
Robot Motion Planning with Dynamics as Hybrid Search

Erion Plaku
Department of Electrical Engineering and Computer Science

Catholic University of America, Washington DC, 22064

Abstract

This paper presents a framework for motion planning
with dynamics as hybrid search over the continuous
space of feasible motions and the discrete space of a
low-dimensional workspace decomposition. Each step
of the hybrid search consists of expanding a fron-
tier of regions in the discrete space using cost heuris-
tics as guide followed by sampling-based motion plan-
ning to expand a tree of feasible motions in the con-
tinuous space to reach the frontier. The approach is
geared towards robots with many degrees-of-freedom
(DOFs), nonlinear dynamics, and nonholonomic con-
straints, which make it difficult to follow discrete-search
paths to the goal, and hence require a tight coupling of
motion planning and discrete search. Comparisons to
related work show significant computational speedups.

Introduction
The objective in motion planning is to compute a motion tra-
jectory from an initial state to a goal region that avoids col-
lisions with obstacles. In addition, motion planning needs to
take into account the underlying robot dynamics in order to
plan dynamically-feasible motions that the robot can execute
in the physical world. Robot dynamics express physical con-
straints on the feasible motions, such as bounding the veloc-
ity and directions of motions, ensuring a minimum turning
radius, or keeping the wheels from sliding sideways. Robot
dynamics are generally specified as differential equations of
the form ṡ = f(s, u), which describe how the continuous
state s changes as a result of applying control inputs u. As an
example, the differential equations of a car-like robot indi-
cate changes in position, orientation, and velocity as a result
of setting the acceleration and steering wheel controls.

Robot dynamics pose significant computational chal-
lenges to motion planning (Choset et al. 2005). The con-
straints on the feasible motions make it difficult to find con-
trols that drive the robot to the goal while avoiding colli-
sions. This is made even more challenging by the fact that
often the constraints are nonholonomic due to the control-
lable DOFs being less than the total DOFs. In addition, the
continuous state is generally high dimensional in order to

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model position, orientation, velocity, and other components
related to motion. The differential equations are also often
nonlinear as the continuous state includes the velocity.

The proposed approach builds on sampling-based motion
planning, which has had success in addressing these chal-
lenges (Choset et al. 2005; LaValle 2006). The key insight is
to search for a solution by selectively sampling and explor-
ing the continuous space of collision-free and dynamically-
feasible motions. Starting from the initial state, the search
is incrementally expanded as a tree. Each branch is gener-
ated by applying a control u to an existing state s in the
tree and integrating the differential equations of motion f
for a number of steps or until a collision is found. This en-
sures that each branch corresponds to a collision-free and
dynamically-feasible trajectory. The control u is sampled
usually at random to expand the search along different di-
rections. The search terminates when the tree reaches the
goal region. A solution trajectory is then obtained by con-
catenating the trajectories associated with the tree branches
connecting the initial state to the goal region.

Sampling-based motion planners rely on various heuris-
tics to guide the search. Rapidly-exploring Random Tree
(RRT) (LaValle and Kuffner 2001; LaValle 2011) and other
successful approaches have used nearest neighbors, distance
metrics, probability distributions, reachable sets, transition
costs, and other heuristics to guide the search (Hsu et al.
2002; Ladd and Kavraki 2005; Dalibard and Laumond 2008;
Jaillet, Cortes, and Simeon 2008; Berenson et al. 2009;
Shkolnik, Walter, and Tedrake 2009; Karaman and Fraz-
zoli 2010; Li and Bekris 2011; Şucan and Kavraki 2012;
Kiesel, Burns, and Ruml 2012).

Even though considerable progress has been made, it still
remains challenging to efficiently plan motions that take
into account nonlinear dynamics, nonholonomic constraints,
and high-dimensional continuous state spaces. The search in
many of these sampling-based approaches has been noted to
slow down as the dimensionality or the complexity of the
dynamics increase (Choset et al. 2005; LaValle 2011).

