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Abstract

We focus on effective sample-based planning in the
face of underactuation, high-dimensionality, drift, dis-
crete system changes, and stochasticity. These are hall-
mark challenges for important problems, such as hu-
manoid locomotion. In order to ensure broad applica-
bility, we assume domain expertise is minimal and lim-
ited to a generative model. In order to make the method
responsive, computational costs that scale linearly with
the amount of samples taken from the generative model
are required. We bring to bear a concrete method that
satisfies all these requirements; it is a receding-horizon
open-loop planner that employs cross-entropy optimiza-
tion for policy construction. In simulation, we empiri-
cally demonstrate near-optimal decisions in a small do-
main and effective locomotion in several challenging
humanoid control tasks.

Humanoid locomotion tasks are difficult to plan in effec-
tively due to a number of properties. Because humanoids
have high-dimensional state and action spaces, methods that
are effective in smaller domains may fail due to the curse of
dimensionality. Dynamic legged walking has characteristics
that violate assumptions made by traditional motion plan-
ning approaches (Ladd and Kavraki 2005). Discrete system
changes are common in locomotion and occur in any domain
where hard contacts or joint limits exist, which produces
nonsmooth and nondifferentiable dynamics. In addition to
the properties listed above, we are also concerned with the
setting where stochasticity exists in the system dynamics,
which violates any assumption of determinism. Character-
istics of the policy space defining behavior in humanoid
locomotion tasks introduce further difficulties, as the sub-
space of effective policies is very small in the entire space
of policies (Erez 2011), and the landscape of policies with
respect to their quality has many local optima (Erez, Tassa,
and Todorov 2011).

Many planning algorithms require large amounts of ex-
pert knowledge to function. Common examples are knowl-
edge of inverse kinematics, or shaping functions that ap-
proximate a value function. Aside from limiting applica-
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bility, these requirements may introduce fragility as fail-
ure is risked if the provided information is inaccurate. To
make these planning algorithms general, simple to imple-
ment, and robust, we are concerned with approaches that re-
quire minimal domain knowledge, limited to a generative
model (equivalent to a simulator). Because time sensitivity
is important, we consider methods that parallelize simply
and have computational cost linear in the number of sam-
ples taken from the generative model.

The approach used here plans in an open-loop manner, us-
ing cross-entropy (Rubinstein 1997) to optimize a sequence
of actions with respect to the cumulative numeric reward ob-
tained by the policy in simulation. As such, it is state agnos-
tic and does not reason directly about dynamics (including
whether or not they are deterministic, stochastic, continu-
ous, or discontinuous), and is not directly impacted by the
number of state dimensions in the domain. The approach re-
quires only a generative model and has computational cost
linear in the number of samples from the generative model
(depending on the representation of the policy, costs may
be super-linear in the planning horizon, although this value
is independent of the samples from the generative model).
As we demonstrate empirically in simulation, the method
achieves near-optimal results in a deterministic small do-
main, and successfully produces plans for humanoid loco-
motion in several settings, including domains with stochas-
ticity as well as erroneous generative models.

Background
This section introduces background material needed to apply
an optimization algorithm to a sequential planning problem.

Cross-Entropy Optimization
Originally designed for rare event simulation (Rubinstein
1997), the cross-entropy method (CE) was later extended
to perform global optimization by casting high value points
as the rare event of interest (Rubinstein 1999). While the
algorithm can be described generally at the cost of sim-
plicity (Boer et al. 2005), we focus the version described
in Algorithm 1. Briefly, the algorithm functions iteratively
by: sampling a set of points a1...an from the distribution
p, based on its current parameterization Φg−1 (line 3); as-
signing values to v1...vn to a1...an according to the (poten-
tially stochastic) evaluation function f (line 4); selecting the
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ρ fraction of “elite” samples (lines 5 and 6); and then com-
puting the new parameterization of p, Φ̂g used in the next
iteration based on the elite samples (line 6).

