Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

A First-Order Logic-Based Framework for Verifying Simulations

Hui Meen Nyew, Nilufer Onder, Soner Onder and Zhenlin Wang
Dept. of Computer Science
Michigan Technological University
Houghton, MI 49931
{hnyew,nilufer,soner,zlwang } @mtu.edu

Abstract

Modern science relies on simulation techniques for un-
derstanding phenomenon, exploring design options, or
evaluating models. Assuring the correctness of sim-
ulators is a key problem where a multitude of solu-
tions ranging from manual inspection to formal verifi-
cation are applicable. Formal verification incorporates
the rigor necessary but not all simulators are generated
from formal specifications. Manual inspection is read-
ily available but lacks the rigor and is prone to errors. In
this paper, we describe an automated verification sys-
tem (AVS) where the constraints that the system must
adhere to are specified by the user in general purpose
first-order logic. AVS translates these constraints into a
verification program that scans the simulator trace and
verifies that no constraints are violated. Computer mi-
croarchitecture simulations were successfully used to
demonstrate the proposed approach. This paper de-
scribes the preliminary results and discusses how arti-
ficial intelligence techniques can be used to facilitate
effective run-time verification of simulators.

Introduction

Contemporary computer processor design inherently relies
on simulating new processors before they are built. The de-
sign of a new architecture typically starts with instruction
set design. Instruction set development and system software
development usually go hand-in-hand by using a functional
simulator which implements the semantics of instructions
and allows running programs in a simulated environment.
The design and development of the processor architecture
is then carried out using sophisticated and detailed simula-
tors. These simulators are called cycle accurate simulators
and their implementation typically takes tens of thousands
of lines of high-level program code, such as C. Once sat-
isfactory results are obtained, the rest of the design is car-
ried out with the help of gate-level and circuit-level simu-
lators, which can provide detailed information about attain-
able clock speeds as well as the estimated power consump-
tion of the target processor before it is built.

Formal techniques are increasingly being used at vari-
ous levels of the design process (Mishra and Dutt 2008).

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1635

At the cycle-accurate level, domain specific architecture de-
scription languages allow efficient automatic generation of
cycle-accurate processors, at the same time making it easier
to apply formal validation techniques (e.g., Mimola, nML,
Lisa, Expression, ASIP Meister, TIE, Madl, ADL++, GNR).
However, because of the enormous complexity involved, ap-
plication of such formal techniques are limited. Further-
more, hand-coded simulators are still widely used as com-
panies rely on their developed code base to improve future
versions of existing processors. In this domain, verification
of simulators is still a difficult task and remains an area dom-
inated by ad-hoc techniques, except for simpler embedded
processors where a formal specification language is used to
describe the architectural details.

Our motivation therefore in developing AVS has been to
provide a formal means of verification outside the developed
simulator. In this paper, we describe a general purpose au-
tomated verification system (AVS) which can be widely ap-
plied both to traditional hand-written simulators as well as to
those generated from a formal specification. AVS has been
implemented and tested on microarchitecture simulations.

System overview

The AVS system verifies a set of user specified constraints
in a trace file generated by a simulator. The trace file
contains a sequence of events, £, represented as n-tuples:
¢ =< eq,---,e, > where, ¢; refers to an attribute of an
event, each ¢; € F;, and F; is the domain of e;. For exam-
ple, £ =< a,c,s,t > is an an event generated by a proces-
sor simulator where « is the address of an instruction, c is
the instance number of the instruction (each instruction can
execute multiple times), s is the pipeline stage, and ¢ is the
cycle time of the event. A constraint is a quantified state-
ment that includes arithmetic and Boolean expressions and
contains the domain facts specified by the user. For exam-
ple, the following constraint specifies that each instruction
that goes through the instruction decode (ID) stage should
go through the instruction issue (II) stage unless a rollback
that flushes the pipeline occurs.

forall z in T exists y in T,
z.stage==ID
iff y.addr==z.addr and y.count==z.count
and (y.stage==I1 or
(y.stage==ROLLBACK and y.time>=z.time));



In addition to modeling the pipeline, we coded resource
and dependency constraints. Resource constraints ensure
that only the available number of resources are used. For
example only as many memory instructions as the number
of memory ports can complete simultaneously. An example
of a dependency constraint is shown below. It specifies that
two dependent instructions must be ordered.

forall z in REG_T forall y in REG_T
exists x in STAGE_T exists w in STAGE_T,
(z.iter>y.iter and z.dir==SRC and
y.dir==DEST and z.reg==y.reg) implies
(x.addr==z.addr and x.count==z.count
and x.stage==EX and w.addr==y.addr
and w.count==y.count
and w.stage==EX and x.time>w.time);

We used Flex and Bison to implement a compiler for
AVS. The compiler takes the specification of first-order logic
statements and the constraints as input and creates one or
more independent C++ programs that perform the actual
simulation verification. The verification programs contain
nested loops to check the forall and exists conditions.
Further details can be found in the longer version of the pa-
per (Nyew et al. 2013).

