and Parisio has shown that MPC under
uncertainty can outperform both rule-based and determinis-
tic controllers for managing smart buildings given an uncer-
tain weather prediction (Oldewurtel and Parisio 2010).

Our model samples from a distribution of predictions, and
each sample is weighted in importance by a confidence cal-
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culation. Then these samples are then given to a controller
that generates the best control sequence, scored by a prede-
termined cost function for some target control goal. There-
fore, this single control sequence is generated against the
expectation of upcoming duty as represented by these sam-
ples. Our approach hopes to capture and exploit both the
repeatability and uncertainty in human behavior by using
this method. We demonstrate a complete end-to-end con-
trol system operating on an electric vehicle simulator using
real human driving data.

In the domain of vehicle optimization, previous work by
Voort, Dougherty, and Maarseveen has demonstrated sig-
nificant gains through driver behavior modification (Voort,
Dougherty, and Maarseveen 2001). Behavior modification
is an important tool for vehicle optimization that has re-
cently made it to production vehicles using innovative dis-
play hints. However, machine learning approaches have
also demonstrated potential improvements for vehicle en-
ergy control without influencing driver behavior. Work by
Lin, Peng, and Grizzle has demonstrated the potential for a
significantly improved power management controller for hy-
brid vehicle using Dynamic Programming (Lin, Peng, and
Grizzle 2003). Given the future demand, a policy can be
trained to optimally control the power source to meet the
current demands of the vehicle. This suggests that an ap-
proach that can predict the future demand can be useful
for optimization. Additionally, work by Moura et al. has
demonstrated improved control of hybrids by training a Dy-
namic Programming policy on prior drive cycles (Moura et
al. 2011). Work by Ermon et al. demonstrates a similar
result using Dynamic Programming to create a policy us-
ing our dataset and simulated vehicle (Ermon et al. 2012).
These works demonstrate that historical data can be useful
for creating an improved controller for vehicles with hetero-
geneous energy systems. Through prediction, our approach
creates dynamic data selections at run-time, precluding us
from using a similar Dynamic Programming approach due
to time constraints. However, it allows us to optimize only
highly relevant data that is likely similar to the upcoming
demand.

This exploitation of behavior patterns suggests possible
value for our approach in additional energy management
domains beyond our initial exploration. Energy manage-
ment in mobile phones and portable electronics also exhibit
patterned behavior and energy management goals. Compo-
nent sleeping, screen dimming, and even charging schemes
can be improved using additional information supplied by a
model prediction. Previous work by Ravi et al. has demon-
strated uptime improvement by recommending charging
based on learning patterned behavior of the operator (Ravi
et al. 2008). Other research by Falaki, Govindan, and Estrin
into smart screen dimming has also shown success in con-
trolling component power by modeling small behavior pat-
terns of the operator (Falaki, Govindan, and Estrin 2009).
This motivates our generic, semantic-free approach, that can
be adapted to any energy management subsystem in human
operated devices. Following the generic implementation,
additional performance could be realized by then using se-
mantic knowledge in a specific domain.

Intelligent
Charge Controller

Regenerative
Controller Motor

SupercapacitorBattery Pack

Figure 1: System diagram of heterogeneous energy pack
electric vehicle. High power supercapacitor can handle
high-energy demands if intelligent charge controller can pre-
emptively charge it from the battery pack.

Heterogeneous Electric Vehicles
While waiting for more sustainable energy options to be re-
alized, it is important to continually improve the efficiency
of energy usage in transportation, industry, and homes. Ex-
ploiting human behavior patterns can potentially yield sav-
ings in all of these sectors, and substantial research has al-
ready yielded gains in the work and home. Traffic optimiza-
tion and electric and hybrid vehicles have already altered
the landscape of sustainability in transportation. We ex-
plore modeling individual behavior to further optimize the
resources at the individual vehicle level.

We examine this approach in a simulated electric vehicle
that manages energy in a heterogeneous energy pack. This
pack consists of a high power-density, low energy-density
supercapacitor paired with a high energy-density lithium
iron phosphate battery, as shown in Figure 1. The super-
capacitor can handle large currents with great efficiency, but
its low energy density makes it ill-suited as a primary energy
supply. The lithium iron phosphate battery pack suffers de-
creased longevity and increased thermal load from high cur-
rents, due to lithium fracturing and solid-electrolyte inter-
phase formation. The heterogeneous energy pack provides
power from the supercapacitor, if available, during high cur-
rent events to prevent these loads on the battery.