Algorithm 1 Cross-entropy

1: function OPTIMIZE(p, Φ̂0, f, ρ, n,G)
2: for g = 1→ G do
3: a1...an ∼ p(·|Φ̂g−1), a← a1...an
4: v1...vn ← f(a1)...f(an), v← v1...vn
5: sort a according to v
6: Φ̂g ← argmaxΦ̂

∏�nρ�
i=1 p(ai|Φ̂)

return a1

The algorithm requires several items to be specified a pri-
ori. First among them is the type of distribution p, which de-
fines main characteristics of how a is drawn. Ideally, p(·|Φ̂0)
would be the distribution that generates optimal samples in
the domain (although, if that were known, no optimization
would be necessary). Since, generally, this distribution is not
known, or is difficult to sample from, other distributions are
used. When domain expertise is limited, it should be ensured
that p(·|Φ̂0) has good support over the entire sample space.
The update rule for the parameter vector Φ̂g in line 6 is de-
fined as the maximum likelihood estimate for producing the
elite samples in the current generation. In the case that p is a
multivariate Gaussian, Φ̂g is updated according to:

μg =

∑�nρ�
i=1

Xi

�nρ�

σ2
g =

∑�nρ�
i=1

(Xi−μg)
T (Xi−μg)

�nρ�

Φ̂g = 〈μg, σ
2
g〉.

In this case, computing Φ̂g has a polynomial cost in the di-
mension of p, which is assumed to be independent of n and
G. In practice, the costs for computing Φ̂g are not computa-
tionally significant.

There are a number of other parameters for CE. The pa-
rameter ρ determines the proportion of samples that are se-
lected as elite, and is important because it impacts the rate at
which Φ̂g changes from generation to generation. The vari-
able n defines the size of each generation; it is important
that this number be large enough so that the early genera-
tions have a good chance of sampling near the optimum. The
number of generations evaluated by the algorithm is defined
by G.

These parameters must all be set sensibly to find a good
solution for the domain of interest. While doing so, trade-
offs in solution quality, computational requirements, con-
vergence rates, and robustness must all be considered. To
simplify the application of CE to various domains, there are
methods that automatically adjust (or remove) these param-
eters. While CE employs an all-or-nothing approach over
samples (defining the top ρ as elite and discarding the rest), ρ
can be removed by weighing samples continuously, placing
it in a broader family of other algorithms (Stulp and Sigaud

2012). While we use a fixed number of generations in opti-
mization, another common method is to examine the stabil-
ity of Φ̂ or v from generation to generation, and terminate
when the change of the variable drops below a threshold.
The fully automated cross entropy method further reduces
the need to manually define parameters to CE by adjusting
them automatically during execution (Boer et al. 2005).

CE has a number of beneficial properties. By attempting
to perform global optimization, it avoids convergence to lo-
cal optima. Because humanoid walking has many local op-
tima that correspond to poor solutions, local search methods
require expertise in the form of shaping functions to initial-
ize search near the global optimum. Another property of CE
is that its computational costs are linear in the number of
samples Gn, and the method parallelizes trivially within a
generation, meaning the optimization itself is not computa-
tionally intensive.

To our knowledge, there are no guarantees in terms of
the rate of convergence or sample complexity. While proofs
have shown convergence of CE to optimal results in both
discrete (Costa, Jones, and Kroese 2007) and continuous do-
mains (Margolin 2005), the conditions required are fairly
strong and are violated in the experiments discussed here.
Therefore, we are unable to make claims of optimality, even
at the limit, for the CE in the settings considered.

Markov Decision Processes
A Markov decision process (MDP) M is described by a five-
tuple 〈S,A, T,R, γ〉, where S ⊆ R|S| is the state space (|S|
is the number of dimensions in the state space). A ⊆ R|A|
is the action space, T is the transition distribution, with
T (s′|s, a) denoting the distribution over next states s′ in-
duced by taking action a in state s. The deterministic reward
function R(s, a)→ R defines the immediate reward for tak-
ing action a in state s, and γ ∈ [0, 1) is the discount factor.

A policy dictates how the agent behaves in an MDP. We
refer to π : S → A as a closed-loop policy, and π : Z+ <
H → A as an open-loop policy. Since we are primarily con-
cerned with open-loop planning, we will refer to an open-
loop policy simply as a “policy.” In this work, we are con-
cerned with finding policies that maximize the finite horizon
discounted cumulative reward,

∑n
t=0 γ

trt which we refer to
as the return. The only domain knowledge assumed here is
a generative model, which provided with any (s, a) returns
r = R(s, a) and s′ ∼ T (s, a). The generative model only
allows sampling from R and T , and does grant access to in-
formation about them, such as their form.

Local Planning with Cross-Entropy
A major distinction exists between two approaches to plan-
ning, which we refer to as global and local. In global plan-
ning, the objective is to find a closed-loop policy that covers
the entire state space of the MDP π : S → A. CE has been
used to perform global planning in both discrete and contin-
uous MDPs by optimizing over parameters specifying of a
policy (Stulp and Sigaud 2012).

