
Hypothesis Exploration for Malware Detection using Planning

Shirin Sohrabi Octavian Udrea Anton V. Riabov
IBM T.J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA
{ssohrab, oudrea, riabov}@us.ibm.com

Abstract
In this paper we apply AI planning to address the hypoth-
esis exploration problem and provide assistance to network
administrators in detecting malware based on unreliable ob-
servations derived from network traffic. Building on the al-
ready established characterization and use of AI planning for
similar problems, we propose a formulation of the hypothesis
generation problem for malware detection as an AI planning
problem with temporally extended goals and actions costs.
Furthermore, we propose a notion of hypothesis “plausibil-
ity” under unreliable observations, which we model as plan
quality. We then show that in the presence of unreliable obser-
vations, simply finding one most “plausible” hypothesis, al-
though challenging, is not sufficient for effective malware de-
tection. To that end, we propose a method for applying a state-
of-the-art planner within a principled exploration process, to
generate multiple distinct high-quality plans. We experimen-
tally evaluate this approach by generating random problems
of varying hardness both with respect to the number of obser-
vations, as well as the degree of unreliability. Based on these
experiments, we argue that our approach presents a signifi-
cant improvement over prior work that are focused on finding
a single optimal plan, and that our hypothesis exploration ap-
plication can motivate the development of new planners ca-
pable of generating the top high-quality plans.

Introduction
Given a set of possibly unreliable observations derived from
network traffic and a model that describes the typical lifecy-
cle of malware or other (potentially non-malicious) behav-
iors of interest, we are interested in applying AI planning to
generate a ranked list of hypotheses about the hosts in the
network. The generated list can be presented to a network
administrator or to an automated system to run further in-
vestigation. The most related problem is that of diagnosis
of discrete dynamical systems (e.g., (Cassandras and Lafor-
tune 1999; McIlraith 1994; Cordier and Thiébaux 1994;
Sampath et al. 1995)).

Recently, several researchers have proposed use of plan-
ning technology to address several related class of prob-
lems including diagnosis (e.g., (Sohrabi, Baier, and McIl-
raith 2010; Haslum and Grastien 2011)), plan recogni-
tion (Ramı́rez and Geffner 2009), and finding excuses

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Göbelbecker et al. 2010). These problems share a common
goal of finding a sequence of actions that can explain the
set of observations given the model-based description of the
system. However, most of the existing literature make an as-
sumption that the observations are all perfectly reliable and
should be explainable by the system description, otherwise
no solution exists for the given problem. But that is not true
in general (Thorsley, Yoo, and Garcia 2008). For example,
even though observations resulting from the analysis of net-
work data can be unreliable, we would still like to explain as
many observations as possible with respect to our model.

In 2011, Sohrabi et al. established a relationship between
generating explanations, a more general form of diagno-
sis, and a planning problem with temporally extended goals
(Sohrabi, Baier, and McIlraith 2011). In this paper, we build
on this to propose a formulation of the hypothesis genera-
tion problem for malware detection where observations may
be unreliable as an AI planning problem with temporally ex-
tended goals. Furthermore, because not all observations can
have an equal weight in determining a root cause, we pro-
pose a notion of hypothesis “plausibility” under unreliable
observations, which we model as plan quality.

While finding the most plausible hypothesis via planning
is interesting and by itself challenging, we argue that this is
not sufficient given unreliable observations, as shown in our
malware detection problem. Hence, we need to develop a
method that not only generates the most plausible hypothesis
but also generates the top most plausible hypotheses about
the hosts in the network. To this end, we propose a method
of exploiting LAMA (Richter and Westphal 2010) to gener-
ate multiple distinct high-quality plans. We experimentally
evaluate this approach by generating random problems of
varying hardness both with respect to the number of obser-
vations, as well as the degree of unreliability. In the gener-
ated problems, we know the ground truth and want to know
if the plans that LAMA generates can detect them. Our re-
sults show that our approach is viable in malware detection.
Furthermore, we hope that the results presented in this pa-
per can motivate the development of new planners capable
of generating the top high-quality plans.