To achieve computational efficiency, the proposed ap-
proach treats motion planning as hybrid search over the con-
tinuous space of feasible motions and the discrete space
of a low-dimensional decomposition. This is motivated by
Syclop (Plaku, Kavraki, and Vardi 2010), which has been
shown to improve over RRT and other sampling-based mo-

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

1415

tion planners by combining sampling-based motion plan-
ning with discrete search. The low-dimensional decomposi-
tion in the proposed approach is obtained by a triangulation
of the workspace (the environment on which the robot op-
erates). The use of workspace decompositions is motivated
by their suitability for problems in mobile robotics, partic-
ularly when a challenge for motion planning is in avoiding
workspace collisions. The decomposition serves as a sim-
plified abstraction of the overall motion-planning problem
that will be used to guide the search more effectively. Each
region in the decomposition is associated with a heuristic
cost, which is initially based on the shortest-path distance
to the goal along the edges of the adjacency graph of the
workspace triangulation. The proposed hybrid search starts
by rooting a tree at the initial continuous state and adding the
corresponding workspace region to the frontier. Each step of
the hybrid search consists of selecting a region r from the
frontier using cost heuristics as guide followed by sampling-
based motion planning to expand the tree of feasible motions
in the continuous space from r. Each new region reached by
the tree is added to the frontier so that it becomes available
for selection in the next expansion step. The heuristic cost
associated with r is increased to allow expansions from dif-
ferent regions. The tree and the frontier of regions are ex-
panded in this way until the goal region is reached.

The proposed approach offers several improvements over
Syclop approaches (Plaku, Kavraki, and Vardi 2010; Plaku
2012). In particular, Syclop approaches compute at each iter-
ation an entire discrete path from the initial to the goal region
and then use sampling-based motion planning to expand the
search from regions along this path. Due to collision avoid-
ance and constraints imposed by dynamics, expansion along
certain discrete paths may be difficult or even impossible. As
the discrete paths also tend to be long, Syclop could waste
some valuable computational time before realizing that it
needs to abandon the current discrete path, due to lack of
progress, and request a new one. In contrast, the proposed
approach does not follow an entire discrete path but sim-
ply expands the search from one selected region using the
cost heuristics as guide. In addition, the proposed approach
is easier to implement as it does not require the complex es-
timates on coverage and free volume used by Syclop.

Decompositions in conjunction with sampling-based mo-
tion planning have also been used in (Kiesel, Burns, and
Ruml 2012) to bias the sampling in RRT toward regions
associated with low cost. Although the approach improves
upon RRT, it still inherits its limitations due to the use
of a distance metric and expansion from nearest neigh-
bors, which cause the tree to get stuck when dealing with
high-dimensional problems with nonlinear dynamics and
nonholonomic constraints. As a result, the approach has
been applied only to low-dimensional systems with essen-
tially linear dynamics. Discretization of the continuous state
space to solve motion-planning problems has also been
used in (Likhachev and Stentz 2008; Gochev, Safonova, and
Likhachev 2012). The discretization, however, limits the ap-
plicability of these approaches to low-dimensional systems
and does not allow taking into account complex dynamics.

Experimental results show that the proposed approach

considerably improves the computational efficiency over
state-of-the-art sampling-based motion planners, such as
RRT (LaValle and Kuffner 2001), fRRT (Kiesel, Burns, and
Ruml 2012), and Syclop (Plaku, Kavraki, and Vardi 2010;
Plaku 2012), in solving high-dimensional problems with
nonlinear dynamics and nonholonomic constraints.

Problem Specification
The planner considers a robot and its interactions with the
world as a black-box simulator that provides access to the
necessary components for motion planning while hiding de-
tails that do not affect motion planning. Such approach pro-
vides a general formulation that makes it possible to con-
sider a wide class of systems. The simulator is defined as

snew ← SIMULATOR(s, u, f, dt),

where the new state snew is obtained by applying the control
u to the state s for a short time duration dt. The simulator
relies on state-of-the-art numerical integration of the differ-
ential equations f to compute snew. To ensure accuracy, as
advocated in the literature, Runge-Kutta methods with an
adaptive step are used for the integration.

