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Abstract
This paper tackles high-level decision-making tech-
niques for robotic missions, which involve both ac-
tive sensing and symbolic goal reaching, under uncer-
tain probabilistic environments and strong time con-
straints. Our case study is a POMDP model of an on-
line multi-target detection and recognition mission by
an autonomous UAV. The POMDP model of the multi-
target detection and recognition problem is generated
online from a list of areas of interest, which are auto-
matically extracted at the beginning of the flight from
a coarse-grained high altitude observation of the scene.
The POMDP observation model relies on a statistical
abstraction of an image processing algorithm’s output
used to detect targets. As the POMDP problem cannot
be known and thus optimized before the beginning of
the flight, our main contribution is an “optimize-while-
execute” algorithmic framework: it drives a POMDP
sub-planner to optimize and execute the POMDP pol-
icy in parallel under action duration constraints. We
present new results from real outdoor flights and SAIL
simulations, which highlight both the benefits of using
POMDPs in multi-target detection and recognition mis-
sions, and of our “optimize-while-execute” paradigm.

Introduction
Designing robots that are able to automatically plan for their
long-term goals under uncertainty and partial observabil-
ity of their environment, is challenging due to the various
uncertain events to consider and to the “curse of dimen-
sionality” issue of solving methods (Sabbadin, Lang, and
Ravoanjanahary 2007; Ross and Chaib-Draa 2007; Smith
and Simmons 2005; Bonet and Geffner 2009). High-level
strategies, named policies, can be automatically generated
and optimized using Partially Observable Markov Decision
Processes (POMDPs) (Smallwood and Sondik 1973). Yet,
current deployed systems either assume that the problem
is available before the mission starts (Taha, Mir, and Dis-
sanayake 2011; Spaan 2008; Bai et al. 2011; Schesvold et
al. 2003), so that plenty of time is available to optimize off-
line the strategy, or the problem is optimized on-line but
only over a short-term horizon (Eidenberger, Grundmann,
and Zoellner 2009; Miller, Harris, and Chong 2009).
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In this paper, we address the problem of target detection
and recognition by autonomous Unmanned Aerial Vehicles
(UAVs), which is an active field of research (Wang et al.
2012). In such missions, the high-level decision strategy of
UAVs (e.g. fly to a given zone, land, take image, etc.) de-
pends on many stochastic events (e.g. target detected in a
given zone, target recognized, etc.) that may arise when ex-
ecuting the decision rule. Because of the high complexity
of solving POMDPs, few deployed UAV systems rely on
automatically-constructed and long-term optimized policies.

Moreover, in a target detection and recognition mission,
if viewed as an autonomous sequential decision problem un-
der uncertainty, the problem is not known before the flight.
Indeed, the number of targets and zones making up the
environment are usually unknown beforehand: they must
be automatically extracted at the beginning of the mission,
in order to define the sequential decision problem to op-
timize. Therefore, contrary to most deployed or published
approaches (see below), the POMDP model needed to opti-
mize our UAV’s policy is defined only during the flight, after
the number of zones is analyzed online.

In order to tackle this challenging decision-theoretic
robotic problem, we propose: (1) an “optimize-while-
execute” paradigm to solve the POMDP online during the
flight, taking into account time constraints required by the
mission’s duration and possible future execution states of the
system; (2) an analysis of experimental results conducted on
real flights. Our main contribution provides practical algo-
rithmic means to optimize and execute in parallel an on-line
POMDP policy under strong time constraints. Note that this
contribution is different from the classical on-line approach
used by POMDP algorithms like AEMS (Ross and Chaib-
Draa 2007) or RTDP-bel (Bonet and Geffner 2009), which
do not guarantee to provide optimized actions in constrained
time when immediately required by the execution engine,
which is essential for critical robotic missions. Indeed, pre-
vious approaches do not strongly control the time spent to
optimize an action in the current or future execution states.

The paper is organized as follows. We discuss related
work in the next section. We then present backgrounds on
POMDP planning, and the POMDP model used to solve our
target detection and recognition mission, as well as its au-
tomatic generation during the flight depending on the envi-
ronment’s topography. We also explain how we statistically
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build a probabilistic abstraction of the image processing al-
gorithm’s classifier output, which feeds our POMDP obser-
vation model. Then, we detail our “optimize-while-execute”
algorithmic paradigm required to optimize and execute in
parallel online POMDP policies. Finally, we discuss simu-
lated and real-flight experiments.