The driver controls the external system, placing loads on
the energy pack and exhibiting repeated driving behavior
due to common errands, commutes, traffic patterns, and sig-
nage. The internal system provides energy to the traction
motor from either the supercapacitor or the battery, and con-
trols the flow of energy between these two different energy
stores. It is important to have the supercapacitor charged
before high-power acceleration events, and discharged be-
fore high-power regenerative braking events. Using MPC
the vehicle can preemptively charge the capacitor at a red
light, over the course of a minute or more, so that it can han-
dle the acceleration event when the light turns green. This
transforms what is normally a brief, high-power load on the
battery pack into a long, low-power load on the battery pack.

Dataset and Features
The dataset was collected from seven volunteer drivers who
each recorded most of their drives over a one year period.
Each driver had a GPS unit, installed in their petrol vehi-
cle, which stored time, elevation, and location each second
while driving. We converted this to power versus time for
each driver using a standard longitudinal vehicle model of an
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electric Honda Civic. Previous work has outlined and vali-
dated this model using instrumented electric vehicles (Styler
et al. 2011).

The model uses measured and calculated features of the
external system to make predictions for duty. From the GPS
unit we have: time, elevation, latitude, and longitude. The
vehicle model calculates instantaneous velocity, accelera-
tion, and power demand. Additionally we compute various
meta-features including: the sum of energy used so far on
the trip, the recent variance in the velocity, and the recent
variance in acceleration. These features try to capture oth-
erwise unmeasured influences such as road traffic. This set
of features makes up the state estimation of the vehicle at
each second. The dataset includes the sequences of states
matched with the power demand at that state, over all of the
trips for each driver for one year. The complete dataset is
used as both training and test set using a leave-one-out cross-
validation approach. Each trip is tested as if it were the last
trip, and all other data is used as prior training examples.

Model Predictive Control with Uncertainty
The nearest neighbor approach is motivated by our test do-
main, as mapping from the current state of the vehicle to an
optimal control is a difficult problem. It is nonparametric, as
no polynomial functional regression can successfully map
even GPS latitude and longitude to energy control without
overfitting problems. Furthermore, precomputing policies is
intractable due to the large state space. However, there is a
strong relationship between the current state of the vehicle
and the upcoming duty. Common routes and traffic patterns
dictate repeated duty profiles over the lifetime of a vehicle.
Knowing that upcoming duty on a vehicle allows an opti-
mizer to solve for the best sequence of controls to tackle it.
Therefore, we use a modified k-nearest neighbor regressor
to first map state to upcoming duty, then use an optimizer to
solve for the controls.

Algorithm 1 Model Predictive Control with Uncertainty
loop

xt ← state
{Z0, w0}...{Zk, wk} ← PREDICTOR(xt)
{ut...ut+m} ← CONTROLLER({Z0, w0}...{Zk, wk})
EXECUTE(ut)

end loop

Pseudocode of the algorithm is shown in Algorithm 1.
Here, at timestep t, we first measure the state of the vehicle
and store it in xt. This state is then used by the predictor to
generate a set of predictionsZ0...Zk and importance weights
w0...wk.. This set represents k samples from the likely up-
coming duty distribution. Finally, a controller or optimizer
is used to generate a single control sequence {ut...ut+m}
that best handles all samples, up to lookahead m, according
to some cost function predetermined for the domain. The
first control in the optimal control sequence, ut is executed,
then the entire process is restarted for the next time step.

It is important to note the Markov assumption made in this
algorithm. On a given trip at some point in time, the future
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Figure 2: Example set of predictions of upcoming duty ver-
sus actual ground truth. Uncertainty can arise from traffic,
time delays, or even alternate routes.

duty is assumed to be conditionally independent of the past
duty given the current vehicle state. Prediction from the past
duty to future duty proved very difficult due to delays, phase
shifts, and dilation effects from traffic and traffic lights. We
roll some information on the past duty into the current vehi-
cle state as the cumulative sum of energy usage, in order to
support our Markov assumption.

The actual implementations of the predictor and controller
are discussed in the following sections. The predictor uses
a modified k-nearest neighbor regressor, and the controller
uses the MPC staple of policy selection optimization. While
better results can be expected from more thorough optimiz-
ers such as Dynamic Programming, the speed constraint of
the domain necessitated a faster approach.