The motion-planning problem can now be stated as fol-
lows: Given an initial state, a goal region, and a simulator,
compute controls such that the resulting trajectory reaches
the goal, avoids collisions, and is dynamically feasible.

Example To facilitate presentation, this section provides
an example of the robot model used in the paper. A high-
dimensional model with nonlinear dynamics and nonholo-
nomic constraints is obtained by attaching several links to
resemble a snake (Fig. 1) and modeling the dynamics as a
car pulling trailers (adapted from (LaValle 2006, pp. 731)):

ẋ = v cos(θ0), ẏ = v sin(θ0), θ̇0 = v tan(ψ), v̇ = a, ψ̇ = ω

θ̇i =
v
d
(sin(θi−1)− sin(θ0))

∏i−1
j=1 cos(θj−1 − θj),

where x, y, θ0, v, ψ is the position, orientation, velocity, and
steering-wheel angle of the car; θi is the orientation of the i-th
trailer; N is the number of trailers; d = 0.05 is the hitch length; a
and ω are the acceleration and steering controls.

Method
The proposed approach simultaneously conducts a sampling-based
search over the continuous state space and a discrete search over a
workspace decomposition. Pseudocode is provided in Algo. 1.

Workspace Decomposition
The low-dimensional decomposition is obtained by a triangulation
of the workspace W . The triangulation treats the obstacles and the
goal region rgoal as holes inside the workspace bounding box to en-
sure that the triangles in the decomposition do not intersect with
obstacles or the goal region except at the boundaries. The open-
source Triangle package (Shewchuk 2002) is used for the compu-
tations.

The physical adjacency of the regions in the workspace decom-
position is captured by a graph G = (R,E), where

R = {r1, . . . , rm, rgoal}

denotes the regions of the workspace decomposition and

E = {(ri, rj) : ri, rj ∈ R share a vertex or an edge}

1416

Algorithm 1 Pseudocode for the proposed approach

1: G = (R,E)← WORKSPACEDECOMPOSITION(W)
2: (hcost(r1), . . . , hcost(rn))←HEURISTICCOSTS(G, rgoal)
3: T ← CREATETREE(sinit)
4: INSERT(Q, LOCATEREGION(sinit))
5: while TIME() < tmax and SOLVED() = false do
6: r ← SELECTREGIONBASEDONCOST(Q)
7: v ← SELECTVERTEX(vertices(T , r))
8: u← SELECTCONTROL(state(v))
9: for several steps do

10: [snew, collision]← SIMULATOR(state(v), u, dt)
11: if collision = true then break for loop
12: v ← ADDNEWVERTEX(T , snew, u, dt)
13: if CONTAINS(Q, region(v)) = false then
14: INSERT(Q, region(v))
15: hcost(r)← 2hcost(r); UPDATE(Q, r)

denotes the edges. The proposed approach also relies on a function
LOCATEREGION : W → R, which maps each workspace point
to the corresponding region in the decomposition. The function re-
turns an error code if the point is inside an obstacle or falls outside
the bounding box of W . LOCATEREGION can run in polylogarith-
mic time with respect to the number of triangles in the triangulation
(de Berg et al. 2008). To facilitate presentation, the shorthand no-
tation LOCATEREGION(s) is used to denote running the function
with the position component of the state s as the input.

Heuristic Costs
Each r ∈ R is associated with a heuristic cost, denoted as hcost(r),
which estimates the difficulty of reaching rgoal from r. Since G =
(R,E) provides a simplified discrete abstraction of the problem,
hcost(r) is defined as the length of the shortest path from r to rgoal
in G, where the cost of each (ri, rj) ∈ E is set to the Euclidean
distance between the centroids of ri and rj . The heuristic costs
are computed all at once by running Dijkstra’s shortest-path algo-
rithm with rgoal as the source. As discussed later in the section, if
the search is expanded from r, then hcost(r) is increased to allow
expansion from other regions in later iterations.