Related work
POMDPs have been successfully implemented in many real
robotic missions, e.g.: intelligent camera network for tar-
get tracking (Spaan 2008), ground robotics (Candido and
Hutchinson 2011; Eidenberger, Grundmann, and Zoellner
2009), goal detection and active sensing in aerial robotic
missions (Miller, Harris, and Chong 2009; Schesvold et
al. 2003; Bai et al. 2011), and assistance to disabled per-
sons (Taha, Mir, and Dissanayake 2011). From a practi-
cal viewpoint, these approaches can be globally classified
in two groups. In the first group, the problem to solve is
known in advance, so that the mission can be solved offline.
Spaan (2008) uses a POMDP model to control a camera net-
work in order to track targets. Bai et al. (2011) model an
aircraft collision avoidance mission as a POMDP to auto-
matically generate the threat resolution logic of the colli-
sion avoidance system. Offline POMDP methods have also
been recently proposed to model the interaction between
robotic devices and human operators (Taha, Mir, and Dis-
sanayake 2011). In the second group, the POMDP problem
is optimized online, but over a very short-term horizon –
only the next action to perform in most approaches. Eiden-
berger, Grundmann, and Zoellner (2009) propose a POMDP
model of active sensing with an optimization criterion based
on information-theory. Miller, Harris, and Chong (2009) use
a continuous POMDP framework for UAV’s guidance in or-
der to perform multi-target tracking. Finally, Candido and
Hutchinson (2011) also tackle continuous POMDPs to ad-
dress the problem of motion planning under collision avoid-
ance constraints.

In this paper, due to the nature of our multi-target detec-
tion and identification mission in an uncertain environment,
we need for a radically different approach. Namely, we have
to optimize a complex POMDP problem known only at run-
ning time, which has to be solved over a long-term horizon
in order to maximize information gathering and the chance
of achieving a symbolic mission goal: landing near a spe-
cific target that has to be detected and distinguished from
other targets in the scene.

Formal framework: POMDP
A POMDP is a tuple 〈S,A,Ω, T,O,R, b0〉 where S is a set
of states, A is a set of actions, Ω is a set of observations,
T : S × A × S → [0; 1] is a transition function such that
T (st+1, a, st) = p(st+1 | a, st), O : Ω × S → [0; 1] is
an observation function such that O(ot, st) = p(ot|st), R :
S × A → R is a reward function associated with a state-
action pair, and b0 is the initial probability distribution over
states. We note ∆ the set of probability distributions over
the states, called belief state space. At each time step t, the
agent updates its belief state defined as an element bt ∈ ∆

using Bayes’ rule (Smallwood and Sondik 1973).
Solving POMDPs consists in constructing a policy π :

∆ → A, which maximizes some criterion generally based
on accumulated rewards averaged over belief states. When
symbolic rewarded goals must be achieved, like landing near
a specific target, a criterion based on long-term average dis-
counted accumulated rewards from any initial belief state
is reasonable: V π(b) = Eπ [

∑∞
t=0 γ

tr(bt, π(bt))|b0 = b]
where γ is the discount factor.

The optimal value of belief states is proven to be piece-
wise linear and convex, and solution of Bellman’s equation
(Smallwood and Sondik 1973): i.e, at step n <∞, the value
function can be represented by a set of hyperplanes over ∆,
known as α-vectors. Actions are associated with α-vectors,
and they are optimal over a region of the belief state space
where their corresponding α-vectors dominate others.

Recent offline solving algorithms, e.g. PBVI (Pineau,
Gordon, and Thrun 2003), HSVI2 (Smith and Simmons
2005) and SARSOP (Kurniawati, Hsu, and Lee 2008), and
online algorithms like RTDP-bel (Bonet and Geffner 2009)
and AEMS (Ross and Chaib-Draa 2007), approximate the
value function with a bounded set of belief states B, where
B ⊂ ∆. These algorithms implement different heuristics to
explore the belief state space using probabilistic trials, and
update the value of V , which is represented by a set of α-
vectors (except in RTDP-bel and AEMS), updating only the
explored or relevant belief states b ∈ B. Therefore, V is
reduced and contains a limited number |B| of α-vectors.

