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Abstract

Stochastic local search (SLS) algorithms are well known
for their ability to efficiently find models of random in-
stances of the Boolean satisfiablity (SAT) problem. One of
the most famous SLS algorithms for SAT is WalkSAT, which
is an initial algorithm that has wide influence among mod-
ern SLS algorithms. Recently, there has been increasing in-
terest in WalkSAT, due to the discovery of its great power
on large random 3-SAT instances. However, the performance
of WalkSAT on random k-SAT instances with k > 3 lags
far behind. Indeed, there have been few works in improv-
ing SLS algorithms for such instances. This work takes a
large step towards this direction. We propose a novel con-
cept namely multilevel make. Based on this concept, we
design a scoring function called linear make, which is uti-
lized to break ties in WalkSAT, leading to a new algorithm
called WalkSATlm. Our experimental results on random 5-
SAT and 7-SAT instances show that WalkSATlm improves
WalkSAT by orders of magnitudes. Moreover, WalkSATlm
significantly outperforms state-of-the-art SLS solvers on ran-
dom 5-SAT instances, while competes well on random 7-SAT
ones. Additionally, WalkSATlm performs very well on ran-
dom instances from SAT Challenge 2012, indicating its ro-
bustness.

Introduction
The Boolean satisfiability (SAT) problem is a prototypical
NP-complete problem, and is an important subject of study
in many areas of computer science and artificial intelligence.
Given a conjunctive normal form (CNF) formula, the SAT
problem is to decide whether there is an assignment to its
variables that satisfies the formula. Algorithms for solving
SAT can be mainly categorized into two classes: complete
algorithms and stochastic local search (SLS) algorithms.

SLS algorithms for SAT perform a local search of the
space of truth assignments by starting with a randomly gen-
erated assignment, and then repeatedly flipping the truth
value of a variable. SLS algorithms are incomplete in the
sense that they cannot determine with certainty that a given
formula is unsatisfiable. However, they are very efficient in
solving satisfiable instances, especially the randomly gen-
erated ones. There has been much interest in studying the
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performance of SLS algorithms on uniform random k-SAT
problems at the phase transition region, which have been
cited as the hardest group of SAT problems (Kirkpatrick and
Selman 1994).

Among SLS algorithms for SAT, WalkSAT (Selman,
Kautz, and Cohen 1994) stands out as one of the most in-
fluential algorithms, and is still competitive with the state
of the art in solving large random 3-SAT instances (Kroc,
Sabharwal, and Selman 2010; Balint and Schöning 2012).
However, its performance lags far behind on random k-SAT
instances with k > 3 such as random 5-SAT and 7-SAT in-
stances. This paper aims to improve WalkSAT for random
k-SAT instances with k > 3.

Most previous works studying SLS algorithms on ran-
dom instances focus on solving random 3-SAT ones, e.g.,
(Selman, Kautz, and Cohen 1994; McAllester, Selman, and
Kautz 1997; Hoos 2002; Li and Huang 2005; Balint and
Fröhlich 2010; Cai and Su 2012; Balint and Schöning
2012), and the random 5-SAT and 7-SAT instances tested
in the literature are of rather small size. Whereas SLS al-
gorithms have exhibited great success on random 3-SAT in-
stances, their performance on random k-SAT instances with
k > 3 has stagnated for a long time. Recently, a few pro-
gresses such as Sparrow2011 (Balint and Fröhlich 2010)
and CCASat (Cai and Su 2012), have been made in this di-
rection. However, these improvements are limited, and are
achieved at the expense of complex heuristics and careful
tuning. Actually, neither Sparrow nor CCA heuristic led to
better performance than that of previous solvers on random
5-SAT and 7-SAT instances when they were proposed.