Hypothesis Generation for Network Traffic Analysis
Consider the case of enterprise network monitoring. Al-
though such networks are typically equipped with state-of-

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

883



Figure 1: Example of a host’s lifecycle.

the-art security appliances and firewalls, these devices and
software are designed to look for known signatures of cy-
ber threats by examining very small windows of data, for
example, one Transmission Control Protocol (TCP) session.
Most modern malware such as bots uses techniques for dis-
guising its network communications in normal traffic over
time. For effective malware detection, we must employ tech-
niques that examine observations of network traffic over a
longer period of time and produce hypotheses on whether
such traces correspond to a malware lifecycle or otherwise
innocuous behavior. Practically, since any such hypothesis
has a degree of uncertainty, it must be presented in a form
that explains how observed behavior indicates either mal-
ware or other lifecycles of network activity.

As an example, a (simplified) malware lifecycle could
be described by a cybersecurity expert as in Figure 1. The
rectangles on the left side correspond to malware lifecycle
states, such as the host becoming infected with malware,
the bot’s rendezvous with a Command and Control (C&C)
machine (botmaster), the spread of infection to neighboring
machines and a number of exploits – uses of the bot for ma-
licious activity. Each of the lifecycle states can be achieved
in many ways, depending on the type and capabilities of the
malware. For example, C&C rendezvous can be achieved
by attempting to contact an Internet domain, or via Internet
Relay Chat (IRC) on a dedicated channel, or by contacting
an infected machine acting a local C&C, or by Peer-to-Peer
(P2P) traffic with a preset IP address. In Figure 1, the right-
most nodes (excluding Crawling) are observations derived
from network data that could be obtained in the correspond-
ing lifecycle states. As an example, NX volume corresponds
to an abnormally high number of domain does not exist re-
sponses for Domain Name System (DNS) queries; such an
observation may indicate that the bot and its botmaster are
using a domain name generation algorithm, and the bot is
testing generated domain names trying to find its master. On
the right side of Figure 1, we can also see a “normal” life-
cycle of a web crawler compressed into a single state. Note
that crawler behavior can also generate a subset of the obser-
vations that malware may generate. Although this is a small
example, it can be extended by adding more known lifecy-
cles, expanding the number of observations covered, intro-
ducing loops (e.g., having a periodic C&C rendezvous after
exploits), etc. Furthermore, the lifecycle graph can be used

to model infection propagation – e.g., by linking the Infect
Neighbor state for host A to Infection – Neighbor for host B
(e.g., if A is port-scanning B for vulnerabilities).

In the lifecycle we described, observations are the result
of performing analysis on network data. The NX volume ob-
servation for instance is the result of modeling the typical
number of negative responses to DNS queries, aggregating
DNS data for a window of time for a host and determining if
its NX response volume is an outlier. While the complexity
of the analysis involved to obtain one observation can vary,
it is important to note that observations are by nature unreli-
able because of multiple reasons.

The set of observations will be incomplete. Operational
constraints will prevent us running in-depth analysis on all
the network traffic all the time. However, all observations
are typically timestamped, and hence totally ordered.

Observations may be ambiguous. This is depicted in Fig-
ure 1, where for instance contacting a blacklisted domain
may be evidence of malware activity, or maybe a crawler
that reaches such a domain during normal navigation.

Observations may be mutually inconsistent. This occurs
when we have observations that can be explained by mu-
tually exclusive lifecycle paths – e.g., observations that are
exclusive to the malware lifecycle and observations that are
exclusive to crawling behavior in the same sequence.

Not all observations will be explainable. There are several
reasons while some observations may remain unexplained:
(i) in this setting observations are (sometimes weak) indica-
tors of a behavior, rather than authoritative measurements;
(ii) the lifecycle description is by necessity incomplete, un-
less we are able to model the behavior of all software and
malware; (iii) there are multiple processes on a machine
using the network, making it difficult to determine which
process originated which behavior; (iv) malware throws off
security scans by either hiding in normal traffic patterns or
originating extra traffic to confuse detectors.

