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Abstract

Training intelligent systems is a time consuming and
costly process that often limits their application to real-
world problems. Prior work in crowdsourcing has at-
tempted to compensate for this challenge by generating
sets of labeled training data for machine learning algo-
rithms. In this work, we seek to move beyond collecting
just statistical data and explore how to gather structured,
relational representations of a scenario using the crowd.
We focus on activity recognition because of its broad
applicability, high level of variation between individual
instances, and difficulty of training systems a priori. We
present ARchitect, a system that uses the crowd to as-
certain pre and post conditions for actions observed in
a video and find relations between actions. Our ultimate
goal is to identify multiple valid execution paths from a
single set of observations, which suggests one-off learn-
ing from the crowd is possible.

Introduction
Decades of artificial intelligence (AI) research has resulted
in a range of systems that are capable of reliably generat-
ing answers when provided with sufficient prior knowledge.
However, training these systems is a time consuming and
costly process that often limits their application to real prob-
lems. Crowdsourcing has been used as a means of solving
problems that automated systems cannot yet handle robustly
to generate sets of labeled training data for machine learning
algorithms. Recent work has investigated how the crowd can
be used to support automated systems that can be deployed
with little or no training to begin with, then scale towards
being fully automated in the future. This approach still re-
quires learning numerous instances, but solves many scala-
bility problems of the crowd and greatly reduces the cost of
developing intelligent systems for real-world use.

In this paper, we seek to move beyond collecting statis-
tical data and explore how to gain logical understanding of
a situation using the crowd. We focus on activity recogni-
tion because of its broad applicability, high level of varia-
tion between instances, and difficulty of training systems a
priori. We present ARchitect, a system that uses the crowd to
find pre and post conditions for actions observed in a video.
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Figure 1: ARchitect’s crowd formalization approach.

This allows systems to identify multiple valid possible exe-
cution paths from a single observation, suggesting that one-
off learning from the crowd is possible.

Background
We present a means of extracting planning pre and post con-
ditions using the crowd. Crowdsourcing is a type of human
computation which has been shown to be useful in many ar-
eas that automated systems find challenging, including writ-
ing and editing (Bernstein et al. 2010), image description
and interpretation (Bigham et al. 2010; von Ahn and Dab-
bish 2004), and more. Most abstractions obtain reliably high
quality work despite the dynamic nature of the crowd by
introducing redundancy into tasks so that multiple workers
contribute and verify results at each stage (Little et al. 2010;
Bernstein et al. 2010). However, this also contributes to diffi-
culties scaling crowd-powered systems to a larger audience.

To help address this problem, prior work has looked at us-
ing the crowd to provide training data to an automated sys-
tem, which can then be used in place of the crowd (Raykar et
al. 2010). Legion:AR (Song et al. 2012) is a system that uses
the crowd to support and train a deployed activity recogni-
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tion system in real-time using crowd-generated labels for a
video stream. A learning model can then be trained online
using this data. The model enables systems that can grad-
ually scale from fully crowd-powered to fully automated.
This paper extends this idea beyond statistical data, to learn
relational and logical aspects of the observed activities.

Extracting structural information from the crowd has been
looked at in the context of database queries in CrowdQ (De-
martini et al. 2013), which uses a combination of query log
mining and natural language processing, in addition to the
crowd, to extract query semantics and generate query tem-
plates that can then be used for lookup searches if a matching
query is made in the future. In this paper, we similarly use
the crowd to create a more general abstraction, with the goal
of eventually creating a crowd-powered interface between
human and machine understandable languages.

System
Our algorithm for finding pre and post conditions with the
crowd (Figure 1) has four main components. Since this pro-
cess can be run on sequential actions as they are observed,
it can be run online in nearly real-time. The first step is to
divide the source activity video into smaller segments that
contain one action each. In the general case where it may
be impossible to separate actions in this way, we can ex-
tract multiple action labels from matching sub-segments, a
‘taboo’ list such as the one used in the ESP Game (von Ahn
and Dabbish 2004) can be used to discourage workers from
labeling the same action twice. To find consistent segment
times and labels, we use Legion:AR (Song et al. 2012). Le-
gion:AR consists of two steps: the first asks workers to press
a button each time they see an action come to an end, and
the second asks a potentially different group of workers to
propose and vote on labels for each segment. Because Le-
gion:AR is designed to work in real-time, it adds only a few
seconds of latency to our condition-extraction process.

Finding Preconditions
For each of the labeled actions, we then find the precondi-
tions that are needed to perform it. We ask workers to select
these requirements from a list of crowd-generated options. If
the list does not already contain a worker’s intended answer,
they can add it to the list. Because there are an unbounded
number of potential preconditions to any given action, we
need to filter the results we get down to only the interesting
ones. We do this filtering in two ways: (i) we select only the
top k suggestions from the previous step, this prevents a ma-
jority of overly-general conditions (i.e. “the Earth must still
exist”) from being selected because more specific and useful
conditions will be more clearly useful to a larger set of work-
ers; and (ii) we only look at preconditions that were caused
by actions that we have observed. By looking at the top k
choices, we are able to include an incentive mechanism that
rewards workers for contributing high-quality answers that
are eventually selected for use.

Finding Effects
Workers are then asked to select the most likely cause of
the precondition to the action in the video from a known

list of potential prior actions, or indicate no such action ex-
ists. This works because we are interested in learning rela-
tions between different actions, meaning that any precondi-
tion which we cannot observe the cause of is out of our scope
and assumed to be a prior state of the world.

Finally, since the effects of the nth action are extracted
by finding the preconditions of a future action (n+m) that
is caused by action n, a final pass is needed to find the final
effects. This is handled in the same manner as all of the other
cases, except workers are now shown a video of the state
following the final action has completed.

Combining Results
The predicates formed by the pre-condition and preceding-
action filtering steps are reduced to a useful, well specified,
form that can be used to generate a graphical model simi-
lar to a plan graph. This graph defines constraints between
the ordering of actions, and thus allows us to assess whether
or not future sequences of actions are potentially valid in-
stances of the same high-level activity, greatly improving the
learning power of the system from a single instance.

Conclusion and Future Work
In this paper we have presented ARchitect, a system that
allows the crowd to formalize pre and post conditions to
actions observed in a video in nearly real-time. While the
systems and approaches that ARchitect is built on have pre-
viously been proven to be effective, our next step is to use
our current implementation to determine how best to present
the task of defining a set of preconditions to workers.

ARchitect allows an automated system to leverage a struc-
tured representation of the plan executed in a scene to find
multiple valid action execution orders, allowing the system
to be trained using one-off examples. Using this approach,
our goal is to create deployable intelligent systems can learn
on-the-fly in real-world situations, enabling them to work
using the crowd today, while scaling towards fully auto-
mated in the future.
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