This work proposes a very simple method that surpris-
ingly improves WalkSAT, rendering it much more efficient
than state-of-the-art solvers on random 5-SAT instances. In
this sense, this work takes a large step towards improving
SLS algorithms for random k-SAT instances with k > 3. An
important notion in our method is the τ th level make (0 <
τ ≤ k), denoted by makeτ . For a variable x, makeτ (x)
measures the number of (τ−1)-true clauses that will become
τ -true by flipping x (here a clause is τ -true iff it has exactly
τ true literals). More importantly, we combine make1 (also
known as the make property) and make2 to design a scor-
ing function named linear make, abbreviated as lmake.
Just by replacing the randomized tie-breaking method in
WalkSAT with the lmake-based one, we obtain a new vari-
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ant of WalkSAT, which is called WalkSATlm (WalkSAT
with linear make). Although tie-breaking methods seem to
be a relatively minor concern, the lmake-based tie-breaking
method plays a critical role in WalkSATlm, as explained in
Section “The WalkSATlm Algorithm”.

Our experiments show that WalkSATlm outperforms
WalkSAT by orders of magnitudes on random 5-SAT and
7-SAT instances, and is able to solve 5-SAT instances more
than twice larger than those WalkSAT can handle. Further-
more, WalkSATlm dramatically outperforms state-of-the-
art SLS solvers, including the winners from recent SAT
competitions, on random 5-SAT instances, and competes
well on random 7-SAT ones. In addition, WalkSATlm per-
forms very well on the random k-SAT (k > 3) benchmark
of SAT Challenge 2012, indicating its robustness. As a by-
product, our results provide evidences against the conjecture
that the make property is of no use in focused random walk
algorithms such as WalkSAT (Balint and Schöning 2012).

In the next section, we give necessary definitions and no-
tations. Then we present a review on WalkSAT. After that,
we propose the makeτ concept and the lmake function,
and describe the WalkSATlm algorithm. This is followed by
experiments evaluating WalkSATlm. Finally we summarize
our main results and give some future directions.

Definitions and Notations
Given a set of n Boolean variables {x1, x2, ..., xn}, a
literal is either a variable x or its negation ¬x, and a clause
is a disjunction of literals. A conjunctive normal form (CNF)
formula F = C1∧C2∧ ...∧Cm is a conjunction of clauses.
The Boolean satisfiability (SAT) problem consists in testing
whether all clauses in a given CNF formula F can be satis-
fied by some consistent assignment of truth values to vari-
ables. For a CNF formula F , we use V (F ) to denote the set
of all variables that appear in F , and r = m/n to denote
its (clause-to-variable) ratio. Two variables are neighbors
if and only if they share at least one clause. The neighbour-
hood of a variable x is N(x) = {y|y occurs in at least one
clause with x}.

The most well-known generation model for random SAT
problems is the random k-SAT model (Achlioptas 2009). A
random k-SAT formula with n variables and m clauses is
a CNF formula where the clauses are chosen uniformly, in-
dependently and without replacement among all 2k

(
n
k

)
non-

trivial clauses of length k, i.e., clauses with k distinct, non-
complementary literals.

For a CNF formula F , an assignment α is a mapping
from V (F ) to {0, 1}, and it is complete if it maps all vari-
ables to a Boolean value. If a literal evaluates to true un-
der the given assignment, we say it is a true literal. Other-
wise, we say it is a false literal. A clause is satisfied if it
has at least one true literal under the given assignment, and
unsatisfied otherwise.

Usually, SLS algorithms for SAT select a variable to
flip according to scoring functions. A scoring function
can be a simple property or any mathematical expression
with one or more properties. For a variable x, the proper-
ties make(x) and break(x) are the number of clauses that

would become satisfied and unsatisfied by flipping x respec-
tively, and score(x) is defined asmake(x)−break(x), mea-
suring the increment in the number of satisfied clauses by
flipping x. Focused random walk is a special SLS ap-
proach for SAT, which always selects the variable to flip
from a (random) unsatisfied clause (Papadimitriou 1991),
and WalkSAT is one of the most well-known focused ran-
dom walk algorithms.

WalkSAT Review
In this section, we introduce the WalkSAT algorithm, which
serves as the basis of our algorithm in this work. WalkSAT is
one of the most influential SLS algorithms for SAT, not only
because its algorithmic framework has been widely used (ei-
ther directly or indirectly), but also it is still competitive with
the state of the art in solving random 3-SAT instances.