Note that most – if not all – algorithms do not provide
any means to control the time spent to update the value of
a given belief state. They do not permit to stop at a precise
time a belief set value update, or a trial in the belief space
once launched. Thus, the execution engine must wait for the
current value update over the set of beliefs to end, before ap-
plying the next action. For time-constrained robotic applica-
tions, time is so critical that we cannot assume that the time
spent by the POMDP solver to optimize the next action is not
strictly controllable. In this paper, we present a technique to
leverage this cumbersome limitation of existing approaches.

POMDP model of the target detection and
recognition mission

Mission description
We consider an autonomous Unmanned Aerial Vehicle
(UAV) that must detect and recognize some targets under
real-world constraints. The mission consists of detecting and
identifying a car that has a particular model among several
cars scattered in an unknown environment, and of landing
close to this car. Due to the partial observability of objects
in the scene, we model our mission as a POMDP with prob-
abilistic beliefs about cars’ models. The UAV can perform
both high-level mission tasks and perception actions. We do
not assume any prior number of cars in the scene, which can
be in any of many zones in the environment (but no more
than one car per zone). Zones are extracted online by image
processing, before optimizing the POMDP policy.

The total number of states depends on variables that are
all discretized: the number of zones (Nz), height levels (Nh),
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and car models (Nmodels), as well as a terminal state that
characterizes the end of the mission. As cars (candidate tar-
gets) can be in any of the zones and be of any possible model
a priori, and there is possibly no car in a given zone, thus the
total number of states is: |S| = Nz ·Nh · (Nmodels+1)Nz +
Ts, where Ts represents the terminal state.

For this application case, we consider 5 possible observa-
tions (|Ω| = 5) in each state: {no car detected, car detected
but not identified, identified as model A, identified as model
B, identified as model C}. These observations rely on the re-
sult of image processing (described later) and on the number
of car models in the database.

High-level tasks performed by the autonomous UAV are:
moving between zones, changing height level, changing
view angle, landing. Actions for moving between zones
(resp. height levels) are: go to(ẑ) (resp. go to(ĥ)), where ẑ
(resp. ĥ) represents the zone (resp. height level) to go to. The
change view action changes the view angle when observing
a given zone. The land action can be performed by the au-
tonomous UAV at any moment and in any zone. Moreover,
the land action finishes the mission. So, the total number of
actions is: |A| = Nz +Nh + 2.

Model dynamics
State variables. The world state is described by dis-
crete state variables. We assume that we have some ba-
sic prior knowledge about the environment: there are at
most Nz zones, which contain each at most one tar-
get. The set of target models is finite, i.e. Nmodels =
{modelA, modelB , modelC}. State variables are: z with
Nz possible values, that indicates the UAV’s position; hwith
Nh possible values, that indicates its height levels; IdTaz1
(resp. IdTaz2 , IdTaz3 , etc) with Nmodels + 1 possible val-
ues, that indicates the identity (car model) of target in z1
(resp. target in z2, etc.).

Transition and reward functions. Based on previous
missions with our UAV, we know that moving and land-
ing actions are sufficiently precise to be considered as de-
terministic: the effect of going to another zone, or changing
flight altitude, or landing, is always deterministic. However,
the problem is still a POMDP, because observations of cars’
models are probabilistic. Moreover, it has been proved that
the complexity of solving POMDPs essentially comes from
probabilistic observations rather than from probabilistic ac-
tion effects (Sabbadin, Lang, and Ravoanjanahary 2007).