One limitation of global planning is that the function rep-
resenting π must be both expressive enough to represent ef-
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fective closed-loop policies, and simple enough that an ef-
fective parameterization can be found quickly. Additionally,
because global planners produce a mapping from all points
in the state space to an action, such methods must consider
the entire state space of the problem when producing a pol-
icy. In the absence of domain expertise, these factors com-
bine to make the approach difficult to utilize in high dimen-
sional domains requiring precise control, such as humanoid
locomotion (Erez 2011).

Instead of developing a policy for all states simultane-
ously, local planners only attempt to develop a policy for
a single query state (and perhaps a region around it) at any
point in time π : S′ ⊆ S → A. Most commonly, local plan-
ners operate according to a receding-horizon, meaning that
at each time step, planning is conducted to a maximum of
H of steps into the future. By doing so, costs depend on the
planning horizon H , instead of |S|, sidestepping the curse of
dimensionality (Kearns, Mansour, and Ng 1999). One com-
mon way of performing local planning is is by the use of
rollouts, which are length-H sequences of states, actions,
and rewards (Tesauro and Galperin 1996).

Cross-entropy has been used for planning in a number of
complex domains. A notable success of CE in global plan-
ning was the construction of an effective value function ap-
proximator for the challenging benchmark problem, Tetris
(Szita and Lőrincz 2006). In applications more similar to
what we consider here, CE has been used for local plan-
ning in MDPs in domains as complicated as simulated he-
licopter control and navigation (Kobilarov 2011). Addition-
ally, CE has been been used in place of a uniform distribu-
tion to improve the performance of rapidly exploring ran-
dom trees (Kobilarov 2012). A variant of covariance ma-
trix adaptation evolution strategy, a method related to CE,
has also been used for designing both skeletons and gaits
(Wampler and Popović 2009), although it leverages more
domain knowledge than the approach presented here.

Any general optimization algorithm, including CE, can be
used to perform open-loop receding-horizon planning. An
application of CE optimization to sequential decision mak-
ing in an MDP is shown in Algorithm 2, and forms the algo-
rithm of interest in this work.

Applying CE to local planning does not require any
changes to the algorithm itself; only the manner it is used
changes. The evaluation function f now performs a com-
plete rollout according to the action sequence and evaluates
the sequence according to its return (lines 4, 9-16); parame-
ters necessary for the rollout are bound by the agent, and f is
left to accept a vector a (encoding the open-loop policy) as
a parameter during optimization in CE (line 4). For the fixed
planning horizon H , optimization is now conducted over
length-H action sequences (vectors of length |A|H) with re-
spect to their returns (line 5). After optimization is complete,
the first action in the sequence (line 6) is performed in the
true domain (line 7), and the process repeats anew from the
resulting state (line 8).

Using CE for local planning has a number of properties
worth discussing. The form of planning discussed here per-
forms global optimization, but local planning. Both prop-
erties reduce the need for domain expertise, as global opti-

Algorithm 2 Open-Loop Planning with CE

1: function AGENT(M,H, s0, p, Φ̂0, ρ, n,G)
2: s← s0
3: loop
4: f ← λa. ROLLOUT(a, s, 0, H,M )
5: a← OPTIMIZE(p, Φ̂0, f, ρ, n,G)
6: a′ ← a1...a|A|
7: s′ ∼ T (s, a′)
8: s← s′
9: function ROLLOUT(a, s, h,H,M )

10: if h ≥ H then
11: return 0
12: R←MR, T ←MT , A←MA, γ ←Mγ

13: a′ ← ah|A|...a(h+1)|A|
14: r ← R(s, a′)
15: s′ ∼ T (·|s, a′)
16: return r + γ ROLLOUT(s′, a, h+ 1, H,M )

mization removes the need for shaping, while local planning
removes the need for carefully constructed functions repre-
senting closed-loop policies.

Since v is only a result of actual returns observed in the
environment, the algorithm cannot produce divergent esti-
mates of policy quality, which occurs among algorithms that
extrapolate estimates (Gordon 1995), and does so while pro-
ducing high quality policies. Because open-loop planners do
not consider state, they are state agnostic, and have no de-
pendence on state in their planning costs, and operate iden-
tically in continuous, discrete, hybrid, and partially observ-
able state spaces (assuming a reset to the start state is possi-
ble in the generative model). On the other hand, because the
approach does not consider state, stochastic domains with
certain structures can cause convergence to suboptimal poli-
cies (Weinstein and Littman 2012), although we have never
observed this issue in practice. Because function approxima-
tors are not used to represent policies, any H-step sequence
of actions can be represented.