Originally introduced in (Selman, Kautz, and Cohen
1994), WalkSAT applies the following variable selection
scheme in each step. First, an unsatisfied clauseC is selected
randomly. If there exist variables with a break value of 0 in
clause C, i.e., if C can be satisfied without breaking an-
other clause, one of such variables is flipped (so-called zero-
damage step). If no such variable exists, then with a certain
probability p (the noise parameter), one of the variables from
C is randomly selected; in the remaining cases, one of the
variables with the minimum break value from C is selected.
Note that in WalkSAT, all ties are broken randomly. For de-
tails about WalkSAT, please refer to (Hoos and Stützle 2004)
and (Kautz, Sabharwal, and Selman 2009).

Recently, there has been increasing interest in WalkSAT
due to the discovery of its great power on large ran-
dom 3-SAT instances. In 2004, Aurell et al. observed that
WalkSAT was far more powerful than had been appreciated
(Aurell, Gordon, and Kirkpatrick 2004). Further empirical
studies showed that WalkSAT (with p = 0.567) scales lin-
early in n for random 3-SAT instances with a ratio up to 4.2
(Seitz, Alava, and Orponen 2005; Kroc, Sabharwal, and Sel-
man 2010). The more recent study in (Balint and Schöning
2012) illustrated WalkSAT has extremely good performance
on random 3-SAT instances (r = 4.2) with 5×105 variables.

However, compared to the good performance on random
3-SAT instances, WalkSAT performs relatively poorly on
random k-SAT problems with k > 3, and cannot rival state-
of-the-art SLS solvers. This sharp contrast motivates our
work towards improving WalkSAT for random k-SAT prob-
lems with k > 3.

Multilevel Make
In this section, we propose the concept of τ th level make,
denoted bymakeτ . Based on this concept, we design a scor-
ing function called linear make, which incorporates two
makeτ properties of different levels.

As the concept of makeτ concerns the number of true
literals in clauses, we give the following definition.

Definition 1 Given a CNF formula F and α the current as-
signment to V (F ), a clause is τ -true if and only if it contains
exactly τ true literals under assignment α.
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Apart from 0-true clauses which are actually unsatisfied
clauses, another class of clauses of special interest is the 1-
true clauses. These clauses are the most unstable satisfied
clauses, as they can become unsatisfied by flipping only one
variable. In this sense, 1-true clauses lie on the boundary
between satisfied and unsatisfied clauses.

With the definition of τ -true clauses, we give the concept
of makeτ (x).

Definition 2 For a variable x, its τ th level make, denoted
by makeτ (x), is the number of (τ − 1)-true clauses that
would become τ -true by flipping x.

Note that one may define τ th level break and τ th level
score in a similar way, but they are beyond the scope of this
paper.

Apparently, make1 is the commonly used make prop-
erty, which measures the number of unsatisfied clauses that
would become 1-true clauses by flipping a variable. In this
sense, themakeτ concept can be regarded as the generaliza-
tion of the make property. Another important makeτ prop-
erty is make2, as 1-true clauses are the most unstable sat-
isfied clauses, and this property measures the number of 1-
true clauses that would become 2-true by flipping a variable.
Based on these two important makeτ properties, we design
a scoring function named linear make (lmake), as it is a
linear combination of make1 and make2. Specifically, for a
variable x, its lmake value is

lmake(x) = w1 ·make1(x) + w2 ·make2(x).

While make1 encourages transformations from unsatis-
fied clauses to satisfied ones, make2 encourages those from
1-true clauses, which can be broken by one flip, to 2-true
ones. Therefore, flipping a variable with a greater make2
value leads to smaller break values of its neighbors, which is
beneficial in the latter search. This is especially the case for
those algorithms preferring to flip variables with the mini-
mum break, such as WalkSAT. The balance between the two
objects of lmake is controlled by the two weighting factors
w1 and w2.

The WalkSATlm Algorithm
One distinguishing feature of WalkSAT is that it utilizes the
break property rather than score. The latter combines break
and make, and is used in most SLS algorithms for SAT. It is
believed the make property is of no use in WalkSAT. How-
ever, we significantly improve WalkSAT by the lmake func-
tion. The resulting algorithm is called WalkSATlm, whose
pseudo codes are shown in Algorithm 1.

