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Abstract

The goal of the proposed research is to improve the per-
formance of Hadoop-based software running on a het-
erogeneous cluster. My approach lies in the intersec-
tion of machine learning, scheduling and diagnosis. We
mainly focus on heterogeneous Hadoop clusters and try
to improve the performance by implementing a more
efficient scheduler for this class of cluster.

Introduction
Hadoop is a popular and extremely successful framework
for horizontally scalable distributed processing of large data
sets. It is an open-source implementation of the Google
filesystem (Ghemawat, Gobioff, and Leung 2003), called
HDFS, and Google’s MapReduce framework (Dean and
Ghemawat 2008). HDFS is able to store tremendously large
files across several machines and using MapReduce, such
files can be processed in a distributed fashion, moving the
computation to the data, rather than the other way around.
Taking care of data locality is one of the key features
of Hadoop, which reduces unnecessary data traffic among
nodes. Therefore, while optimizing the Hadoop scheduler
we need to satisfy the data locality constraints.

Hadoop clusters typically execute a multitude of jobs in
parallel. These jobs are subdivided into several tasks, often
numbering in the thousands, which are executed in parallel
on different nodes. While tasks belonging to the same job
are very similar to each other in terms of their individual re-
source profiles, tasks belonging to different jobs can have
different profiles in terms of their resource requirements.
The resource requirement for a job is defined as utilization
of CPU, memory, disk I/O or network I/O. Hadoop has a
built-in scheduler that assigns tasks to different nodes while
satisfying the data locality constraints.

One major shortcoming of Hadoop’s existing schedulers
is that they all implicitly assume a homogeneous cluster, i.e.,
they assume that all compute nodes in the cluster have sim-
ilar hardware and software configuration. However, in re-
ality clusters often feature specialized servers for various
computations, also the size of cluster grows over time as
new machines are added with different profiles. Therefore,
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the cluster need to be assumed rather heterogeneous. The
scheduler’s assumption about homogeneity prevents it from
making optimal use of available resources in heterogeneous
clusters, since they are not able to match jobs to their best
compute nodes, consequently compromising global metrics
such as throughput or maximum delay. Furthermore, earlier
research has shown the benefits of heterogeneous clusters
compared to homogeneous ones (Balakrishnan et al. 2005;
Ghiasi, Keller, and Rawson 2005; Kumar et al. 2005). Intu-
itively, more specialized hardware can better suit a variety
of differing job resource profiles.

The absence of a monitoring component which deter-
mines the dynamic state of every node is another shortcom-
ing of the scheduler. In a cluster it is natural to assume
that the performance of nodes degrades with time due to
soft/hard faults. The Hadoop scheduler’s ping based pro-
tocol efficiently detects hard faults (dead node or network
failure), however it fails to identify soft faults (slowdowns).
Therefore, the scheduler is unaware of nodes that are under-
performing. Due to lack of knowledge about the state of the
node, the scheduler might assign tasks to a node in a regular
fashion. Such assignment policy can lower the throughput
(the number of jobs processed in a particular time window)
of the cluster.

Problem
The main goal of my thesis is to improve the performance
of heterogeneous Hadoop clusters by proposing an efficient
task assignment policy. Therefore, we aim to implement a
task assignment policy for scheduling computational tasks
onto compute nodes in a heterogeneous parallel and dis-
tributed system, such that the job throughput can be maxi-
mized. We plan to achieve this goal by matching job require-
ments with available resources. While making the schedul-
ing decision the data locality constraints should always be
satisfied. Additionally a diagnosis module is needed to iden-
tify what nodes are underperforming and why. We will in-
corporate this fault information into the scheduling policy
so that better resource matching can be used.