In order to be compliant with the POMDP model, which
assumes that observations are available after each action is
executed, all actions of our model provide an observation of
cars’ models. The only possible observation after the landing
action is no car detected. All other actions described bellow
automatically take images of the scene available in front of
the UAV, giving rise to image processing and classification
of observation symbols (see later). As the camera is fixed, it
is important to control the orientation of the UAV in order to
observe different portions of the environment.
action go to(ẑ) (go to(ĥ)): this action brings the UAV to
the desired zone (resp. height level). The cost associated
with this action models the fuel consumption depending on

the distance between zones (resp. difference between height
levels) and the cost modeling the time spent by the image
processing algorithm. Zone coordinates are only known at
the beginning of the flight after a first exploration of the
environment, so that the POMDP problem is automatically
compiled during the flight given the extracted zones.
action change view: this is a high-level action that changes
the view angle of the UAV when observing cars. Note that
we do not assume any prior orientation of cars. This action
does not change the POMDP state, which only relies on the
UAV’s current zone and height level. The execution engine
is in charge of making the UAV turn around the zone of about
10 degrees (w.r.t the zone’s center), in order to observe the
target from a different view angle. This abstraction allows us
to significantly reduce the number of state variables (hence
POMDP states), while remaining realistic enough. The cost
associated with the change view action is proportional to
the distance between the UAV position and the new position,
and also to the computation time of the image processing
engine, which is ran in each new view angle.
action land: this action completes the mission, leading the
autonomous UAV to the terminal state. It brings a reward
when the UAV lands in the zone where the searched target is
actually located. Note that the model of the searched target
(SeTa), i.e. one of {modelA, modelB , modelC}, is only
known at the beginning of the mission during the flight.

Finally, if the UAV is in the terminal state (Ts), all these
actions have no effects and no cost.

Observation model. POMDP models require a proper
probabilistic description of actions’ effects and observa-
tions, which is difficult to obtain in practice for real com-
plex applications. For our target detection and recognition
mission, we automatically learned from real data the obser-
vation model, whose symbols are produced by an image pro-
cessing algorithm. We recall that we consider 5 possible ob-
servations in each state: {no car detected, car detected but
not identified, car identified as model A, car identified as
model B, car identified as model C}. The key issue is to as-
sign a prior probability on the possible semantic outputs of
image processing given a particular scene.

Car observation is based on an object recognition algo-
rithm (Saux and Sanfourche 2011), which is already embed-
ded on-board our autonomous UAV. It takes as input one
shot image (see Fig. 1(b)) that comes from the UAV on-
board camera. First, the image is filtered to automatically de-
tect if the target is in the image. If no target is detected, it di-
rectly returns the label no car detected. Otherwise, it extracts
the region of interest of the image (bounding rectangle on the
third picture in Fig. 1(b)), then generates a local projection
and compares it with 3D template silhouettes recorded in a
database of car models. The local projection only depends
on the UAV’s height level, camera focal length and azimuth
as viewing-condition parameters. The current height level is
updated at every time step, whereas the focal length and the
camera azimuth are fixed parameters. Finally, the image pro-
cessing algorithm chooses the 3D template that maximizes
the similarity in the database, and returns the label that cor-
responds or not to the searched target: modelA, modelB or
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(a) More than 500 images per state.

Filtering Detection ROI Matching

(b) Target detection and recognition image pro-
cessing (Saux and Sanfourche 2011).

obs. (oi) p̂(oi|s) σp̂ I = [p̂± 3σp̂]

no car 0.0061 0.0023 [0 ; 0.0129]
not ident. 0.1177 0,0095 [0,0891 ; 0,1462]

as A 0,6809 0,0137 [0,6396 ; 0,7221]
as B 0,0601 0,0070 [0,0391 ; 0,0812]
as C 0,1351 0,0101 [0,1048 ; 0,1654]

(c) Exemple of probability table for a given
state s; σp represents the standard error.

Figure 1: Identification of the observation model p̂(o|s), where s = {z, h, IdTaz = modelA}.

modelC . If the level of similarity is less than a hand-tuned
threshold, the image processing algorithm returns the label
car detected but not identified.