WalkSATlm differs from WalkSAT only in the tie-
breaking method (of choosing a variable from those with the
equally minimum break value). In detail, while WalkSAT
breaks ties randomly, WalkSATlm does so by preferring
the variable with the greatest lmake value (further ties are
broken randomly). It is reasonable to break ties using the
makeτ properties, which capture complementary informa-
tion to the break property.

It might seem that the tie-breaking method is a relatively
minor concern. In effect, however, it has an essential impact

on the WalkSATlm algorithm. This is because when the al-
gorithm selects a variable with the minimum break value to
flip, there is usually more than one such variable.

We have performed an experiment study for WalkSATlm
to figure out how frequently the tie-breaking mechanism is
performed in those steps where a variable with the minimum
break value is selected, including the zero-damaged steps.
The experiment is performed with random 5-SAT and 7-SAT
instances from SAT Competition 2011. Our experimental re-
sults based on 100 runs show that, the tie-breaking mecha-
nism is performed in about 40% of such steps for 5-SAT
instances with 2000 variables, and 32% for 7-SAT instances
with 200 variables. Therefore, the tie-breaking mechanism
plays a substantial role in the WalkSATlm algorithm.

Algorithm 1: WalkSATlm (F )
Input: A CNF formula F
Parameters Noise parameter p ∈ [0, 1]1
Output: A satisfying assignment for F , or FAIL
begin2

for i← 1 to MAX − TRIES do3
σ ← a randomly generated truth assignment for F ;4
for j ← 1 to MAX − FLIPS do5

if σ satisfies F then return σ;6
C ← an unsatisfied clause chosen at random;7
if ∃ variable x ∈ C with break(x) = 0 then8

v ← x, breaking ties by preferring the one9
with the greatest lmake value;

else10
With probability p:11

v ← a variable in C chosen at random;12
With probability 1− p:13

v ← a variable in C with the minimum14
break, breaking ties by preferring the one
with the greatest lmake value;

Flip v in σ;15

return FAIL;16
end17

Experimental Evaluation
We carry out extensive experiments to test WalkSATlm on
random k-SAT instances with k > 3. For the purpose
of comparison, we run the tests with WalkSAT, and also
state-of-the-art SLS solvers including the winners from SAT
Competition 2011 and SAT Challenge 2012.

Benchmarks
To evaluate WalkSATlm, we set up three benchmarks.

5-SAT benchmark: which includes all large random 5-
SAT instances from SAT Competition 2011 (r = 20, 750 ≤
n ≤ 2000, 10 instances each size). Moreover, to extend
the benchmark, we generate 500 random 5-SAT instances
of larger sizes (r = 20, n ranges from 2500 to 4500 in in-
crements of 500, 100 instances each size).

7-SAT benchmark: which includes large random 7-SAT
instances from SAT Competition 2011 (r = 85, 150 ≤ n ≤
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250, 10 instances each size). Those with 300 and 400 vari-
ables are beyond the solving ability of all the solvers and
are thus not reported. To extend the benchmark, we generate
500 random 7-SAT instances (r = 85, n ranges from 180 to
280 in increments of 20, 100 instances each size).

SAT Challenge 2012 benchmark: which consists of all
the 480 random k-SAT instances with k > 3 from SAT
Challenge 2012. There are 120 instances for each k-SAT
(k = 4, 5, 6, 7), which vary in both size and ratio.

Experimental Preliminaries
Implementation: WalkSATlm is implemented in C++,
complied by g++ with the ‘-O3’ option. The parameter set-
ting for WalkSATlm is reported in Table 1, which is based
on some preliminary experiments. We believe through more
careful tuning, better settings can be found, and thus the per-
formance of WalkSATlm can be further improved.

w1 w2 p
4-SAT 3 1 1.5− 0.1r
5-SAT 3 2 1.19− 0.04r
6-SAT 4 3 1.45− 0.03r
7-SAT 5 4 0.972− 0.01r

Table 1: Parameter setting for WalkSATlm

Competitors: We compare WalkSATlm with WalkSAT,
as well as five state-of-the-art SLS solvers, including
Sparrow2011 (Balint and Fröhlich 2010), sattime2011 (Li
and Li 2012), EagleUP (Gableske and Heule 2011), CCASat
(Cai and Su 2012), and probSAT (Balint and Schöning
2012). The first three are the winners in the random satisfi-
able category of SAT Competition 2011, and CCASat is the
winner in the random track of SAT Challenge 2012, while
probSAT is one of the best SLS solvers in the recent litera-
ture.