K-Nearest Neighbor Predictor
The predictor uses the current state of the system, repre-
sented as a feature vector, and predicts the input to the sub-
system. In the case of our test vehicle, the input to the sub-
system is the instantaneous power demands each second for
some lookahead period. These predictions are used to define
the model of the system given to the controller. The cumu-
lative sum of energy over time, with power at each timestep
as the slope, is an easier way to visualize these predictions.
An example distribution of predictions versus ground truth is
shown in Figure 2. The distribution of samples in the exam-
ple is highly uncertain, but the ground truth is very similar
to a few.

Our predictor is a modified version of k-nearest neighbor
(KNN) regression. This algorithm compares the distance
between the current feature vector and all the prior feature
vectors in the past data. It finds the nearest k neighbors by
distance and takes the weighted mean of their output to pre-
dict the output given the current point. This is known as a
lazy-learning approach, where training simply involves stor-
ing the data in the past data set, and most calculation is done
at search-time. Updating is easy, as points can be added to
the set when measured with no additional training required,
but the algorithm suffers from potentially long computation
at search time and large memory requirements. Search time
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Figure 3: Error calculation for a duty prediction. Shaded
area represents error.

is largely mitigated by smart data structures, such as a kd-
tree, and memory requirements can be somewhat reduced
by data expiration or redundancy removal. Due to our small
dataset for our test domain, we have not explored any data
expiration techniques to reduce memory requirement.

For our implementation each historical point of driving
data maps to the sequence of power usage that followed it.
Each of these points is a feature vector, as described above,
including latitude, longitude, velocity, etc. The power use
versus time is only stored once for each trip, and each point
from that trip actually maps to an index into this array. This
allows arbitrary lookahead sequences to be returned without
having to retrain or reconstruct the tree. Instead of calculat-
ing a weighted mean of these sequences, each of these power
usage sequences serves as an independent prediction for the
controller.

The distance, d, between points is simply a weighted Eu-
clidean distance over the feature vectors,

d =

√∑
j

wj(xj − x∗j )2 (1)

wherewj is a weight for each feature, x is the past point, and
x∗ is the search point. This distance measures the similarity
between states for the current and past points, and the inverse
is used to weight the confidence in the match. Weighting
each feature manually or creating a custom distance metric
both offer a good opportunity for injecting semantic knowl-
edge of the system into the model. Instead, we used a local
gradient descent to tune each weight, while keeping the oth-
ers fixed, and iterating the process until convergence. This
generic weighting approach could apply to many domains,
but other methods may be necessary to avoid local minima.
This weighting demonstrated sufficiently good performance,
so a more robust approach to find a global minimum was not
pursued. Finally, the k points with the highest confidence are
returned to be used by the controller.

While arbitrarily high k can be used, relative confidence,
and therefore impact on the output, decreases rapidly with
the inverse of distance. High enough k must be chosen to
capture the uncertainty, but it must be constrained to keep

computation time fast. We use a value of k = 7, deter-
mined from testing prediction accuracy for different values
of k on our validation set. An alternative method, that we
did not explore, involves selecting a threshold radius, and
using all neighbors within that hypersphere in feature space.
This method may yield better results, but can suffer due to
uncertain computation time in the controller due to the range
of k.

These k neighbors are therefore used as samples from the
predicted distribution of upcoming duty. When two sam-
ples have similar confidence, but divergent power versus
time ground truth, uncertainty is high. If one sample has
much higher confidence than others, or all high confidence
neighbors have similar ground truth, then uncertainty is low.
The variance in the prediction is therefore captured in the
weighted samples when passed to the controller. With low
variance, the controller can be sure of the prediction and be
very aggressive with control. With high variance, however,
the controller would yield more a passive control strategy to
mitigate cost over the samples. This balance between cau-
tion and exploitation is the crux of the gains realized from
modeling uncertainty.

We created a heuristic, shown in Figure 3, to calculate
prediction error. Given the actual and predicted cumulative
sum of energy use, the heuristic represents error as the total
area between the functions. This heuristic captures the rel-
ative accuracy of a prediction well, despite highly volatile
instantaneous power demands and time delays. Having this
prediction error allows us modify the prediction step inde-
pendent of the controller, calibrate feature weighting, and
directly observe prediction accuracy.