Let us consider an example consisting of two observations
for a host: (o1) a download from a blacklisted domain and
(o2) an increase in traffic with ad servers. Note that accord-
ing to Figure 1, this sequence could be explained by two hy-
potheses: (a) a crawler or (b) infection by downloading from
a blacklisted domain, a C&C rendevouz which we were un-
able to observe, and an exploit involving click fraud. In such
a setting, it is normal to believe (a) is more plausible than
(b) since we have no evidence of a C&C rendevouz taking
place. However, take the sequence (o1) followed by (o3) an
increase in IRC traffic followed by (o2). In this case, it is
reasonable to believe that the presence of malware – as in-
dicated by the C&C rendevouz on IRC – is more likely than
crawling, since crawlers do not use IRC. The crawling hy-
pothesis cannot be completely discounted since it may well
be that a crawler program is running in background, while a
human user is using IRC to chat.

Due to the unreliability of observations, in order to ad-
dress the malware detection problem we need a technique
that considers a sequence of observations and produces not
just one, but a ranked list of hypotheses (explanations of the
observations), such that: (i) some hypotheses may ignore
(leave as unexplained) observations that are deemed unre-

884



liable or inconsistent and (ii) the rank of the hypothesis is
a measure of its plausibility. Since the number of observa-
tions in practice can grow into the tens or hundreds for even
such small lifecycle descriptions, having a network admin-
istrator manually create such a ranked list is not a scalable
approach. In this paper, we describe an automated approach
that uses planning to automatically sift through hundreds of
competing hypotheses and find multiple highly plausible hy-
potheses. The result of our automated technique can then
be presented to a network administrator or to an automated
system for further investigation and testing; the testing of
hypotheses is outside the scope of this paper.

Modeling
In this section, we first define a dynamical system that can
model the host’s lifecycle discussed in the previous section.
We then define a notion of hypothesis and hypothesis “plau-
sibility”. We then establish the correspondence between the
hypothesis exploration problem and planning. With this re-
lationship at hand, we turn to a state-of-the-art planner to
generate high-quality plans in the following section.

System Description There are many ways to formally de-
fine the system description. In this paper, we adopt the def-
inition of a dynamical system by Sohrabi et al. 2011 to
account for the unreliable observations. In particular, we
model the system by describing the possible transitions in
a host’s lifecycle similar to the one in Figure 1. To encode
these transitions, we use a set of actions with preconditions
and effects. To account for the unreliable observations, we
introduce an action called “discard” that simulate the “ex-
planation” of an unexplained observation. That is, the in-
stances of the discard action add transitions to the system
that account for leaving an observation unexplained. The
added transitions ensures that we took all observations into
account but an instance of the discard action for a particular
observation o indicates that o is not explained.

We define a system to be a tuple Σ = (F,A, I), where
F is a finite set of fluent symbols, A is a set of actions that
includes both actions that account for the transitions in the
lifecycle as well as the discard action described above, and
I is a clause over F that defines the initial states. Note, for
the purpose of this paper, we assume the initial state is com-
plete, but our approach can be extended similar to (Sohrabi,
Baier, and McIlraith 2010). Actions can be over both ma-
licious and non-malicious behaviors. They are defined by
their precondition and effects, over the set of fluents F . A
system state s (not to be confused with the state in the life-
cycle) is a set of fluents with known truth value. For a state
s, let Ms : F → {true, false} be a truth assignment that
assigns true to f if f ∈ s and false otherwise. An action
a is executable in a state s if all of its preconditions are met
by the state or Ms |= c for every c ∈ prec(a). We define
the successor state as δ(a, s) for the executable actions. The
sequence of actions [a1, ..., an] is executable in s if the state
s′ = δ(an, δ(an−1, . . . , δ(a1, s))) is defined; henceforth, is
executable in Σ if it is executable from the initial state.

Hypothesis Given the system description Σ = (F,A, I)
and an observation formula ϕ, a hypothesis is a sequence of

actions α = [a1, ..., an] such that that ai ∈ A, and the ob-
servation formula ϕ is satisfied by the sequence of actions
α in the system Σ. While in general the observation formula
ϕ can be expressed as an Linear Temporal Logic (LTL) for-
mula (Emerson 1990), in this paper we consider the obser-
vation formula ϕ to have the form ϕ = [o1, ..., on], where
oi ∈ F , with the following standard LTL interpretation:1

o1 ∧©♦(o2 ∧©♦(o3...(on−1 ∧©♦on)...))