For WalkSAT, we adopt the latest version (v50) from its
author’s website1, and the noise parameter p is set to 0.25
for 5-SAT and 0.10 for 7-SAT. This setting is optimized
by the iterated F-race configurator (Birattari et al. 2010),
as reported in (Balint and Schöning 2012). We also tested
WalkSAT with the same setting to p as in WalkSATlm,
which leads to worse performance and is thus not adopted.
Since we could not find any setting for 4-SAT and 6-SAT
problems, and also WalkSAT performs significantly worse
than other solvers on random 5-SAT and 7-SAT instances,
we do not test it on SAT Challenge 2012 benchmark.

The binaries of Sparrow2011, sattime2011 and EagleUP
are downloaded from the webpage of SAT competitions2,
and the binary of CCASat is downloaded online3, while that
of probSAT is provided by its author.

Hard- and Soft-ware: All the experiments are carried out
on the EDACC v4.1 platform (Balint et al. 2010), using 2
cores of Intel(R) Core(TM) i7-2640M 2.8 GHz CPU and 7.8
GByte RAM, under the Ubuntu Linux Operation System.

1http://www.cs.rochester.edu/~kautz/walksat/Walksat_v50.zip
2http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-

binaries.tar.gz
3http://www.shaoweicai.net/research.html
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Figure 1: Averaged run time comparison on large random
5-SAT instances from SAT Competition 2011.

Evaluating Methodology: For 5-SAT and 7-SAT bench-
marks, each solver is performed 10 times on each instance
from SAT Competition 2011, and one time on each ran-
domly generated instance, with a cutoff time of 5000 sec-
onds (the same as in SAT competitions). In this way, each
solver is performed 100 times for each instance class. For
SAT Challenge 2012 benchmark, each solver is performed
one time on each instance, with a cutoff time of 1000 sec-
onds (close to that in SAT Challenge 2012, i.e., 900 sec-
onds). Each run terminates upon either finding a satisfying
assignment or reaching the given cutoff time. As for per-
formance metrics, we report the success rate (‘suc’) and the
averaged run time (‘time’) for each instance class. The best
results for an instance class are highlighted in bold font. If a
solver has no successful run for an instance class, the corre-
sponding ‘time’ is marked with “-”.

Experimental Results
In this subsection, we present and discuss the compara-
tive results of WalkSATlm and its competitors. For the first
two benchmarks, we first discuss the comparison between
WalkSATlm and WalkSAT, to demonstrate the effectiveness
of the lmake-based tie-breaking method, and then we com-
pare WalkSATlm against state-of-the-art SLS solvers.

WalkSATlm vs. WalkSAT on 5-SAT Benchmark
As demonstrated in Table 2, WalkSATlm shows a dramatic
improvement over WalkSAT. The performance of WalkSAT
dramatically decreases with n when n ≥ 1250, and it be-
comes futile for instances with n ≥ 2000. The behavior of
WalkSATlm, on the other hand, is quite different: 3000 vari-
able instances are quite manageable, and even 4500 variable
instances can be solved with 27% success rate. In respect
of averaged run time, WalkSATlm is one to two orders of
magnitudes faster than WalkSAT. Actually, as is clear from
Figure 1, WalkSAT cannot rival state-of-the-art SLS solvers
on random 5-SAT instances; on the other hand, just by re-
placing the tie-breaking mechanism, the improved algorithm
WalkSATlm significantly outperforms them.