Search Data Structures
In the continuous state space S, the search is maintained as a
tree T of continuous states and motion trajectories. In particular,
each vertex v ∈ T is associated with a collision-free continuous
state, denoted as state(v). Each edge (vi, vj) ∈ T is associated
with a collision-free and dynamically-feasible trajectory, denoted
as traj(vi, vj), which connects state(vi) to state(vj). The tree is
rooted at the initial state sinit and is expanded by adding new ver-
tices and new edges. A solution is found when a vertex v that sat-
isfies the motion-planning goal is added to T . In that case, the tra-
jectory to the goal is obtained by concatenating the trajectories as-
sociated with the tree edges connecting the root vertex to v.

The vertices in T are also grouped according to the regions that
they have reached, i.e.,

vertices(T , r) = {v : v ∈ T ∧ region(v) = r},

where region(v) is computed as LOCATEREGION(state(v)). To
save computation time, these sets are updated on-the-fly as new
vertices are added to T . In particular, when a vertex v is added to
T , it is also added to vertices(T , region(v)).

In the discrete space, the search is maintained as a region fron-
tier, denoted by Q, which includes all the regions that have been
reached by T , i.e.,

Q = {r : r ∈ R ∧ |vertices(T , r)| > 0}.

The frontier is also updated on-the-fly by adding each region to Q
as soon as it is reached by T , if not already there. A hash map data
structure is used to determine in almost constant time if a region is
already in the frontier Q.

Overall Search
The search starts by adding the initial state sinit to T . The corre-
sponding region rinit, which is computed as LOCATEREGION(sinit),
is added to Q. Each iteration consists of selecting a region r ∈ Q
from which to expand the search followed by sampling-based mo-
tion planning to expand T from vertices(T , r).

A probabilistic scheme is used to select a region r from Q with
probability depending on hcost(r), i.e.,

prob(r) =
1/hcost(r)∑

r′∈Q 1/hcost(r′)
. (1)

Such scheme selects more frequently regions associated with low
costs, which provides the greedy component to the search. At the
same time, each region has a nonzero probability of being selected,
which provides the methodical component necessary to ensure that
the search does not get stuck due to greedy choices. From an
implementation perspective, the probabilistic selection can run in
O(log(|Q|)) time by arranging the regions in Q as leaf nodes in
a self-balancing binary search tree. Each node b in the binary tree
contains the sum of the costs of its children bleft and bright. To select
a region, a number w is generated uniformly at random from 0 to
c, where c is the cost at the top of the binary tree. The selection
moves recursively to the left or to the right subtree until it reaches
a leaf node. If b is a leaf node, then the region associated with b
is selected. Otherwise, if w < cost(bleft), the selection continues
recursively onto bleft with w as the input number. If w ≥ cost(bleft),
the selection continues recursively onto bright with w− cost(bleft) as
the input number.

After selecting a region r from Q, sampling-based motion
planning is invoked to expand a collision-free and dynamically-
feasible trajectory from vertices(T , r). The sampling-based mo-
tion planner selects a vertex v from vertices(T , r) and then sam-
ples a control input u. The vertex selection as well as control
sampling are done uniformly at random, as it is commonly the
case in sampling-based motion planning. Other selection and sam-
pling strategies are possible, as discussed in (Choset et al. 2005;
LaValle 2006). The tree T is expanded from the vertex v by apply-
ing the control input u to state(v) for several steps or until a colli-
sion is found. This gives rise to a collision-free and dynamically-
feasible trajectory, which is computed by integrating the differen-
tial equations of motion. To ensure accuracy, as advocated in the
literature, Runge-Kutta methods with an adaptive step are used for
the integration. Intermediate collision-free states are added as new
vertices to T .

If a new region rnew is reached, then rnew is added to Q to give
the approach the possibility to expand the search from new regions.
The search continues to expand Q and T until rgoal is reached. In
that case, the solution trajectory is obtained by concatenating the
collision-free and dynamically-feasible trajectories associated with
the tree edges that connect the root vertex to a vertex v in rgoal.