Related Work
In this section, we discuss a number of general purpose plan-
ning methods for continuous Markov decision processes that
have similar properties to CE.

Hierarchical Open-Loop Optimization
Hierarchical open-loop optimization (HOLOP) also uses an
optimization algorithm to perform open-loop planning (We-
instein and Littman 2012). Instead of CE, HOLOP uses hi-
erarchical optimistic optimization (HOO) to perform opti-
mization (Bubeck and Munos 2010). The primary advan-
tages of HOO as an optimizer are its tight performance guar-
antees and built-in exploration policy. Based on the metric of
regret (the cumulative difference between selected actions
and optimal), HOO is optimal, with a rate of Õ(

√
T ), where

T is the total number of actions taken (Bubeck et al. 2008).
Although the regret rate is independent of |A| and H , it only
holds after T >> |A|H .

1438



Although HOLOP has excellent theoretical properties, it
has characteristics that make planning slow in practice. Un-
like CE, the method does not parallelize simply, as each
choice is based on the entire proceeding history. The fact
that all previous data is examined during each query also
makes the computational cost polynomial in the number of
rollouts performed (although a variant reduces the cost to
T log T ). Additionally, the impact of new data is smaller
in HOO. Whereas CE updates the distribution over all di-
mensions over the entire sample space after each genera-
tion, in HOO each new sample can only refine the policy
in one region of one dimension. Both of these issues mean
that in practice refining the policy takes a great deal of time
and samples for HOO as compared to CE. Essentially, while
HOO has better theoretical guarantees, CE is more useful in
larger domains or when computation time is a concern.

Differential Dynamic Programming
Differential dynamic programming (DDP), a form of con-
trol related to model predictive control, has been used for
successful control in helicopter flight as well as humanoid
locomotion (Abbeel et al. 2007; Erez, Tassa, and Todorov
2011). Although DDP also optimizes return with respect to
sequences of actions, it is not state agnostic, as it factors in
state information with the assumption of quadratic dynam-
ics in the domain. DDP performs local optimization, which
introduces the need for domain expertise in the form of shap-
ing in domains with many local optima (Erez 2011).

In domains with discrete system changes, stochasticity
must be artificially introduced to smooth domains with dis-
continuities in the dynamics. This noise becomes another pa-
rameter that must be controlled, because it is desirable to add
as little noise as possible, but introducing too little noise may
result in failure (Tassa and Todorov 2010). Another result
of the violation of these assumptions is that regularization
must used to prevent divergence by ensuring small policy
changes between generations. Controlling the regularization
variable leads to a trade off between safety from divergence
and speed of convergence (Erez 2011).

It should be stressed that DDP has had significant suc-
cesses in a number of complex domains. We discuss the
limitations of this approach because the proper selection of
shaping, noise, and control of regularizers requires domain
expertise, and can make the approach difficult to apply.

Empirical Results
We present the performance of CE in a simple domain and
in several humanoid locomotion domains. The differences
between these two settings show the generality of the ap-
proach; we show near-optimal performance in the small do-
main, as well as acceptable policies in the humanoid loco-
motion domain.

Double Integrator
The double integrator (Santamarı́a, Sutton, and Ram 1996),
models the motion of an object along a surface. The state
is represented by a position p and velocity v. The action, a,
sets the acceleration of the object. R(p, a) = −(p2 + a2),
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Figure 1: Performance of planning in the double integrator
with cross-entropy compared to optimal.

and s0 = (p, v) = (0.95, 0). Because the domain has linear
dynamics and a quadratic reward function, standard control
theory techniques allow a linear quadratic regulator to be
computed (LQR) that produces the optimal continuous-time
undiscounted infinite-horizon closed-loop policy. To accu-
rately evaluate the performance of LQR and CE, all aspects
of the domain are deterministic. Each episode lasts for 100
time steps, with a time step for integration of 0.05. Episodes
are long enough for both approaches to bring the object close
to the origin, so the results are representative of the cumula-
tive reward until stabilization.

The cumulative reward per episode obtained by CE for
varying numbers of trajectories (Gn) per planning step, as
well as the LQR solution appear in Figure 1. In all cases,
H = 30, ρ = 0.1, G = 30, with n constant across genera-
tions in each trial. The mean cumulative reward of CE with
Gn = 7, 000 is not statistically significantly different from
optimal (p < 0.05). In fact, in some episodes the solution
found by CE is slightly better than the optimal continuous
time LQR solution, due to time discretization (CE, however,
would be unable to outperform discrete time LQR). With
Gn = 7, 000, each planning step took less than 0.1 seconds
on an Intel Core i7-3930k.