WalkSATlm vs. State-of-the-art Solvers on 5-SAT
Benchmark Now we turn our attention to the comparison
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Sparrow2011 sattime2011 EagleUP probSAT CCASat WalkSAT WalkSATlm
suc time suc time suc time suc time suc time suc time suc time

5sat750 100% 51 99% 754 100% 72 100% 88 100% 47 100% 184 100% 92
5sat1000 100% 159 97% 804 100% 184 100% 185 100% 81 98% 596 100% 55
5sat1250 100% 174 91% 1538 100% 384 100% 237 100% 128 71% 2197 100% 64
5sat1500 99% 781 52% 3501 88% 1823 98% 853 100% 443 36% 3888 100% 177
5sat2000 72% 2688 10% 4749 25% 4281 71% 2585 93% 1236 3% 4919 100% 511
5sat2500 72% 2925 4% 4939 7% 4789 66% 2901 88% 1762 0% - 100% 635
5sat3000 31% 4130 0% - 1% 4990 40% 3866 64% 3203 0% - 100% 1701
5sat3500 8% 4747 0% - 0% - 6% 4888 35% 4290 0% - 78% 2171
5sat4000 4% 4879 0% - 0% - 3% 4941 10% 4787 0% - 56% 3343
5sat4500 0% - 0% - 0% - 0% - 0% - 0% - 27% 4380

Table 2: Experimental results on the 5-SAT benchmark based on 100 runs for each instance class, with a cutoff time of 5000
seconds. Instances from SAT Competition 2011 are indicated in typewriter font in the table.
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Figure 2: Success rate comparison on large random 7-SAT
instances with n ≥ 200.

between WalkSATlm and state-of-the-art SLS solvers on the
random 5-SAT benchmark. Table 2 shows that WalkSATlm
is the only solver that solves all instances from SAT Com-
petition 2011 with 100% success rate. The comparative re-
sults with respect to averaged run time on these instances are
summarized in Figure 1, which indicates that WalkSATlm is
much faster than other solvers.

The superiority of WalkSATlm is more significant on the
larger instances, whose sizes range from 2500 to 4500 vari-
ables. As we can see from Table 2, the success rates of all
competitors descend steeply with the size of the instance,
and decline to 10% or less on the 5sat4000 instance class.
Comparatively, WalkSATlm consistently solves all the in-
stances with up to 3000 variables, and succeeds in more than
half runs on the 5sat4000 instances. In addition, it is the only
solver that is able to solve some of the 4500 variable in-
stances. To sum up, WalkSATlm significantly improves the
state of the art in solving random 5-SAT instances.

WalkSATlm vs. WalkSAT on 7-SAT Benchmark
Table 3 shows that WalkSATlm performs dramatically bet-
ter than WalkSAT on random 7-SAT instances, and their per-
formance gap rises rapidly with the size of the instance. For
example, the ratio of the success rate of WalkSATlm to that
of WalkSAT is approximately 3:1 (61%:22%) on the 7sat200
instances, and goes up to 19:1 (38%:2%) on the 7sat240 in-

stances. Furthermore, while WalkSAT fails to solve any in-
stance with n ≥ 250, WalkSAT can handle 7-SAT instances
with up to 280 variables. Also, the averaged run time of
WalkSATlm is much less than that of WalkSAT. Note that
the failed runs would have taken even longer time if they
had not been stopped by a cutoff, and thus the run time gap
between WalkSATlm and WalkSAT would be much larger
as WalkSAT has much more failed runs.

WalkSATlm vs. State-of-the-art Solvers on 7-SAT
Benchmark An obvious observation from Table 3 is that
CCASat and WalkSATlm perform much better than other
solvers, and thus we focus on the comparison between them.
As demonstrated in Table 3 and Figure 2, the two solvers
are competitive and in some sense complementary to each
other on these random 7-SAT instances. For the instances
with n ≤ 220, the overall averaged success rate of CCASat
is 85%, a little higher than that of WalkSATlm, i.e., 78.75%.
On the other hand, WalkSATlm shows superior performance
on the instances with n > 220. On these larger instances,
WalkSATlm achieves an overall averaged success rate of
18.5%, compared to 13.5% for CCASat, which suggests that
WalkSATlm is promising on large 7-SAT instances.

Results on SAT Challenge 2012 Benchmark
We report in Table 4 the number of solved instances and the
averaged run time for each solver on the benchmark of all
random k-SAT (k > 3) instances from SAT Challenge 2012.
WalkSATlm is competitive with CCASat, and both of them
significantly outperform the remaining solvers. WalkSATlm
solves 357 instances, only two less than CCASat does, indi-
cating WalkSATlm is very competitive with CCASat on this
benchmark, which is also illustrated in Figure 3. Consider-
ing the random nature of the behavior of SLS algorithms,
the performance of the two solvers is indistinguishable.

