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Thesis Background
Reasoning is “the power of the mind to think, understand,
and form judgments by a process of logic” (McKean 2001).
In the late 1950s and 1960s researchers came up with the idea
to express human knowledge with mathematical logic and
to create a machine that can derive conclusions in the real
world (McCarthy et al. 1955). In the early 1970s a logic pro-
gramming system called Prolog was invented by Colmerauer
and Roussel (1993) which describes a problem by means of
facts and rules that form a logic program. Classical logic pro-
gramming is characterized by the fact that we do reasoning in
a closed world and whenever we add new facts or rules to the
program this will never invalidate any conclusions, so-called
monotonic reasoning. From the early 1980s the research has
moved closer to real world reasoning which is somewhat
different. A main characteristic is that we derive conclusion
because we have no evidence for the contrary (reasoning
by default). Since additional information may retract con-
clusions, such reasoning is called nonmonotonic (Brewka,
Niemelä, and Truszczyński 2008).

In the late 1980s a new semantics (stable model semantics)
for reasoning by default was proposed by Gelfond and Lif-
schitz (1988) and implemented into the new programming
paradigm called answer-set programming (ASP) (Marek and
Truszczynski 1999). Various ASP solvers have consequently
been designed. Nonmonotonic reasoning has come of age,
since modern ASP solvers work efficiently on industrial in-
stances (Gebser et al. 2012). Unfortunately, the main com-
putational problems of ASP (such as deciding whether a
program has a solution, or if a certain atom is contained in
at least one or in all solutions) are of high worst-case com-
plexity and are located at the second level of the Polynomial
Hierarchy (Eiter and Gottlob 1995).

In the 1990s and 2000s research on the complexity of
problems in the field of nonmonotonic reasoning has mainly
focused on classical computational complexity where we
measure the amount of a resource (e.g., time or space) in
a function of the input. Unfavorably, we ignore the struc-
tural nature of our input instances. Thus problems from an
industrial context seem to be harder in theory than they are
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in practice. An alternative approach is to measure the com-
plexity in an additional parameter which depends arbitrarily
on the input. The underlying theory is called parameterized
complexity theory (Downey and Fellows 1999). Its fundamen-
tal concept of fixed-parameter tractability relaxes classical
polynomial-time tractability in such a way that all nonpoly-
nomial parts depend only on the size of the parameter and not
on the size of the input. This explains gaps between classical
theory and practice if the parameter is comparatively small.
In recent years this has become a very active research area.

A tool that offers a parameter for parameterized complexity
analysis is backdoors which are small sets of atoms that rep-
resent “clever reasoning shortcuts” through the search space.
Exemplarily, we consider the Boolean satisfiability problem
where backdoors originate from (Williams, Gomes, and Sel-
man 2003). The problem is to decide whether a Boolean for-
mula is satisfiable or not. We take a class C of formulas where
membership and satisfiability are decidable in polynomial
time e.g., Horn formulas. A set X of variables of a formula ϕ
is a C-backdoor if all formulas, that can be obtained from ϕ
by instantiating the variables in X , yield simplified formulas
which belong to the class C. Once we have found a backdoor
X , the formula ϕ can be evaluated by considering all 2|X|

truth assignments to the variables in X .

Research Question and Contribution
The practical results of ASP indicate that classical complexity
theory is insufficient as a theoretical framework to explain
why ASP solvers work fast on industrial applications. Com-
plexity analysis by means of parameterized complexity theory
seems to be promising, because we think that the reason for
the gap between theory and practice is the presence of a
“hidden structure” in real-world instances. The application of
parameterized complexity theory to ASP would give a crucial
understanding of how solver heuristics work. This profound
understanding can be used to improve the decision heuristics
of modern solvers and yields new efficient algorithms for
decision problems in the nonmonotonic setting.

My research aims to explain the gap between theoretical
upper bounds and the effort to solve real-world instances.
I will further develop by means of parameterized complex-
ity exact algorithms which work efficiently for real-world
instances when parameterized by the size of a backdoor.
This seems to be very reasonable as backdoors have suc-
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cessfully been used to analyze the performance of SAT algo-
rithms (Williams, Gomes, and Selman 2003) and ASP and
SAT are closely related (Lin and Zhao 2003). I will utilize
backdoors to explain differences and improve common algo-
rithms.

The main research questions read as follows:

• Can we adapt the backdoor framework to ASP?
• Can we develop new efficient algorithms for the main

computational problems of ASP when the problems are
parameterized by the size of a backdoor?

• Can we determine small backdoors efficiently?
• Will the algorithms be of practical use, at least for certain

classes of instances, and hence might fit into a portfolio-
based solver?

• Will we be able to improve heuristics in modern solvers in
particular the decision strategy?

The backdoor approach offers a parameter to analyze pa-
rameterized complexity of reasoning problems in the non-
monotonic setting. Treewidth (Jakl, Pichler, and Woltran
2009) has already been considered in literature and I am
aware that other parameters may be applicable. I consider
backdoors as orthogonal to treewidth. Considering the area of
SAT, backdoors did not yield a considerable speed-up in cur-
rent state of the art SAT solvers until now, but they improved
the understanding of modern techniques in SAT solvers. The
same might happen in the context of ASP.

Backdoors for ASP
In (Fichte and Szeider 2012) we have explained how the
concept of backdoors can be adapted to propositional ASP.
A backdoor of a program is a set of atoms such that any
instantiation of the atoms yields a simplified program that
belongs to a target class of programs. In constrast to SAT
backdoors where a base class only needs to be polynomial-
time decidable, backdoors for ASP need more. Therefore, we
introduced the new notion of an enumerable class. Moreover,
we need a two-step approach (generate an answer-set can-
didate and check the candidate) to utilize a backdoor. We
have established that the main computational problems of
ASP are tractable when the decision problem is tractable
for the considered target class and we additionally bound
the size of a smallest backdoor by a constant. We have uti-
lized recent advances of parameterized complexity to detect
small backdoors. The target classes considered by us are
based on notions of acyclicity where various types of cycles
(good and bad cycles) are excluded from graph representa-
tions of programs. Furthermore, we have studied the class of
Horn programs. I have generalized some results in (Fichte
2012). We have investigated backdoors to the intractable tar-
get classes of normal and tight programs to the problems
brave reasoning and cautious reasoning which ask whether
a given atom is contained in at least one or in all answer
sets, respectively. We have transformed both problems into
SAT such that the combinatorial explosion, which is expected
when transforming problems from the second level of the
Polynomial Hierarchy to the first level, is confined by the
size k of a backdoor to a normal program, while the running

time is polynomial in the input size n and the order of the
polynomial is independent of k. Moreover, we have shown
that such a transformation is not possible if we consider back-
doors with respect to tightness instead of normality (Fichte
and Szeider 2013).

Future Work
Currently, my supervisor and I prepare work that addition-
ally contains considerations on preprocessing (kernelization)
and a more precise approach to the evaluation of backdoors
(dynamic backdoors). It will also consist of various experi-
ments where I determine the size of a smallest backdoor for
various ASP instances. Subsequently, I will focus on experi-
mental work in particular on the influence of backdoors to the
heuristics of ASP solvers (Gebser et.al. 2013) and an imple-
mentation of the translation of brave and cautious reasoning
into ASP (Gebser, Kaminski, and Schaub 2011) or SAT.
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