Note that the observations are totally ordered in the above
formula. As mentioned earlier, for the problem we are con-
sidering, it is typical to have totally ordered observations.

Given a set of observations, there are many possible hy-
potheses, but some could be stated as more plausible than
others. For example, since observations are not reliable, the
hypothesis α can explain a subset of observations by includ-
ing instances of the discard action. However, we can indi-
cate that a hypothesis that includes the minimum number of
discard actions is more plausible. In addition, observations
can be ambiguous: they can be explained by instances of
“good” (non-malicious) actions as well as “bad” (malicious)
actions. Similar to the diagnosis problem, a more plausi-
ble hypothesis ideally has the minimum number of “bad”
or “faulty” actions. Furthermore, not all observations have
an equal weight in determining the root cause. We can have
additional knowledge about the domain that could include
the likelihood of an event. This additional knowledge can be
given as either probabilities or simple ranking over the root
causes. For example, observing that a host has downloaded
an executable file can raise suspicion of possible infection,
but even more so if the host is running Windows.

More formally, given a system Σ and two hypotheses α
and α′ we assume that we can have a reflexive and transitive
plausibility relation �, where α � α′ indicates that α is at
least as plausible as α′. Hypothesis α is the optimal hypothe-
sis for the system Σ and observation formula ϕ if there does
not exist another hypothesis α′ such that is more plausible
or α′ � α and α 6� α′.

Relationship to Planning We appeal to the already es-
tablished relationship between generating explanations and
planning (e.g., (Sohrabi, Baier, and McIlraith 2011)). That
is given a system Σ = (F,A, I) and an observation formula
ϕ expressed in LTL, and the plausibility relation �, α is a
hypothesis if and only if α is plan for the planning problem
P = (F,A′, I, ϕ) where ϕ is a temporally extended goal
formula expressed in LTL (i.e., planning goals that are not
only over a final state), A′ is the set A augmented with pos-
itive action costs that captures the plausibility relation �.
That is if α and α′ are two hypotheses, where α is more
plausible than α′, then cost(α) < cost(α′). Therefore, the
most plausible hypothesis is the minimum cost plan.

Finding such a cost function in general can be difficult and
we do not have a systematic way of finding such cost func-
tion. However, some class of plausibility relation can be ex-
pressed as Planning Domain Definition Language (PDDL3)

1© is a symbol for next, ♦ is a symbol for eventually.

885



non-temporal preferences (Gerevini et al. 2009) and com-
piled away to action costs using the techniques proposed by
Keyder and Geffner (Keyder and Geffner 2009).

Computation
In the previous section, we established the relationship be-
tween planning with temporally extended goals, and the gen-
eration of hypotheses for the malware detection problem.
That is, we showed that the generation of a hypothesis can
be achieved by generating a plan for the corresponding plan-
ning problem. Furthermore, the most plausible hypothesis is
a plan with minimum cost. This relationship makes it possi-
ble to experiment with a wide variety of planners. However,
we first need to address the following questions before ex-
perimenting with planners.

Encoding Observations In the modeling section we dis-
cussed the form of an observation formula ϕ we consider
for malware detection where all observations are totally or-
dered. In the corresponding planning problem, we consider
these observations as temporally extended goals. However,
planners capable of handling temporally extended goals are
limited and not advanced enough (Sohrabi, Baier, and McIl-
raith 2010). Therefore, we need to use a classical planner but
first we need to compile observations away. Our approach
is similar but uses the simplified version of the encoding
proposed in (Haslum and Grastien 2011) because our ob-
servations are totally ordered. That is instead of having an
“advance” action that ensures the observation order is pre-
served, each action that emits an observation has an order-
ing precondition. Hence, only a “pending” observation can
be observed, and upon doing so, the next observation be-
comes pending. This ensures that the generated plans meet
the observations in exactly the given order.