Note that as with WalkSAT, the performance of
WalkSATlm critically depends upon the setting of the noise
parameter p, and will very likely be improved with better set-
tings. Specially, we believe the performance of WalkSATlm
on random k-SAT instances with various ratios would be
significantly improved if we set p in a more careful way,
such as the step-linear model used for WalkSAT (Kroc, Sab-
harwal, and Selman 2010). However, this kind of empirical
study requires a significant computational power, and is not
carried out in this work. Nonetheless, our experiments do
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Sparrow2011 Sattime2011 EagleUP probSAT CCASat WalkSAT WalkSATlm
suc time suc time suc time suc time suc time suc time suc time

7sat150 100% 642 100% 512 98% 445 88% 1579 100% 232 98% 917 100% 532
7sat180 88% 2137 96% 1066 98% 1019 78% 2239 100% 644 79% 2121 95% 1090
7sat200 17% 4562 46% 3601 48% 3625 11% 4757 72% 2312 22% 4387 61% 3090
7sat220 13% 4706 35% 4100 34% 4061 10% 4723 68% 2789 9% 4770 59% 3079
7sat240 2% 4921 12% 4689 11% 4782 2% 4951 33% 4008 2% 4846 38% 3990
7sat250 0% - 2% 4965 2% 4976 0% - 7% 4881 0% - 11% 4791
7sat260 0% - 3% 4932 3% 4985 0% - 9% 4786 0% - 17% 4567
7sat280 0% - 0% - 0% - 0% - 5% 4855 0% - 8% 4799

Table 3: Experimental results on the random 7-SAT benchmark based on 100 runs for each instance class, with a cutoff time of
5000 seconds. Instances from SAT Competition 2011 are indicated in typewriter font in the table.

Sparrow2011 sattime2011 EagleUP probSAT CCASat WalkSATlm

#solved 268 229 251 298 359 357

time 585 663 615 511 389 396

Table 4: Results on the SAT Challenge 2012 benchmark con-
sisting of all random k-SAT instances with k > 3.
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Figure 3: Comparison of run time distributions on SAT Chal-
lenge 2012 benchmark consisting of all random k-SAT in-
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show promising results of WalkSATlm.

Discussions
Generally, we can define a linear make function
as a linear combination of makeτ properties, i.e.,
f(x) =

∑k
τ=1 wτ ∗makeτ (x), where k is the maximum

clause length of the formula, and wτ is the weighting fac-
tor of makeτ . Clearly, lmake is one of such linear make
functions. Thus it is interesting to see whether other lin-
ear make functions can also improve WalkSAT for random
k-SAT problems with k > 3.

In what follows, we present three alternative functions,
with a brief performance report for the resulting algorithms.

1. f1(x) = make1(x): fails to solve any 5sat2000 or
7sat200 instance.

2. f2(x) = make2(x): fails to solve any 5sat2000, but suc-
ceeds in 55 out of 100 runs on 7sat200 instances.

3. f3(x) = w1 ∗make1(x)+w2 ∗make2(x)+w3 ∗make3(x):
whenw3 is set much smaller thanw1 andw2, for example,
(w1, w2, w3) = (18, 12, 1) for 5-SAT and (w1, w2, w3) =
(10, 8, 1) for 7-SAT, the alternative algorithm performs
similarly to WalkSATlm in terms of step performance but
requires more time due to the computation of make3. We
did not find any setting leading to better performance than
that of WalkSATlm.

These experimental results indicate that among linear
make functions, lmake is perhaps the best choice for im-
proving WalkSAT. Although there might be more effec-
tive (non-linear) functions combining makeτ properties, we
choose linear functions for our study, not only because of
their effectiveness but also because they are so simple that
we can tune the parameters easily.

Conclusions and Future Work
We proposed a new concept for SAT SLS algorithms, i.e.,
multilevel make, which is a generalization of make. Us-
ing this concept, we designed a scoring function linear
make, which is used to break ties in WalkSAT, leading to
the WalkSATlm algorithm. The method is simple, yet sur-
prisingly effective.