After each motion-planning expansion, hcost(r) is increased in
order to provide the approach with the flexibility to expand the
search from other regions. This is essential to ensure an effective
exploration, since, due to collision avoidance and dynamics, it may

1417

be difficult or even impossible to expand the search from a partic-
ular region r.

Probabilistic Completeness
Due to space limitations, this section provides only an outline of
the proof of probabilistic completeness for the proposed approach.
The proof is based on the theoretical framework developed in (?;
Ladd and Kavraki 2005), which shows that a motion planner that
produces any random walk in Sfree is probabilistically complete. To
achieve the random-walk criterion, it suffices to show that, as time
tends to∞, every state in T is selected infinitely often and that all
possible control inputs can be eventually applied from each state.

The condition on control inputs is satisfied by the uniformly-at-
random selection strategy employed in the proposed approach. To
show that each state in T is selected infinitely often, first note that
each region r ∈ Q has a nonzero probability of being selected at
each iteration (see Algo 1:6 and Equation 1). Moreover, a state is
selected from r uniformly at random. As a result, each state in T
has a nonzero probability of being selected at each iteration, which
ensures that it will be selected infinitely often as time tends to∞.

Experiments and Results

(b) 26% obstacle coverage

(d) 48× 48 maze

Figure 1: Instances of the “random obstacles” and “ran-
dom mazes” benchmarks. Obstacles shown in blue, robot in
green, goal in red, triangulation in gray.

Experimental validation is provided by comparing the proposed
approach to related work. The experiments vary the benchmark
type and difficulty as well as the DOFs of the robot to show how
the methods scale.

Benchmarks The “random obstacles” and “random mazes”
benchmarks are used in the experiments as they provide challeng-
ing motion-planning problems. Fig. 1 shows some examples. The
benchmarks are parametrized in order to generate workspaces of
increasing difficulty, where the robot has to wiggle its way through

numerous obstacles and narrow passages to reach the goal. In addi-
tion to collision avoidance, the differential constraints imposed by
the robot dynamics make these problems even more challenging.

The “random obstacles” benchmark is parametrized by the per-
centage p of the workspace area covered by obstacles. Random ob-
stacles are added inside the workspace until the percentage p is
reached. The experiments use random obstacles with coverage per-
centages varying from 20% to 32%. The geometry of each robot
link is set to a rectangle with dimensions 1.2 and 0.2.

The “random mazes” benchmark is parametrized by the number
of dimensions p. A p × p maze is generated using a randomized
version of the Kruskal’s algorithm. Additional passages are created
by removing at the end 20% of the walls, selected at random. The
experiments use random mazes with dimensions varying from 32×
32 to 64× 64. In the case of random mazes, the geometry of each
robot link is set to a rectangle with dimensions 0.75 and 0.125.

Measuring Computational Efficiency Experiments vary
the benchmark type, the parameter value associated with each
benchmark, and the DOFs of the robot. For a fixed benchmark type,
parameter value, and DOFs, 30 random instances are generated. In
each instance, the robot is placed randomly at either the bottom
or the top of the workspace while the goal region is placed ran-
domly at the opposite side so that the robot has to move from one
end to the other end of the workspace. Each method is run on each
problem instance until the problem is solved or a timeout of 200s is
reached. Due to the probabilistic nature of the methods, to avoid the
influence of outliers, the 5 lowest and the 5 highest running times
are removed, and the computational efficiency of a method for a
fixed benchmark type, parameter value, and DOFs is measured as
the average of the remaining times. All the experiments are run
on an Intel Core 2 Duo machine (CPU: P8600 at 2.40GHz, RAM:
8GB) using Ubuntu 12.10. Code is compiled with GNU g++-4.7.2.

Methods used in the Comparisons The approach is first
compared to RRT (LaValle and Kuffner 2001; LaValle 2011),
which is one of the most successful sampling-based motion plan-
ners. The RRT implementation, as advocated in literature, uses the
connect version, which extends each trajectory until it reaches the
sampled state or finds a collision. In addition, goal bias is used to
guide RRT toward the goal. Efficient data structures are used for
nearest neighbors (Beygelzimer, Kakade, and Langford 2006).