A visualization of the planning performed by CE in the
double integrator from s0 is rendered in Figure 2. Alter-
nating in shades of red and blue, trajectories are grouped
according to increasing generation during optimization, in
planes of increasing height along the vertical axis. These
planes correspond to the trajectories developed in genera-
tions 0, 7, 14, 21, and 28. The policy at generation 0 (lowest
on the vertical axis) is simply a random walk in the domain;
planning is initialized with each action in the sequence rep-
resented by independent Gaussians with μ = 0 and σ = 3.
The trajectory rendered highest along the vertical axis in
black is the trajectory selected by LQR. The start state is rep-
resented by the vertical cyan line. As can be seen, the basic
form of the policy forms quickly, with the later generations
performing minute refinements.

It is worth mentioning that the trajectories from gener-
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Figure 2: Trajectories from selected generations in cross-
entropy applied to the double integrator from the episode
start state.

ation 28 and the LQR policy (2nd to highest, and highest,
respectively) are initially similar, but differ later in the tra-
jectories. While differences from the LQR policy should be
regarded as errors, CE can still achieve very high perfor-
mance due to the fact that it uses receding-horizon planning.
Because planning is completely restarted at each step, the
planner only needs to produce a near-optimal initial action.

Humanoid Walking
In this series of experiments, we demonstrate the ability of
open-loop planning by CE to produce effective strategies
for humanoid locomotion in settings that are deterministic,
stochastic, or contain a flawed generative model.

As modeled here, the walker’s planar body consists of a
pair of legs, a pair of arms, and a torso. The legs have upper
and lower segments, while the arms and torso are each made
of one segment. At each of the 7 joints (controlling the lower
legs, upper legs, torso, and arms), a desired angular velocity
is set a teach time step, so the action space for planning is
these 7 values. There is no actuated ankle, so the body is
underactuated when a leg is in contact with the ground. In
a compact representation, the state is 18 dimensions, as one
part of the body must be specified in terms of location and
velocity, and all other points can be described in terms of its
angle and angular velocity from the joint it connects to. The
reward function is the velocity of the hip along the x-axis.
Any state where a part of the body other than a foot contacts
the floor is terminal with a large penalty. ρ = 0.2 and CE
is allowed 10,000 trajectories of planning per time step dis-
tributed evenly across with G = 30, and H = 30. In this set-
ting, planning took approximately 130 seconds per step on
an Intel Core i7-3930k. Aside from parallelization, the sim-
ulation and planning algorithms were not optimized, with
the simulation run in PyODE (PyODE 2010).1 The sampling

1Due to space constraints, all details cannot be adequately pre-
sented here. Therefore the complete implementation is available:
http://code.google.com/p/cross-entropy/

distribution p is a multivariate Gaussian.
In our simplest experiment, called the deterministic

walker, we demonstrate the ability of CE to find an effec-
tive gait when the domain is deterministic. A stroboscopic
rendering of the policy is shown in Figure 3(a), with locomo-
tion going from right to left. It is worth noting that the gait is
highly dynamic; there are entire classes of planning devoted
to legged locomotion that are unable to produce this type of
behavior, such as classical zero moment point controllers.
As compared to such controllers, those that can move dy-
namically move both appear more natural and are more ef-
ficient (Manchester et al. 2009). The increasing distance be-
tween each successive rendering from right to left indicates
that the agent is accelerating throughout the experiment, in-
creasing reward per time step as the episode progresses.

In the next experiment, called the stochastic walker, the
basic setting is expanded by introducing stochasticity in the
form of by random “pushes”. These pushes are applied to
one joint selected uniformly at random at each time step, are
of a uniformly random magnitude, and are always toward
the right (opposite the direction of desired locomotion). This
type of noise makes planning difficult because it is not
zero-mean, and perturbs an individual segment strongly at
each time step (as opposed to an equivalent force being dis-
tributed evenly over the body). Figure 3(b) is a rendering
of the performance of CE planning in this noisy domain.
As compared to the deterministic walker, locomotion takes
roughly 3.5 times as long to cover the same distance.