Assigning Costs We encode the plausibility notion as ac-
tions costs. In particular, we assign a high cost to the discard
action in order to encourage explaining more observations.
In addition, we assign a higher cost to all instances of the
actions that represent malicious behaviors than those that
represent non-malicious behaviors (this is relative, that is if
we assign a cost of 20 to a malicious action instance, then
we assign cost less than 20 to all other non-malicious ac-
tion instances). Also actions that belong to the same lifecy-
cle state can have different costs associated with them. This
is because not all actions are equally likely and can have
the same weight in determining the root cause. However,
we could have additional knowledge that indicates a more
plausible root cause. For example, if we have two observa-
tions, a download from a blacklisted domain, and download
an executable file, we could indicate that an infection is more
likely if downloading from a blacklisted domain. This can
be achieved by assigning a higher cost to the action that rep-
resents infection by downloading an executable file than the
action that represents downloading from blacklisted domain.

Using Replanning to Generate Plausible Hypotheses
Given a description of a planning problem, we need to gen-
erate multiple high-quality (or, equivalently, the low-cost)
plans, each corresponding to a distinct plausible hypothesis.

0. Find plan P for the original problem.
1. Add each action a of P as a separate action

set S = {a} to future exploration list L.
2. For each set of actions S in L,
3. For each action a ∈ S,
4. Add negated predicate associated

with a to the goal.
5. Generate a plan P for the new problem

where the goal disallows all actions in S.
6. For each action a ∈ P,
7. Add the set S ∪ {a} to L′

8. Move all action sets from L′ to L.
9. Repeat from step 2.

Figure 2: Replanning algorithm

It should be noted that there is recent effort in generating
diverse plans (e.g., (Srivastava et al. 2007)) but rather than
diverse plans, we want to find a set of high-quality plans.
However, we are not aware of any existing planner capable
of generating a set of near-optimal plans. To overcome this,
we have developed a replanning-like approach that allows
us to use any planner that can generate a single optimal or
near-optimal plan quickly. In our experiments, we exploit
LAMA (Richter and Westphal 2010), the first place winner
of the sequential satisficing track in the International Plan-
ning Competition (IPC) 2008 and 2011 for this purpose.

We have extended the planning domain by associating a
new unique predicate with each action, and including every
parameter of the action in the predicate. By adding this pred-
icate to the effect of the action, and its negation, with spe-
cific parameter values, to the goal, we can prevent a specific
instance of an action from appearing in the plan.

To drive the replanning process, we have implemented a
wrapper around the planner. The algorithm for the wrapper
is outlined in Figure 2. The wrapper first generates an op-
timal or near-optimal plan using an unmodified problem. It
then modifies the problem to exclude the specific action in-
stances of the first plan one by one, and generates a near-
optimal plan for each modification. The wrapper then recur-
sively applies this procedure to each plan from the new set,
this time excluding both the action from the new plan, and
the action that was excluded from the first plan when gener-
ating the new plan. The process continues until a preset time
limit is reached. Separately, a time limit can be specified for
each planner invocation (each iteration of the planner), to
ensure a minimum of modified goals explored. In general
the number of excluded actions is equal to the depth of the
search tree the algorithm is traversing in a breadth-first man-
ner. Our replanning algorithm can eventually find every valid
plan if used with a complete planner and given enough time.

In our implementation, we only use a subset of actions
sufficient for generating different plans. We also sort action
sets in step 2, for example to ensure the instances of the dis-
card action are removed before other actions. Finally, we
save all plans, if multiple plans are generated by the planner
during one round. However, we only use one best generated
plan to generate new action sets.

This process generates multiple distinct plans, and there-
fore hypotheses. After sorting them by cost, a subset can be
presented to administrators or automated systems as possi-
ble hypotheses for future investigation.

886



Experimental Evaluation
When the presence of malware is detected inside critical in-
frastructure, the network administrators have little time to
investigate the threat and mitigate it. Thus, malware must be
discovered as quickly as possible. However, accuracy is no
less important. Critical infrastructure disruptions resulting
from overreaction to suspicious-looking observations can be
just as undesirable as malware infections themselves.

The experiments we describe in this section help evaluate
the response time and the accuracy of our approach.