Comparisons are included with a recent version of RRT, named
fRRT, which biases the sampling toward regions associated with
low cost (Kiesel, Burns, and Ruml 2012). The implementation fol-
lows the details in the technical report.

The approach is also compared to Syclop (Plaku, Kavraki, and
Vardi 2010; Plaku 2012), which introduced the idea of using dis-
crete search to guide sampling-based motion planning. Syclop was
shown to solve challenging motion-planning problems with dy-
namics significantly faster than other state-of-the-art sampling-
based motion planners. The experiments use the most recent ver-
sion (Plaku 2012).

Results as Function of Benchmark Difficulty Fig. 2 pro-
vides a summary of the results when varying the benchmark diffi-
culty. As the results show, RRT is able to efficiently solve the ini-
tial “random obstacles” problems. As the coverage percentage in-
creases, however, the running time of RRT increases rapidly, even-
tually timing out. As RRT is guided by nearest neighbors, it be-
comes increasingly difficult to find new ways to expand the search
toward the goal. After an initial growth, RRT gets stuck in the nar-
row passages. These problems become more pronounced in the
case of the “random mazes” benchmark. By expanding the search
from the nearest vertex to a randomly sampled state, RRT is likely
to encounter maze walls, and thus get stuck trying to find a way

1418

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 21 22 23 24 25 26 27 28 29 30 31 32

ti
m

e
 [

s
]

obstacle coverage [%]

[10 DOFs--random obstacles] timeout

RRT
fRRT

Syclop
new

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

32
2

36
2

40
2

44
2

48
2

52
2

56
2

60
2

64
2

ti
m

e
 [
s
]

maze dims

[10 DOFs--random mazes] timeout

RRT
fRRT

Syclop
new

Figure 2: Impact of the benchmark difficulty on the compu-
tational efficiency. The label new indicates the results of the
proposed approach.

out of the maze. Recall that 20% of the maze walls were knocked
down when creating the benchmark instances in order to provide
alternative ways out of the maze. Nevertheless, RRT remains stuck
in the maze and the running time increases rapidly as the instances
become more challenging.

fRRT (Kiesel, Burns, and Ruml 2012) improves upon RRT. By
biasing the sampling toward regions with low-cost, fRRT more ef-
fectively guides the search toward the goal. fRRT, however, still
inherits the problems of RRT in using a distance metric and near-
est neighbors to expand the search. As a result, the exploration in
fRRT starts being less effective as the problem difficulty increases.

Syclop considerably improves over the running time of RRT and
fRRT. Similar improvements over RRT and other state-of-the-art
sampling-based approaches were also shown in (Plaku, Kavraki,
and Vardi 2010; Plaku 2012). By using discrete search to guide
sampling-based motion planning, Syclop is able to more efficiently
solve the problem instances. As the benchmark difficulty increases,
Syclop starts to slow down but not as rapidly as RRT or fRRT. Due
to collision avoidance and constraints imposed by dynamics, ex-
pansion along certain discrete paths may be difficult or even im-
possible. As the discrete paths also tend to be long, Syclop wastes
some valuable computational time before abandoning the current
discrete path, due to lack of progress, and requesting a new one.
These problems become more pronounced in the case of the “ran-
dom mazes” benchmarks, as many discrete plans, due to collision
avoidance and differential constraints, cannot be easily followed.

Fig. 2 shows that the proposed approach yields significant com-
putational speedups over RRT, fRRT, and Syclop. The improve-
ments become more pronounced as the difficulty of the problem
is increased.1 By using cost heuristics, the approach is often able
to expand the search rapidly towards the goal. In cases where
sampling-based motion planning is not able to expand the search
to a particular region in the frontier, its cost is increased to provide
the approach with the flexibility to expand the search from new re-
gions. Moreover, rather than following an entire discrete path as
Syclop does, the approach simply expands the search from the se-
lected region. This gives the approach greater flexibility to explore
new regions and discover new ways to reach the goal.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 6 7 8 9 10 11 12 13 14
ti
m

e
 [
s
]

DOFs

[26% coverage by random obstacles]

RRT
fRRT

Syclop
new

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 6 7 8 9 10 11 12 13 14

ti
m

e
 [
s
]

DOFs

[48x48 random mazes] timeout

RRT
fRRT

Syclop
new

Figure 3: Impact of the problem dimensionality on compu-
tational efficiency. The label new indicates the results of the
proposed approach.