In Figure 4, we show a histogram of prediction accuracy
for all the predictions provided by the model during testing.
It is difficult to objective choose a threshold for a good pre-
diction, but the distribution shape lets us compare the me-
dian and worst performances. We observe a large volume
of predictions falling around the median, with significantly
less error than the tail of the distribution. While this is useful
to analyze the coverage of the data set, this heuristic cannot
be used to compare the accuracy of a set of samples with
the accuracy of its mean. This prevents us from comparing
the sample-based stochastic KNN approach with standard
KNN regression using this heuristic. To compare these, we
will have to introduce a controller and compare final perfor-
mance.

Optimization and Control
The next stage of our system is the model predictive con-
troller that translates these weighted samples of the upcom-
ing duty into a cost-minimizing control for the next timestep.
The system then executes this control, measures the new
state, makes new predictions, and calls the controller again
for the next step. While the controller will generate a se-
quence of controls each timestep to cover the entire looka-
head period, the controls are discarded after the first in the
sequence is executed. This follows our Markov assumption,
where the next state and its predictions should supersede
those of the past state.
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Figure 4: Histogram of prediction accuracies over test data,
showing the general shape of the distribution.

The controller minimizes a cost function
C(xt...xt+m, ut...ut+m, zt...zt+m) = c(xt, ut, zt)+

γ ∗ C(xt+1...xt+m, ut+1...ut+m, zt+1...zt+m)
(2)

where {xt...xt+m} is a sequence of states, {zt...zt+m} is a
sequence of inputs given by a prediction, {ut...ut+m} is a
sequence of controls, c(xt, ut, zt) is the immediate cost, and
γ is a discount factor. Given the inputs, controls, and ini-
tial state of the subsystem, we can calculate the sequence of
states of the subsystem using a plant, xt+1 ← H(xt, ut, zt).
In the test domain, the immediate cost is calculated as the re-
sulting current on the battery squared for that timestep. The
charge of the capacitor is tracked in xt, and if power de-
mand, zt, exceeds the ability of the capacitor, the net power
is supplied from the battery. Squaring the current on the bat-
tery helps to penalize higher loads more steeply, resulting
in a behavior that favors long low-power drains over quick
high-power drains.

Given a plant of the subsystem, a sequence of inputs
given by the predictions, and a cost function, most tradi-
tional optimizers will work to generate the control sequence.
An important caveat is that it must test and score a con-
trol sequence, U = ut...ut+m, against a set of predictions,
Z0...Zk, where Zi = zt...zt+m. The controller therefore
chooses the control that minimizes the expected cost over
the distribution of predictions, according to

U∗ = argmin
U

∑
i=0...k

wi ∗ C(X,U,Zi) (3)

where U∗ is the optimal sequence of controls, and wi is
the importance weight of each sample from the prediction
model.

The ideal approach for many domains would be to do opti-
mal control at this stage. However, for our domain this is not
practical as computation times on the vehicle must be quick
to allow for replanning every second. As we have a 240
second lookahead, 7 different predictions, and a continuous
charge state, computing an optimal control would require
too much computation time for our time constraint. To al-
low for quick execution on a low power system, a cruder ap-
proach is necessary. The controller, however, is interchange-
able based on domain needs.

For our controller, a fixed set of 12 possible control se-
quences is considered. These sequences are all constant

Table 1: Reduction of Current-Squared for Each Driver
Model

Driver Mean KNN Distributed KNN Prescient

Driver A 53.5% 57.8% 67.5%
Driver B 40.5% 43.6% 49.1%
Driver C 56.2% 61.7% 69.0%
Driver D 37.4% 39.4% 44.9%
Driver E 46.8% 47.1% 57.3%
Driver F 38.4% 38.2% 47.9%
Driver G 59.0% 65.8% 70.9%
Total 47.8% 51.9% 55.9%

controls over the period, chosen log-uniformally over the
space of controls. The controller tests each possible con-
trol sequence against the predictions, and returns the best
scoring result. Even if the control sequences are constant,
a complex control strategy can emerge due to the stochastic
switching each second from replanning. In validation test-
ing, these control sequences yield good coverage and per-
formance. Additional control sequences add marginal ben-
efit at increased computation cost, and are not necessary in
practice.

While we only demonstrate single-variate optimization,
the controller is agnostic to the cost function. A more com-
plex cost function or even multivariate optimization can be
used in our approach.

Results
We evaluate the success of model predictive control under
uncertainty using our modified KNN model. This algorithm
was run on our test domain to control the management of
energy in an electric vehicle using a heterogeneous battery
pack. Success was measured by cost function total: the re-
duction in current-squared on the battery pack for our simu-
lated heterogeneous energy pack electric vehicle.