The lifecycle models need to include descriptions of both
non-malicious and malicious behaviors, and may need to be
modified regularly to match changes in network configura-
tion and knowledge about malware threats. To study the per-
formance of our approach on a wide variety of different life-
cycles, we have generated a large set of lifecycles randomly.
In generating the lifecycles, we have ensured that a directed
path exists between each pair of states, 60% of the states are
bad, 40% are good, and both unique and ambiguous obser-
vations can be associated with states. In addition, we have
also evaluated performance by using a hand-crafted descrip-
tion of the lifecycle shown in Figure 1.

Planning Domain Model The planning problems are de-
scribed in Planning Domain Definition Language (PDDL)
(McDermott 1998). One fixed PDDL domain including a to-
tal of 6 actions was used in all experiments. Actions explain-
observation and discard-observation are used to advance
to the next observation in the sequence, and actions state-
change and allow-unobserved change the state of the life-
cycle. Two additional actions, enter-state-good and enter-
state-bad, are used to associate different costs for good and
bad explanations. In our implementation, the good states
have lower cost than the bad states: we assume the observed
behavior is not malicious until it can only be explained as
malicious, and we compute the plausibility of hypotheses
accordingly. The state transitions of malware lifecycle and
the observations are encoded in the problem description.
This encoding allowed us to automatically generate multiple
problem sets that include different number of observations
as well as different types of malware lifecycle.

Performance Measurements To evaluate performance,
we introduce the notion of ground truth. In all experi-
ments, the problem instances are generated by constructing a
ground truth trace by traversing the lifecycle graph in a ran-
dom walk. With probability 0.5 the ground truth trace con-
tained only good states. For each state, a noisy or missing
observation was generated with probability 0.025, and am-
biguous observations were selected with probability 0.25.

Given these observations, each of the generated plans rep-
resents a hypothesis about malicious or benign behavior in
the network. We then measure performance by comparing
the generated hypotheses with the ground truth, and con-
sider a problem solved for our purposes if the ground truth
appears among the generated hypotheses.

For each size of the problem, we have generated 10 prob-
lem instances, and the measurements we present are aver-
ages. The measurements were done on a dual-core 3 GHz

Intel Xeon processor and 8 GB memory, running 64-bit Red-
Hat Linux. Each single LAMA invocation was allowed to
run up to 20 seconds, except for the first invocation, and
all plans produced in that time were saved. Replanning it-
erations were repeated until the 300 seconds time limit was
reached. We did not set a time limit for the first invocation
(i.e., the first invocation can take up to 300 seconds). This
is because we wanted LAMA to find the optimal or near-
optimal plan (by exhausting the search space) in the first in-
vocation before starting to replan. In the harder problems, if
the first invocation did not finish, no replanning was done.

As expected, our approach results in many replanning
rounds that together help produce many distinct plans. This
can be seen in Table 1, showing the average total number of
replanning rounds in the Total column, the average number
of unfinished rounds that were terminated due to per-round
time limit in the Unfinished column, and the average num-
ber of distinct plans at the end of iterations in the Plans col-
umn. Note, we only count distinct plans, independent sub-
trees in the iterative replanning process may produce du-
plicates. Also in the smaller size problems, more replanting
rounds is done and hence more distinct plans are generated
which increases the chance of finding the ground truth.

In both Table 1 and Table 2, the rows correspond to the
number of generated observations and the columns are orga-
nized in four groups for different lifecycle types. The hand-
crafted lifecycle contained 18 lifecycle states and was not
changed between the experiments. The generated lifecycles
consisted of 10, 50 and 100 states and were re-generated for
each experiment, together with the observations.

Table 2 summarizes the quality of the plans generated in
these experiments. The % Solved column shows the per-
centage of problems where the ground truth was among the
generated plans. The Time column shows the average time
it took from the beginning of iterations (some finished and
some unfinished rounds) to find the ground truth solution
for the solved problems. The dash entries indicate that the
ground truth was not found within the time limit.

The results show that planning can be used successfully
to generate hypotheses for malware detection, even in the
presence of unreliable observations, especially for smaller
sets of observations or relatively small lifecycles. However,
in some of the larger instances LAMA could not find any
plans. The correct hypothesis was generated in most experi-
ments with up to 10 observations. The results for the hand-
crafted lifecycle also suggest that the problems arising in
practice may be easier than randomly generated ones which
had more state transitions and higher branching factor.