Results as Function of Problem Dimensionality Fig. 3
provides a summary of the results when increasing DOFs. As more
and more links are added to the robot, it becomes increasingly dif-
ficult to navigate through narrow passages and reach the goal. The

1The proposed approach is faster than RRT, fRRT, and Syclop
even for the simpler problem instances, but, due to the scale of
the graph, those results are harder to see. As an example, for the
problem with 26% coverage and 6DOFs, the running times of the
proposed approach, RRT, fRRT, and Syclop are 0.14, 3.30s, 1.15s,
and 1.05s, respectively.

1419

 0

 3

 6

 9

 12

 15

 18

 21

 1 2 3 4 5 6

ti
m

e
 [

s
]

triangle area

[26% coverage by random obstacles--12DOFs]

Syclop
new

Figure 4: Impact of the workspace triangulation granularity
on the computational efficiency.

results in Fig. 3 are presented for the “random obstacles” bench-
mark with 26% obstacle coverage and the 48×48 “random mazes”
benchmark. Similar trends are observed for the other benchmark
instances but are not shown here due to space constraints.

As shown in Fig. 3, the running time of RRT increases rapidly
with the number of DOFs and times out on the high-dimensional
problems. fRRT improves upon RRT, but still has difficulty solving
challenging problems and times out in several instances. Syclop is
faster than RRT and fRRT, but the running time still starts to slow
down as more and more DOFs are added to the robot. The proposed
approach yields significant speedups over RRT, fRRT, and Syclop,
and efficiently solves even the high-dimensional problems.

Results as Function of Decomposition Granularity
Fig. 4 summarizes the results when varying the granularity of the
workspace triangulation. The results show that the proposed ap-
proach and Syclop work well for a wide range of triangulations.
As the triangulation becomes more fine-grained, as also noted in
(Plaku, Kavraki, and Vardi 2010), the running time of Syclop starts
to increase since it becomes more difficult to follow the discrete
plans. The proposed approach does not suffer from this problem as
it uses the region frontier to determine where to expand the search.

Discussion
This paper presented a general framework for motion planning with
dynamics as hybrid search over the continuous space of feasible
motions and the discrete space of a low-dimensional decomposi-
tion. The hybrid search expanded a frontier of decomposition re-
gions using sampling-based motion planning to reach regions in
the frontier. Cost heuristics based on a low-dimensional decompo-
sition were used to effectively guide the search toward the goal.
Comparisons to related work showed significant improvements.

The proposed approach opens up several venues for further re-
search. In particular, the approach could benefit from more ad-
vanced discrete search techniques and improved heuristics to more
effectively couple discrete search and sampling-based motion plan-
ning. Pruning or branch-and-bound techniques could be used in
connection with sampling-based motion planning to determine tree
vertices and regions from which to expand the search.

Another direction is to investigate optimality. The focus of this
work was on computational efficiency, as it is generally the case in
sampling-based motion planning. Recent analysis has shown that
rewiring RRT connections leads to an optimal algorithm, referred
to as RRT* (Karaman and Frazzoli 2010). Rewiring, however, sig-
nificantly increases the computational cost, rendering RRT* im-
practical in the case of motion planning with complex dynam-
ics where even RRT has difficulty finding a solution. Moreover,

rewiring causes gaps in the solution since due to constraints im-
posed by dynamics and collision avoidance it is not always pos-
sible to steer the system to a given state. Closing the gaps signifi-
cantly increases the computational cost (?). The proposed approach
tends to produce short solutions due to the cost heuristics it uses to
guide the search. It may be possible to add a gcost(r) component,
which expresses the lowest cost path to r, which would then run
the discrete search in an A* formulation, i.e., gcost(r) + hcost(r).
There are, however, some challenges. In particular, it is important
to maintain the computational efficiency since gcost(r) + hcost(r)
could slow the search as it will penalize long solutions, which may
be easier to obtain. We will tackle these challenges as part of our
future work.