The experiments show that WalkSATlm outperforms
WalkSAT by one to two orders of magnitudes on random 5-
SAT and 7-SAT instances. Furthermore, WalkSATlm signif-
icantly outperforms state-of-the-art SLS solvers on random
5-SAT instances, and is very competitive with the state of
the art (i.e., CCASat) on random 7-SAT instances. Also, the
experiments on the random benchmark of SAT Challenge
2012 demonstrate the robustness of WalkSATlm.

Given the great success and its simplicity, we believe the
idea of multilevel make, and possibly multilevel break
and multilevel score, will lead to more fruitful works. For
future work, we plan to apply our method to other SLS al-
gorithms, especially those focused random walk ones.

Acknowledgement
This work is supported by 973 Program 2010CB328103,
ARC Grant FT0991785, National Natural Science Foun-
dation of China 61073033 and 60903054, and Fundamen-
tal Research Funds for the Central Universities of China
21612414. We would like to thank the anonymous referees
for their helpful comments.

150



References
Achlioptas, D. 2009. Random satisfiability. In Handbook of
Satisfiability. IOS Press. 245–270.
Aurell, E.; Gordon, U.; and Kirkpatrick, S. 2004. Compar-
ing beliefs, surveys, and random walks. In Proc. of NIPS-04,
49–56.
Balint, A., and Fröhlich, A. 2010. Improving stochastic
local search for SAT with a new probability distribution. In
Proc. of SAT-10, 10–15.
Balint, A., and Schöning, U. 2012. Choosing probability
distributions for stochastic local search and the role of make
versus break. In Proc. of SAT-12, 16–29.
Balint, A.; Gall, D.; Kapler, G.; and Retz, R. 2010. Exper-
iment design and administration for computer clusters for
SAT-solvers (edacc). JSAT 7(2-3):77–82.
Birattari, M.; Yuan, Z.; Balaprakash, P.; and Stützle, T. 2010.
F-race and iterated F-race: An overview. In Empirical Meth-
ods for the Analysis of Optimization Algorithms. Springer.
311–336.
Cai, S., and Su, K. 2012. Configuration checking with as-
piration in local search for SAT. In Proc. of AAAI-12, 334–
340.
Gableske, O., and Heule, M. 2011. EagleUP: Solving ran-
dom 3-SAT using SLS with unit propagation. In Proc. of
SAT-11, 367–368.
Hoos, H. H., and Stützle, T. 2004. Stochastic Local Search:
Foundations & Applications. Elsevier / Morgan Kaufmann.
Hoos, H. H. 2002. An adaptive noise mechanism for
WalkSAT. In Proc. of AAAI-02, 655–660.
Kautz, H. A.; Sabharwal, A.; and Selman, B. 2009. Incom-
plete algorithms. In Handbook of Satisfiability. IOS Press.
185–203.
Kirkpatrick, S., and Selman, B. 1994. Critical behavior
in the satisfiability of random boolean formulae. Science
264:1297–1301.
Kroc, L.; Sabharwal, A.; and Selman, B. 2010. An empiri-
cal study of optimal noise and runtime distributions in local
search. In Proc. of SAT-10, 346–351.
Li, C. M., and Huang, W. Q. 2005. Diversification and
determinism in local search for satisfiability. In Proc. of SAT-
05, 158–172.
Li, C. M., and Li, Y. 2012. Satisfying versus falsifying in
local search for satisfiability - (poster presentation). In Proc.
of SAT-12, 477–478.
McAllester, D. A.; Selman, B.; and Kautz, H. A. 1997. Ev-
idence for invariants in local search. In Proc. of AAAI-97,
321–326.
Papadimitriou, C. H. 1991. On selecting a satisfying truth
assignment. In Proc. of FOCS-91, 163–169.
Seitz, S.; Alava, M.; and Orponen, P. 2005. Focused local
search for random 3-satisfiability. J. Stat. Mech. P06006.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise strate-
gies for improving local search. In Proc. of AAAI-94, 337–
343.

151