Approach
We plan to reach the above goals by using an active machine
learning approach. We divide the overall approach into two
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phases, explore and exploit. In the explore phase we actively
try to learn nodes’ resource capabilities and jobs’ resource
requirements. Later in the exploit phase we use the learnt
information to implement an efficient task assignment pol-
icy and to device the diagnosis module. Such an approach
is similar to the Pervasive Diagnosis approach (Kuhn et al.
2008), which diagnoses a system without stopping produc-
tion. The explore and exploit phases are further subdivided
as:

Explore
Learn Task Model In our approach, we need to model
tasks completion time in terms of their resource require-
ments and nodes’ resource capabilities on which the tasks
will be executed. If the resource requirements are denoted
as r and the machine capabilities as κ, then the model of the
task is given as

F (r, κ) = Tr,κ (1)

Here Tr,κ is the task completion time. In our case we as-
sume that time samples are the only observation we have.
We aim to learn r and κ using above relation. The model can
be linear or nonlinear. Therefore, the research challenge is
to implement a model selection approach to build the model
with a certain accuracy. In the beginning, we plan to assume
a linear model and later a more complex non-linear model
will be considered.

Learn Node Capabilities Once the above model has been
derived the next step is to learn model parameters (r and κ)
using time samples. The first model parameter that we aim
to learn is node capabilities (κ). Our objective is to learn
node capabilities in active learning manner by running some
probe jobs on the cluster. Probe jobs are defined as jobs with
known resource requirements. We assume that we have a
set of probe jobs that can be used to learn node capabilities.
It is very likely that probe jobs may not be actual produc-
tion jobs, therefore, we assume that node capabilities will
be learned in offline manner. We assume that observed time
samples are not noise free and there is a random noise. An
interesting research challenge can be addressed by determin-
ing the sequence of probe jobs to learn the most about node
capabilities in the presence of noisy observations.

Learn Resource Requirement After learning the re-
source capabilities for every machine with a certain accu-
racy, we aim to learn job resource requirements or in other
words, job parameters (r). At this step our objective is to
learn resource requirements in an online manner. In other
words, we want to run actual tasks on the cluster and learn
their requirements without stopping the production. In or-
der to learn during production phase, we aim to exploit time
samples collected from actual production tasks to learn task
requirements. To maximize the overall throughput of the ex-
plore and exploit phase, the duration of the explore phase
should be minimal. Therefore, in this learning phase the in-
coming jobs must be scheduled in such a way that the infor-
mation gain about task resource requirements can be maxi-
mized, given that we have a noisy observation model.

Exploit
Assignment Policy Once the job resource requirements
and the cluster resource capabilities have been learnt, we en-
ter into the exploit phase. Combining these two information
according to the learned model (Eq. 1) the scheduler should
be able to assign tasks belonging to jobs onto the compute
resources that are most efficient to fulfill task resource re-
quirements, in terms of software and hardware configura-
tions. This scheduling policy only tries to improve overall
throughput, however, we also need to maximize the utiliza-
tion of the cluster as another objective function. Additionally
the data locality constraints need to be satisfied.

Diagnosis The derived task assignment policy assumes a
certain belief about performance of nodes in the cluster. This
belief is derived in the initial stage of the explore phase
where we learn nodes’ capabilities. However, capabilities
of nodes may change over time and the scheduler must up-
date changed capabilities to generate more efficient task as-
signment policy. Therefore, we need a diagnosis module that
learns about the dynamic state of the compute resources in
the cluster and detects intermittent problems such as slow-
downs. The preliminary idea to implement such monitoring
module is to continuously learn node capabilities and infer
problems in nodes by observing deviation in the capabilities
from their initial value.

Current Status and Future Work
As of now we are working on the explore phase of the
project, where we assume a linear model for task comple-
tion time(Eq. 1). We have developed a scheduling policy to
learn job parameters, which selects nodes that reduces the
entropy about the belief of job parameters most efficiently.
However, at this stage we assume that node parameters are
already known. In coming months we plan to implement the
task assignment policy for the exploit phase. While the focus
of this proposal is on Hadoop, our approach is generalizable
to other parallel and distributed system frameworks.
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