In order to learn the POMDP observation model from
real data, we performed many outdoor test campaigns with
our UAV and some known cars. It led to an observation
model learned via a statistical analysis of the image process-
ing algorithm’s answers, using images taken during these
tests. More precisely, to approximate the observation func-
tion O(ot, st), we count the number of times that one of
the 5 observations was an answer of the image processing
algorithm in a given state s (see Fig. 1(a)). So, we com-
pute the following estimation p̂(oi|s), where oi is one of the
5 possible observations: p̂(oi|s) = 1

Nexp

∑Nexp

n=1 I{on=oi|s}.
Nexp represents the number of experiences, i.e. the number
of runs of the image processing algorithm for the different
images, and on the label obtained at experience n. It applies
the usual estimator of the mean of a Bernoulli distribution,
which estimates the probability of oi against the other ob-
servations. It is proven to converge in probability to p(oi|s)
as Nexp →∞. More than 500 images are analyzed for each
state (Nexp � 1), so that the statistical approximations may
be good enough. We also computed intervals in which the
true model lies with 99% confidence.

Moreover, this learning method can be performed off-line
because it is independent from the zones that will be ex-
tracted during the mission. The estimation p̂(oi|s) is com-
puted for each possible target and height level, but indepen-
dently from the zone used to learn it. Finally, this paramet-
ric model allows us to automatically generate the POMDP
model at the beginning of the mission, after an initial flight
phase where zones of interest are detected by a specific
image processing algorithm not described in this paper.
Thereby, once zones are discovered, the POMDP model’s
rewards can be generated on the basis of zone coordinates.

Fig. 1(c)’s table shows an example of learned observa-
tion probabilities. We precomputed such tables for all pos-
sible state variable instantiations on which the observations
depend. Note that no learning phase to further improve the
observation model is performed during the actual mission
flight. We dismissed the use of reinforcement learning tech-
niques because: (1) we need to learn only the observation
model, but not the actions’ effects nor the reward function;
and (2) our UAV is too expensive to take the risk to destroy
it while learning the best strategy.

Parallel optimization and execution
Complex UAV missions defined as large POMDPs can
rarely be optimized online, because of the lack of suffi-
cient computational means. Moreover, the problem to solve
is not always known in advance, e.g. our target detection and
recognition mission, where the POMDP problem is based on
zones that are automatically extracted from online images
of the environment. Such applications require an efficient
online framework for solving large POMDPs under strong
time constraints, and executing policies before the mission’s
deadline. We worked on extending the ”optimize-while-
execute” framework proposed in (Teichteil-Konigsbuch,
Lesire, and Infantes 2011), restricted to deterministic or
MDP planning, to POMDPs. Concretely, we generalized this
algorithmic framework, which was based on completely ob-
servable states, to belief states and point-based paradigms
used by state-of-the-art POMDP planners.

The extension is not an easy task. In (Teichteil-
Konigsbuch, Lesire, and Infantes 2011), the execution en-
gine and the planner have full access to the system’s states.
In a POMDP context, the execution engine and the planner
can only access observations, so that they have to maintain
a belief state (probability distribution over states). The idea
is to drive a standard POMDP planner which is called from
possible future beliefs states while executing the current op-
timized action in the current belief state, in anticipation of
the probabilistic evolution of the system-environment pair.

The optimize-while-execute paradigm is depicted in
Alg. 1. It is an anytime meta planner, composed of an execu-
tion component and a planning component. The latter drives
any POMDP planner like PBVI, HSVI, AEMS, RTDP-bel.
It is strictly anytime in the sense of policy execution under
time constraints: the planning component ensures to return
an applicable action in any possible belief state at a precise
time point, when required by the execution component.

First, let us define a planning request: it consists of a re-
quest sent by the execution engine to the meta planner, con-
taining: a future possible belief state from which the planner
must compute an optimized action, the time allocated to im-
prove the policy from this belief state, the algorithm used to
improve the policy, and its parameters. Second, an action re-
quest is used by the execution engine to get the action whose
optimization was launched at some time in the past for the
current belief state. If no action is available, a heuristic de-
fault action is returned. Each component works on an inde-
pendent thread: the execution engine, which manages policy
execution, runs in the execution thread that interacts with the
system’s engine; it competes with the meta planner, which is
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(a) Timelines for classical use
of AEMS (interleaved approach)
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(c) Timelines for classical use
of AEMS (interleaved approach)
with 2s for planning.
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(d) Timelines for AEMS im-
plementation in our ”optimize-
while-execute” framework.

Figure 2: Interleaving optimization and execution versus optimize-while-execute paradigm.