The current AVS implementation uses a sliding window
(Mannila, Toivonen, and Inkeri Verkamo 1997) to check the
constraints using a window size specified by the user. The
advantage of using sliding windows is to allow the algo-
rithm to process very large input files or infinite streams.
The time and memory requirements are also significantly
reduced. Our next step will be to analyze the temporal re-
lationships in the constraints and automatically compute the
window size by using the maximum distance. Within a win-
dow, all permutations of events are verified against the con-
straints. A more efficient way would be to view the verifi-
cation process as an assignment of values to event variables
similar to constraint satisfaction problems (CSP). Using that
view, efficient CSP heuristics such as pruning, propagation,
and variable ordering can be used.

Currently, we leave it to the constraint programmer to feed
multiple parallel constraints separately as different inputs or
merge them as one input. In the short term, the former ap-
proach will help generate multiple verifiers to enforce differ-
ent types of constraints. For instance, we can generate one
verifier for time constraints and one for resources. Multiple
verifiers can run in parallel to take advantage of the comput-
ing power provided by modern machines.

Conclusion

We described a verification system for simulators. The sys-
tem uses domain facts written by the user in first-order logic
to scan the trace generated by a simulator and shows if any
constraints are violated. Our implementation and prelim-
inary experiments show that this approach is feasible. In
addition to being able to verify basic facts, we noticed that
the framework helps the user to iteratively improve the con-
straints. For instance, we had initially coded the constraint
to require each instruction’s ID stage to be followed by an
II stage. When the trace file failed the verification process,
we coded the second part of the constraint which tells that

1636

a processor “rollback” causes the pipeline to be flushed and
instructions are discarded before fully executing.

Our current work involves improving the performance of
AVS in two dimensions. First, microarchitecture simula-
tors typically generate gigabytes of data. We plan to apply
stream-mining techniques to address this issue. Second, the
user needs to specify a window size for the verifier to exe-
cute efficiently. For domains where a window size cannot be
specified or the window size is too large to bring efficiency
gains, it will be helpful to further restrict the language to
a precondition-effect based language such as Planning Do-
main Definition Language (PDDL) (Fox and Long 2003).

This work is closely related to runtime verification and
shares research directions in logics for monitoring, online
checking algorithms, extraction of observations necessary
for checking, and reduction of checking overhead (Sokol-
sky, Havelund, and Lee 2012). Our aim to explore the use
artificial intelligence techniques in four research areas. The
first area is the design of the constraint language because
the capabilities and efficiency of the verification algorithm
is determined by the language used. Commonly used for-
mal languages include temporal logics, interval logics, and
extended regular expressions. In our case, we use first order
logic to be able to allow the user specify domain-specific
functions that will improve performance (e.g., a function
that returns the dependents of an instruction). The second
area is ensuring that the verifier is sound and complete. In
this domain, soundness means that no constraints conflict
with each other and the instrumentation code for trace gen-
eration is correctly inserted. Completeness means that all
necessary constraints have been specified and all necessary
instrumentation code has been inserted. Third, we look at
ways of minimizing the constraints that are checked. One
way to do this is to remove redundant constraints that are
subsumed by others. Another way is to statistically sample
the events or the constraints that need to be checked. Fourth,
machine learning techniques can be used to automatically
generate constraints from traces.

References

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61-124.

Mannila, H.; Toivonen, H.; and Inkeri Verkamo, A. 1997.
Discovery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery 1(3):259-289.

Mishra, P., and Dutt, N. 2008. Processor Description Lan-
guages. San Francisco, CA, USA: Morgan Kaufmann.

Nyew, H. M.; Onder, N.; Onder, S.; and Wang, Z. 2013.
A first-order logic based framework for verifying microar-
chitecture simulations. Technical Report CS-TR-13-01,
Department of Computer Science, Michigan Technological
University. http://www.cs.mtu.edu/~hnyew/cs-tr-13-01.pdf.
Sokolsky, O.; Havelund, K.; and Lee, I. 2012. Introduction

to the special section on runtime verification. Int. J. Softw.
Tools Technol. Transf. 14(3):243-247.





