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Abstract
In this paper, we present a local search framework for
lattice fit problem of proteins. Our algorithm signifi-
cantly improves state-of-the-art results and justifies the
significance of the lattice models. In addition to these,
our analysis reveals the weakness of several energy
functions used.

A protein folds into a three dimensional native structure that
has the minimum free energy. This structure is unique, stable
and essential for its proper functioning. Knowledge about
this structure is of paramount importance, since it can have
an enormous impact on the field of rational drug design.
The in vitro methods for Protein structure prediction (PSP)
are slow and expensive. Computational methods have been
used to solve this problem for more than thirty years. One of
the challenges for solving PSP is the unknown nature of the
energy function. Moreover, the all-atomic details of struc-
tures require huge computational power. For these reasons,
researchers preferred to model the problem in a simplified
way by restricting the locations of the amino acids of the
proteins to discrete lattice points (cubic or face-centered)
and search is guided by a simple energy function that con-
siders the contact potentials (Miyazawa and Jernigan 1985;
Berrera, Molinari, and Fogolari 2003; Lau and Dill 1989). A
lattice L is a set of points in Zn where the points are integral
linear combinations of given N basis vectors. Two lattice
points p, q ε L are said to be in contact or neighbors of each
other, if q = p+~vi for some vector ~vi in the basis of L. Every
two consecutive amino acid monomers in the sequence are
in contact (connectivity constraint) and two amino acids can
not occupy same point in the lattice (self avoiding walk con-
straint). For any given protein sequence s, the free energy of
a structure c is calculated by the following equation:

E(c) =
∑

j≥i+1

contact(i, j).energy(i, j) (1)

where energy(i, j) is the empirical energy value between
two amino-acids i and j and contact(i, j) is 1 if i and j are in
contact and otherwise 0. Given this model, the protein struc-
ture problem can be defined as follows: given a sequence s
of length n, find a self avoiding walk p1 · · · pn on the lattice
that minimizes the energy defined by (1).

The optimal structures found by these models are used
as candidate structures or decoys after reconstructing the
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backbone and adding the side chains. However, the effec-
tiveness of the methods depends on the energy functions.
In this paper, we investigate the goodness of lattice fit and
effectiveness of such energy functions used for simplified
lattice models. We propose a constraint based local search
(CBLS) framework to find the lattice fits for real proteins
on different types of lattices. Our approach produces signif-
icantly improved lattice fits compared to the state-of-the-art
methods. The local search framework also allows us to an-
alyze the different energy functions used in simplified mod-
els.

Local Search Framework
In the lattice fit problem, the task is to find a self avoiding
walk on a discrete lattice that has the minimum root mean
square distance (dRMSD) value with the given native struc-
ture defined in Eq. 2.

dRMSD =

√∑n−1
i=1

∑n
j=i+1(d

given
ij − dnativeij )2

n ∗ (n− 1)/2
(2)

where dgivenij and dnativeij denotes the distances between ith
and jth amino acids respectively in the given conformation
and the native conformation of the protein. In calculating
the RMSD values, the distance between two neighbors in
the lattice (

√
2 for FCC and 1 for cubic) is considered to be

equal to the average distance (3.8Å) between two α-Carbons
on the native structure.

Algorithm 1: localSearch()
1 initialize()
2 while time ≤timeout do
3 selectPoints()
4 generateMoves()
5 simulateMoves()
6 selectBestMove()
7 executeSelectedMove()
8 updateTabuList()
9 if stagnation then

10 moveSize++
11 if improving then
12 moveSize←− 1

The local search framework that we propose for lattice
fit problem, is based on Kangaroo (Newton et al. 2011), a
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CBLS system that provides maintains necessary invariants
and constraints. The procedure is given in Algorithm 1. At
each iteration, amino acid points are selected randomly if
they are not in the tabu list depending on movesize. We
implemented a generalized version of the kinkjump and
crankshaft moves used in the literature of simplified PSP.
We select the best move that minimized dRMSD. We ini-
tialize the structures by a greedy procedure. For each of
the amino-acids we keep assigning the points in the lattice
that minimizes the dRMSD value. The procedure backtracks
whenever there is a violation in the constraints. This ini-
tialization procedure produces initial structures with lower
dRMSD values when compared to random initialization.

Experiments
We ran our experiments on a cluster of computers. Each
node in the cluster is equipped with Intel Xeon CPU X5650
processors @2.67GHz, QDR 4 x InfiniBand Interconnect. In
Table 1, we report average dRMSD values of the lattice fits
in the ’end’ column for the proteins taken from the PISCES
web server for different algorithms. We used the 1198 pro-
teins used in (Mann et al. 2012). We ran our algorithm for
1 hour for each of the proteins. Values for the other algo-
rithms are taken as reported in (Mann et al. 2012). We also
show the average initial dRMSD of our approach in the ‘ini-
tial’ column. From the reported values it is evident that our
method finds significantly better lattice fits and it is also an
indication of the goodness of lattice fits of native structures.

We also analyze the correlation of dRMSD value with dif-
ferent energy functions. We take into consider three different
energy functions: i) 20×20 energy function, bre (Berrera,
Molinari, and Fogolari 2003), ii) 20×20 energy matrix, mj
(Miyazawa and Jernigan 1985), and iii) basic hydrophobic-
polar model, hp (Lau and Dill 1989). All these energy func-
tions are used extensively in the literature of simplified pro-
tein structure prediction. We use our algorithm to minimize
the dRMSD of candidate structures and report values of en-
ergy functions at each iterations for one hour. From the val-
ues of the energy functions of the structures and respective
dRMSD values, we then try to find the correlation between
the terms. In Fig. 1, a plot is shown for the protein 1A6M.
In ideal case, with the decrease in the dRMSD value, there
should be a decrease in the energy function value. But we see
that they show either negative correlation (negative slope) or
no correlation (flat). We perform this analysis for a limited
number of proteins from the benchmark set. However, we
can conclude that these proteins show a very low correla-
tion of dRMSD values with the energy functions. The im-

Lattice (Park and Levitt 1995) LatFit Our Approach

Type (Mann et al. 2012) initial end

Cubic 2.34 2.08 2.86 1.95

FCC 1.46 1.34 2.03 1.28

Table 1: Comparison of average dRMSD values produced
by different approaches with our approach

Figure 1: Plot of the values of different energy functions
against dRMSD values for the protein 1A6M.

plication is these energy functions and the simplified energy
model does not provide adequate discriminatory information
to find native structures. The reason behind this is mainly
due to the fact that these simplified methods do not take into
consider the secondary structure informations.

Conclusion and Future Work
In this paper, we propose a local search framework that pro-
duces state-of-the-art results for the lattice fit problem of real
proteins. This confirms the effectiveness of using discrete
lattices in PSP. In addition to this, we also analyze different
simplified energy functions and their effectiveness to find
better structures in terms of dRMSD values. In the analy-
sis part, the test of effectiveness of the energy functions is
limited to a few proteins only. We wish to provide a detail
analysis for all the proteins to get a comprehensive picture.
Furthermore, we believe that we can improve the fit by se-
lecting points intelligently rather than randomly.
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