Hand-crafted 10 states 50 states 100 states
Solved in 1st round 56 18 8 3
Solved in rounds 2-50 4 12 5 3
Not solved 20 50 67 74

To assess the impact of iterative replanning on solution
accuracy, in the same experiments, we have collected the
information about the number of iterations required to find
the ground truth solution. The above table summarizes the
results. The ground truth is found quickly in several cases by
LAMA in the first iteration. In some experiments additional
iterations helped find the ground truth. But note that there

887



Hand-crafted 10 states 50 states 100 states
Observations Plans Total Unfinished Plans Total Unfinished Plans Total Unfinished Plans Total Unfinished

5 55 261 0 75 340 0 50 130 0 40 49 0
10 80 176 0 128 248 0 82 78 0 32 20 1
20 117 111 0 156 171 0 52 34 0 4 14 13
40 78 58 0 105 120 0 18 13 11 4 2 2
60 42 36 0 81 81 0 5 10 9 3 1 1
80 30 21 4 49 38 0 4 2 2 2 1 1
100 25 16 8 36 28 3 3 1 1 0 1 1
120 20 14 12 30 28 5 2 1 1 0 1 1

Table 1: The average number of LAMA replanning rounds (total and unfinished) and the number of distinct plans generated.

Hand-crafted 10 states 50 states 100 states
Observations % Solved Time % Solved Time % Solved Time % Solved Time

5 100% 2.49 70% 0.98 80% 5.61 30% 14.21
10 100% 2.83 90% 2.04 50% 25.09 30% 52.63
20 90% 12.31 70% 24.46 - - - -
40 70% 3.92 40% 81.11 - - - -
60 60% 6.19 - - - - - -
80 50% 8.19 - - - - - -
100 60% 11.73 10% 10.87 - - - -
120 70% 20.35 20% 15.66 - - - -

Table 2: The percentage of problems where the ground truth was generated, and the average time spent for LAMA.

are still many cases where the ground truth solution was not
found within the time limit.

Overall, iterative replanning proposed in this paper helped
increase the number of solved problems, and generate valu-
able hypotheses, which would otherwise have been missed.
However, when the size of the plan increases, our approach
becomes less effective too, requiring exponentially greater
number of iterations to reach the same depth in the breadth-
first search. Further, a real-world malware attack may try
to deliberately hide ground truth among plausible hypothe-
ses. Hence, we believe that to fully address this problem,
new planning algorithms must be able to find multiple near-
optimal plans efficiently.

Summary and Discussion
Several researchers have looked into addressing the cyber-
security problem by means of planning (Boddy et al. 2005;
Lucngeli, Sarraute, and Richarte 2010; Roberts et al. 2011),
our approach and focus however is different. In particular,
rather than finding “attack plans” for penetration testing pur-
poses we are focused on generating plausible hypotheses
that can explain the given set of observations which are the
result of performing analysis of network traffic. The gener-
ated hypotheses can then be used by an automated system or
the network administrator to do further investigations.

There are several approaches in the diagnosis literature re-
lated to ours in which use of planners as well as SAT solvers
are explored (e.g., (Grastien et al. 2007; Sohrabi, Baier, and
McIlraith 2010)). In particular, the work on applying plan-
ning for the intelligent alarm processing application is most
relevant (Bauer et al. 2011; Haslum and Grastien 2011).
Similarly, they also considered the case where they can en-
counter unexplainable observations but did not give any for-
mal description of what these unexplainable observations
represent and how the planning framework can model them.
Furthermore, it is not clear how their non-exhaustive ap-
proach can find the ground truth or “what really happened”

by simply finding a single plan. On the other hand, the ex-
haustive approach to the diagnosis problem where all diag-
noses that are consistent with the observations are found is
also relevant (e.g., (Grastien, Haslum, and Thiebaux 2011)).
However, observations were assumed to be reliable, while
our focus was to address both unreliable observations and
finding multiple high-quality plans in a single framework. It
may be possible to extend the exhaustive approach using our
techniques to address unreliable observations.