In the final, most difficult walking experiments, we
demonstrate the ability of CE to plan in settings where the
generative model used for planning is erroneous. In one of
the experiments, the domain itself is deterministic, but the
model incorrectly introduces the stochastic pushes. In the
other experiment, the situation is reversed. Although we do
not include figures due to space restrictions, locomotion is
also performed successfully in these more difficult settings,
albeit with a slower gait. In the deterministic walker, using a
false stochastic generative model results in locomotion that
takes 1.7 times as long as when the correct generative model
is used. Compared to the stochastic walker, planning with
an incorrect deterministic model produces locomotion tak-
ing 1.4 times as long as planning with a correct model.

Humanoid Stair Descent
The purpose of the final experimental domain is to demon-
strate the ability of open-loop planning with CE to enable
a humanoid to traverse uneven terrain. In particular, the fi-
nal task requires the descent of a flight of stairs. Aside from
the addition of stairs, the setting is identical to the determin-
istic walker. The solution to the task found by CE appears
in Figure 4. As can be seen, the policy found is to run to
the edge of the top step and then take a leap that clears the
entire flight of stairs. The landing is performed successfully
and running proceeded after the landing (not rendered). We
anticipated a policy that would walk down the steps, but be-
cause the goal is to maximize the velocity of the hip along
the horizontal axis, jumping across the the flight of stairs is
superior to deliberately walking down it step by step, as long
as the landing can be performed without falling.
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(a) The deterministic walker, renderings from every 10th frame. (b) The stochastic walker, renderings from every 30th frame.

Figure 3: Stroboscopic rendering of the policies found by cross-entropy for humanoid locomotion.

Figure 4: Cross-entropy finding a creative solution to the
stair-descent problem. Renderings from every 10th frame.

Discussion
In this paper, the ability of cross-entropy to both find ex-
tremely exact solutions in small domains, as well as effec-
tive solutions in very complex domains was demonstrated.
The only domain expertise brought to bear was access to a
black-box generative model of the domain.

Aside from its applicability to a large number of differ-
ent settings, and its ability to plan even with flawed gen-
erative models, a significant advantage of CE for open-loop
planning is the algorithmic simplicity of the method; it is ex-
tremely easy both to implement and verify correctness of the
implementation. Computational and memory requirements
are low as computational costs are linear in the number of
samples drawn, and memory requirements are only linear in
nρ. Finally, within a generation, the method parallelizes triv-
ially. This property is increasingly important, as the number
of available cores on mainstream processors is increasing
much faster than individual processor speed.

Although the computational costs of CE are linear in the
number of samples, the actual running time of the algorithm
depends heavily on the cost of the evaluation function. In
domains that have simple dynamics, such as the double in-
tegrator, this is not a great concern. For domains that are ex-

pensive to evaluate, such as full physics simulations, actual
running time can be extensive, or even prohibitive. Scaling
the simulations into 3 dimensions, as opposed to the pla-
nar models here, would require even larger sample sizes and
higher computational costs. Future research regarding im-
proved responsiveness of the algorithm when coupled with
expensive evaluation functions is warranted.

There are a number of methods that can be used to speed
convergence to effective policies. As mentioned, CE lends
itself well to parallelization. While parallelization was uti-
lized here, ideally the number of processors would be equal
to n; in these experiments while n = 30, the number of
processors devoted to parallelization was 10. Increased par-
allelization for complex planning problems is promising, as
it has been demonstrated that parallelization of CE yields
the most significant speedups in domains that are computa-
tionally expensive (Evans, Keith, and Kroese 2007). Even
with perfectly efficient parallelization, the amount of time
required by the algorithm is still linear in the number of
generations; it may be possible to mitigate this issue by in-
creasing n, while decreasing ρ and G, so that the same num-
ber of trajectories are spread among fewer generations. The
fully adaptive cross-entropy algorithm may also allow for
enhanced speed, by adaptively determining a number of pa-
rameters of the algorithm, such as G and n.

An advantage of the approach presented is that while do-
main expertise is not required in order for the approach to be
effective, additional knowledge can be incorporated in order
to improve efficiency. One option is to use an adaptive ap-
proach for setting Φ̂0. In the experiments here, Φ̂0 is fixed to
always ensure broad support over the sample space so that
planning is likely to succeed, which is generally wasteful. A
simple method to increase performance is to “warm start”
Φ̂0 based on Φ̂G from the previous phase of planning, or
to use learning algorithms to estimate appropriate Φ̂0 based
on s and previous experience in the domain. Other meth-
ods that have been successful in similar settings is the cre-
ation of value function estimates to replace the final value
in each rollout, and making simplifying assumptions about
the domain (limiting search to limit cycles) (Tassa, Erez, and
Smart 2008), and could be used as well.
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