Using the selection controller described in the previous
section, we test performance of three different models for
the algorithm. The first is a standard KNN regression model
that returns a mean prediction. The second model is the
modified KNN model proposed in this paper that returns
samples of the distribution of predictions. The final model
is a prescient model that returns the actual upcoming duty
with absolute certainty. This model yields an effective up-
per bound on performance for this controller. Total results
for each driver are displayed in Table 1. Results show the re-
duction in current-squared on the battery pack given predic-
tion from each model, tested over our whole data set using a
leave-one-out cross validation approach.

The algorithm has varied success on different trips, due
to varied coverage of the space in the past history set and
outliers. On frequent trips, such as daily commutes, cover-
age is very good and better predictions are obtained. In new
or unique trips, however, prediction can only match other
features instead of GPS, resulting in poorer prediction and
performance. On unique routes, upcoming hills and road
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Figure 5: Histogram of performance for all trips. A high
variance in performance is observed, with median around
70%

system information is not captured by the data, but other
similarities can still be matched. Therefore the prediction
yields some information, but not enough to realize signifi-
cant improvements for these trips. A distribution over the
reductions in current squared for all tested trips is shown in
Figure 5. We observe here that the median trip experiences
around a 70% reduction, and the majority of trips fall around
the mean.

The results show a marked improvement towards optimal
versus an expected value approach. Over half of the dis-
parity between MPC performance using a mean prediction
and the prescient upper bound is reduced by our stochastic
approach, improving from a 47.8% reduction to a 51.9% re-
duction. The approach yields gains for all but one operator,
whose driving data consisted largely of static highway com-
mutes. These results suggest that our stochastic k-nearest
neighbor model is effectively capturing some uncertainty
that can be exploited the controller. This allows the con-
troller to behave more intelligently during high-uncertainty
events, balancing the costs of the worst case scenario with
the gains of the best case. While the absolute difference
in performance between the methods is low, other domains
with increased uncertainty may yield larger gains.

However, while average performance is improved, there
are no guarantees that can be made. MPC will fail when us-
ing an incorrect model, and past data may inaccurately rep-
resent the distribution of upcoming duty. In domains where
safety or failure is critical, optimizations may devolve into
always mitigating a worst-case scenario, precluding the abil-
ity to optimize at all.

Future Work
There are many areas of work that can be explored to expand
or improve this approach. As the dataset is continually ap-
pended with new data, some sort of data expiration method
would need to be implemented to maintain guarantees on
computation time. Data that is rarely used, frequently in-
correct, or simply old could potentially be prioritized for
this expiration. Additionally, some sort of automatic redun-

dancy detection or coverage calculation could also be used
to combat this issue. Also, clustering methods could be ex-
plored to give additional information for the confidence cal-
culation and prediction. Given more computation time for
certain domains, more thorough controllers can be tested, or
controllers closer to optimal using some intelligent precom-
putation. Precomputing value graphs or policies for every
historical trip could allow more optimal control in the real-
time constraints. The prediction accuracy and performance
could be further improved in implementation by exploiting
semantic domain knowledge in feature distance or weight
calculations. Here we have simply demonstrated a generic
method for modeling human operator uncertainty, a means
to exploit it in subsystem optimization, and example perfor-
mance on our test domain.

Conclusions
In this paper we presented a model predictive controller
(MPC) for optimizing subsystem control under uncertainty
in a human driven system. The system is ultimately invis-
ible to the primary system operator and does not directly
influence behavior. Using a modified k-nearest neighbor re-
gressor, we generate samples of upcoming duty by feature
matching our current state to historical states in our data set.
The samples are passed to a controller that chooses a con-
trol sequence to minimize a cost function over the looka-
head of the predictions. The approach was designed to be
data-driven, not exploiting any semantic knowledge about
the system in the prediction or controller. The approach is
also dynamic, allowing for simple retraining as more data is
appended to the data set.

The algorithm shows improved performance versus an ex-
pected value algorithm for our chosen controller, and using
past data as samples for future duty displays excellent per-
formance for our chosen domain. Our approach may gener-
alize to other energy management domains where the overall
system is similarly operated independently of the subsystem
goals. This could include energy and component manage-
ment in portable electronics, hybrid vehicle power selection,
electric vehicle thermal control, or even smart building man-
agement. As energy usage and efficiency become more scru-
tinized, intelligent methods for efficiency optimization must
be explored.
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