Algorithm 1: optimize-while-execute
1 b← initial belief state;
2 Send planning request(b, bootstrap time, algorithm) ;
3 Wait for bootstrap’s end;
4 while stop meta planner requested = false do
5 a← action request(b);
6 Execute action a;
7 ∆a ← expected duration of action a;
8 O ← get effects of action a (possible observations);
9 for 0 < i < |O| do

10 b′ ← compute next belief from Bayes’ rule ;
11 ∆′ ∼ ∆a ∗ p(o|a, b);
12 Send planning request(b′, ∆′, algorithm);

13 Wait until action a has completed;
14 o← get observation;
15 Remove all planning requests;
16 b← update current belief state with a and o;

in charge of policy optimization in a concurrent thread.
Initially, the execution engine sends a planning request to

the meta planner for the initial belief state (bootstrap, line 2).
After a certain amount of time (line 3), the execution engine
sends an action request in order to get the optimized action
for this belief (line 5). Then, while executing the action op-
timized in the current belief state, it will anticipate the en-
vironment’s evolution by planning in advance for the next
possible belief states.

To compute next belief states, we ask the anytime planner
what are the probabilistic effects of the action that is being
run in the current belief state. We consider observations as
effects, so we construct the next belief states for each possi-
ble observation (lines 8-10). And so, we compute the policy
for each of them during a time proportional to the action’s
predicted duration and to the probability of each possible
observation1 (line 11).

We implemented this meta planner using the state-of-
the-art algorithm AEMS as the underlying POMDP plan-
ner. AEMS is particularly useful for our optimize-while-
execute framework, since it is more reactive than other
online POMDP planners. Each iteration of AEMS’ main
loop is usually faster than other solving methods (Ross and
Chaib-Draa 2007), which increases the chance that an ac-
tion has been optimized in the belief state of an incoming
action request. It also allows our framework to update more

1We actually defined several time allocation strategies, like giv-
ing priority to belief states whose estimated value is more uncer-
tain, but we have not evaluated and compared them for the moment.

often the belief states of the queued optimization requests
during their allocated times, thus providing better optimized
actions than using other underlying POMDP planners. Note
that AEMS actually relies on a global allocated planning
time, but we still cannot control the time spent in each trial,
thus the need for our framework.

Why optimizing-while-executing?
Figure 2 highlights the benefits of our approach compared
with the classical approach of AEMS for different planning
times (4, 3 and 2 seconds), which consists in interleaving
planning and execution, i.e. it plans for the current belief
state (for a long-term horizon) at every decision epoch, but
not in advance for the future ones as in our optimize-while-
execute approach. The x axis represents the time elapsed
during the mission. Red (resp. blue) bars represent the por-
tions of time where the policy is optimized in the opti-
mization thread (resp. executed in the execution thread) –
both running in parallel when solving our target detection
and recognition POMDP. The curve shows the evolution of
Bellman’s error during the mission, which emphasizes the
evolution of the optimization process. To highlight our ap-
proach, we fixed the mission’s maximum allowed duration
to 180 seconds. With the classical use of AEMS (Fig. 2(a),
2(b) and 2(c)), we can easily notice that the mission’s to-
tal time increases with the time allocated to plan from the
current execution state. Successive red bars show that the
POMDP needs to be (re-)optimized in each new execution
state. On the contrary, our approach (Fig. 2(d)) permanently
optimizes for future possible execution states while execut-
ing the action in the current execution state, so that opti-
mized actions are always immediately available in each new
execution state. As the result, the mission’s duration is lower
with our approach than with the interleaved approach (at
least 30% less).In other words, in our approach the amount
of time saved relies on the sum of time slices of the classi-
cal approach when the optimization thread is idle. The more
actions get time to be executed, the more time will be saved.