References
Berenson, D.; Srinivasa, S.; Ferguson, D.; Romea, A. C.; and
Kuffner, J. 2009. Manipulation planning with workspace goal
regions. In IEEE International Conference on Robotics and Au-
tomation, 618–624.
Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover trees
for nearest neighbor. In Interantional Conference on Machince
Learning, 97–104.
Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Burgard, W.;
Kavraki, L. E.; and Thrun, S. 2005. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press.
Şucan, I. A., and Kavraki, L. E. 2012. A sampling-based tree
planner for systems with complex dynamics. IEEE Transactions
on Robotics 28(1):116–131.
Dalibard, S., and Laumond, J.-P. 2008. Control of probabilistic
diffusion in motion planning. In International Workshop on Algo-
rithmic Foundations of Robotics, volume 57 of Springer Tracts in
Advanced Robotics. 467–481.
de Berg, M.; Cheong, O.; van Kreveld, M.; and Overmars, M. H.
2008. Computational Geometry: Algorithms and Applications.
Springer-Verlag, 3 edition.
Gochev, K.; Safonova, A.; and Likhachev, M. 2012. Planning with
adaptive dimensionality for mobile manipulation. In IEEE Inter-
national Conference on Robotics and Automation, 2944–2951.
Hsu, D.; Kindel, R.; Latombe, J. C.; and Rock, S. 2002. Random-
ized kinodynamic motion planning with moving obstacles. Inter-
national Journal of Robotics Research 21(3):233–255.
Jaillet, L.; Cortes, J.; and Simeon, T. 2008. Transition-based RRT
for path planning in continuous cost spaces. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2145–2150.
Karaman, S., and Frazzoli, E. 2010. Optimal kinodynamic mo-
tion planning using incremental sampling-based methods. In IEEE
Conference on Decision and Control, 7681–7687.
Kiesel, S.; Burns, E.; and Ruml, W. 2012. Abstraction-guided
sampling for motion planning. In Symposium on Combinatorial
Search. also as UNH CS Technical Report 12-01.
Ladd, A. M., and Kavraki, L. E. 2005. Motion planning in the
presence of drift, underactuation and discrete system changes. In
Robotics: Science and Systems, 233–241.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kinodynamic
planning. International Journal of Robotics Research 20(5):378–
400.
LaValle, S. M. 2006. Planning Algorithms. Cambridge, MA:
Cambridge University Press.
LaValle, S. M. 2011. Motion planning: The essentials. IEEE
Robotics & Automation Magazine 18(1):79–89.

1420

Li, Y., and Bekris, K. E. 2011. Learning approximate cost-to-go
metrics to improve sampling-based motion planning. In IEEE In-
ternational Conference on Robotics and Automation, 4196–4201.
Likhachev, M., and Stentz, A. 2008. R* search. In National Con-
ference on Artificial Intelligence, volume 1, 344–350.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2010. Motion planning
with dynamics by a synergistic combination of layers of planning.
IEEE Transactions on Robotics 26(3):469–482.
Plaku, E. 2012. Guiding sampling-based motion planning by for-
ward and backward discrete search. In International Conference on
Intelligent Robots and Applications, volume 7508 of Lecture Notes
in Artificial Intelligence. 289–300.
Shewchuk, J. R. 2002. Delaunay refinement algorithms for tri-
angular mesh generation. Computational Geometry: Theory and
Applications 22(1-3):21–74.
Shkolnik, A.; Walter, M.; and Tedrake, R. 2009. Reachability-
guided sampling for planning under differential constraints. In
IEEE International Conference on Robotics and Automation,
2859–2865.

1421