In this paper we addressed the hypothesis exploration
problem for malware detection using planning. To that end,
we proposed a characterization of the hypothesis generation
problem and showed its correspondence to an AI planning
problem. Our model incorporates the notion of hypothesis
plausibility which we map to plan quality. We also argued
that under unreliable observations it is not sufficient to just
find the most plausible hypothesis for effective malware de-
tection. To generate high-quality plans (not necessary the
top high-quality plans) we proposed a method that enables a
planner (in our case the LAMA planner) to run in an itera-
tive mode to further explore the search space in order to find
more plans. Our results show that running LAMA repeatedly
with modified goals can improve the chance of detecting the
ground truth trace. However, there are still cases where the
ground truth trace cannot be found by the planner.

We believe that LAMA would have had a better chance
of detecting the ground truth trace if instead of finding a
set of high-quality plans it could have generated the top k
plans, where k could be determined based on a particular
scenario. In particular, although searching for the optimal
plan, or finding a set of sub-optimal plans is interesting and
challenging, the malware detection application we looked at
in this paper is an example that shows this may not be suf-
ficient. We hope that the results presented in this paper can
inspire the planning community to develop algorithms and
techniques capable of generating not only a single optimal
plan but also the top high-quality plans.

888



References
Bauer, A.; Botea, A.; Grastien, A.; Haslum, P.; and Rinta-
nen, J. 2011. Alarm processing with model-based diagnosis
of discrete event systems. In Proceedings of the 22nd Inter-
national Workshop on Principles of Diagnosis (DX), 52–59.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In Proceedings of the 15th International Con-
ference on Automated Planning and Scheduling (ICAPS),
12–21.
Cassandras, C., and Lafortune, S. 1999. Introduction to
discrete event systems. Kluwer Academic Publishers.
Cordier, M.-O., and Thiébaux, S. 1994. Event-based diag-
nosis of evolutive systems. In Proceedings of the 5th Inter-
national Workshop on Principles of Diagnosis (DX), 64–69.
Emerson, E. A. 1990. Temporal and modal logic. Handbook
of theoretical computer science: formal models and seman-
tics B:995–1072.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. In Proceedings of the 20th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 81–88.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of discrete-event systems using satisfiabil-
ity algorithms. In Proceedings of the 22nd National Confer-
ence on Artificial Intelligence (AAAI), 305–310.
Grastien, A.; Haslum, P.; and Thiebaux, S. 2011. Exhaus-
tive diagnosis of discrete event systems through exploration
of the hypothesis space. In Proceedings of the 22nd Inter-
national Workshop on Principles of Diagnosis (DX), 60–67.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In International Scheduling and Planning
Applications woRKshop (SPARK), 27–44.
Keyder, E., and Geffner, H. 2009. Soft Goals Can Be
Compiled Away. Journal of Artificial Intelligence Research
36:547–556.
Lucngeli, J.; Sarraute, C.; and Richarte, G. 2010. Attack
planning in the real world. In Workshop on Intelligent Secu-
rity (SecArt 2010).
McDermott, D. V. 1998. PDDL — The Planning Domain
Definition Language. Technical Report TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.
McIlraith, S. 1994. Towards a theory of diagnosis, testing
and repair. In Proceedings of the 5th International Workshop
on Principles of Diagnosis (DX), 185–192.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), 1778–1783.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Roberts, M.; Howe, A.; Ray, I.; Urbanska, M.; Byrne, Z. S.;
and Weidert, J. M. 2011. Personalized vulnerability analy-
sis through automated planning. In Working Notes of IJCAI
2011, Workshop Security and Artificial Intelligence (SecArt-
11).
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1995. Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Control
40(9):1555–1575.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis as
planning revisited. In Proceedings of the 12th International
Conference on the Principles of Knowledge Representation
and Reasoning (KR), 26–36.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Pre-
ferred explanations: Theory and generation via planning. In
Proceedings of the 25th National Conference on Artificial
Intelligence (AAAI), 261–267. Accepted as both oral and
poster presentation.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI), 2016–2022.
Thorsley, D.; Yoo, T.-S.; and Garcia, H. E. 2008. Diagnos-
ability of stochastic discrete-event systems under unreliable
observations. In Proceedings of American Control Confer-
ence, 1158– 1165.

889