In Fig. 3, we still compare our optimize-while-execute ap-
proach using AEMS, named AEMSowe in the plots, with the
traditional interleaved use of AEMS for different planning
times. This comparison is made on two study cases with 3
zones (Nz = 3). In case 1, the searched target is located in
zone 2, while in case 2 it is in zone 3. The UAV starts in
zone 1. For each environmental setting and each algorithmic
version of AEMS, we ran 50 software-architecture-in-the-
loop (SAIL) simulations of the mission using images taken
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Figure 3: Results for software-in-the-loop simulations.
t = 0

a = go to(h2)

o = not ident.

t = 1

a = change view

o = no car

t = 2

a = goto zone(z2)

o = as A

t = 3

a = change view

o = as A

t = 4

a = change view

o = as A

t = 5

a = go to(z3)

o = as C

t = 6

a = change view

o = as C

t = 7

a = land

o = no car

Figure 4: Sequence of decisions for time step t. Each image represents the input of the image processing algorithm after the
current action a is executed. Observations o represent the successive outputs of the image processing algorithm’s classifier.

during real flights. Our SAIL simulations use the exact func-
tional architecture and algorithms used on-board our UAV,
a Yamaha Rmax adapted to autonomous flights, as well as
real outdoor images. We averaged the results and analyzed
the total mission time and planning time, the percentage of
timeouts and successes in terms of landing near the searched
car. Action durations are uniformally drawn in [T a

min, T
a
max],

with T a
min = 8s and T a

max = 10s, which is representative
of durations observed during real test flights. As expected,
AEMSowe permanently optimizes the policy in background,
contrary to the interleaved approach. As a result, it is more
reactive: it has the minimum mission’s time (Fig. 3(a) and
3(c)), while providing the best percentage of successes and
the minimum number of timeouts (Fig. 3(b) and 3(d)). Note
that, in Fig 3(a), AEMS2s performs better in averaged mis-
sion time (avg. over successful missions), but the percent-
age of successful missions is lower than in our approach
((Fig. 3(b)). Furthermore, less than 20% of default actions
were used, which shows the relevance of optimizing actions
in advance for the future possible belief states.

Real flight experiments
In this section, we present results obtained during real flight
experiments, where the optimize-while-execute framework
was embedded on-board the UAV. We considered 2 height
levels (30 and 40 meters), at most 3 targets of 3 possible
car models, and 3 zones are extracted at the beginning of
the mission. The aim is to land next to the car model C;
however, the number of cars actually present in the scene and
the models of these cars are unknown at the beginning of the
mission. These real flights involve few states, but note that
the need for POMDPs in this kind of applications is more
related to the expressiveness and accuracy of probabilistic
observation functions, than to the size of the problem.

The trajectory performed by the UAV is shown in Fig. 5.
The coordinates are expressed in the local reference system
of the experimental flight terrain. The black cross, orange
cross and blue star, respectively represent zone 1, 2 and 3
(where the searched target is located).
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Figure 5: UAV’s trajectory performed during the real flight.

Figure 4 presents the sequence of actions performed by
the autonomous UAV per time step during one of the real
flights. Initially, the UAV is in zone 1 at an altitude of 30
meters. After the 2 first steps, the UAV observes that there
is no car in this zone, thus it chooses to change to zone 2.
After 3 steps, it concludes that the target observed in zone 2
is of type A. So, it decides to change to zone 3, and after 2
more observations, the UAV believes that the target C is in
zone 3 (which is correct) and chooses to land. In this way it
correctly terminates the mission.

Conclusion and future work
To the best of our knowledge, this paper presents one of
the first POMDP real flight implementations of multi-target
detection and recognition mission by an autonomous UAV
using AI modern planning techniques. The POMDP model
is automatically compiled during the flight and relies on
a meaningful probabilistic observation model learned from
the outputs of an image processing algorithm. The POMDP
optimized policy deals both with sensing actions (determin-
ing the best view angle for each target), and with sym-
bolic goals (landing near the searched target). We also pro-
vide practical algorithmic means to optimize and execute
POMDP policies in parallel under time constraints, which
is required because the POMDP problem is unknown before
the flight and the mission’s duration is especially short.

Our experiments, particularly real flights, demonstrate
that POMDP planning techniques are now mature enough
to tackle complex aerial robotic missions, assuming the use
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of realistic observation models and some kind of “optimize-
while-execute” framework, as proposed in this paper. Pos-
sible future research improvements include: taking into ac-
count safety constraints imposed by civil aeronautical agen-
cies when optimizing the strategy; and building POMDP
policies that deal with the standard deviations or the con-
fidence intervals of the learned observation model.
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