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Abstract

Rank aggregation, which combines multiple individual
rank lists to obtain a better one, is a fundamental tech-
nique in various applications such as meta-search and
recommendation systems. Most existing rank aggrega-
tion methods blindly combine multiple rank lists with
possibly considerable noises, which often degrades their
performances. In this paper, we propose a new model
for robust rank aggregation (RRA) via matrix learning,
which recovers a latent rank list from the possibly in-
complete and noisy input rank lists. In our model, we
construct a pairwise comparison matrix to encode the
order information in each input rank list. Based on our
observations, each comparison matrix can be naturally
decomposed into a shared low-rank matrix, combined
with a deviation error matrix which is the sum of a
column-sparse matrix and a row-sparse one. The latent
rank list can be easily extracted from the learned low-
rank matrix. The optimization formulation of RRA has
an element-wise multiplication operator to handle miss-
ing values, a symmetric constraint on the noise struc-
ture, and a factorization trick to restrict the maximum
rank of the low-rank matrix. To solve this challeng-
ing optimization problem, we propose a novel proce-
dure based on the Augmented Lagrangian Multiplier
scheme. We conduct extensive experiments on meta-
search and collaborative filtering benchmark datasets.
The results show that the proposed RRA has supe-
rior performance gain over several state-of-the-art algo-
rithms for rank aggregation.

Introduction
Rank aggregation, a task which combines multiple individ-
ual rank lists (a rank list is an ordered list of a set of items) to
obtain a better rank list, has received considerable attention
in recent years. Rank aggregation plays an important role in
a wide range of applications, such as meta-search (Dwork
et al. 2001), collaborative filtering (Gleich and Lim 2011),
machine translation (Rosti et al. 2007) and object catego-
rization (Ye et al. 2012). Many methods for rank aggre-
gation have been proposed in the literature (Borda 1781;
Dwork et al. 2001; Fagin et al. 2003; Liu et al. 2007;
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Klementiev et al. 2008; Qin et al. 2010a; Gleich and Lim
2011).

In real world applications such as meta-search and recom-
mendation systems, there are two main challenges in rank
aggregation: the input rank lists might (1) be incomplete,
and (2) be corrupted by considerable noises. The first chal-
lenge has been well addressed by existing methods (Gleich
and Lim 2011; Qin et al. 2010a; Dwork et al. 2001). How-
ever, most existing rank aggregation methods blindly com-
bine all the individual rank lists with possibly considerable
noises, which often degrades their performances.

To explicitly handle the noises, Ye et al. (Ye et al. 2012)
proposed a robust data fusion method for object categoriza-
tion, which can be regarded as a method for rank aggrega-
tion. Given n input rank lists, their method constructs n pair-
wise comparison matrices, each of which is a shared rank-2
matrix combined with independent-sparse noises, and then
recovers the rank-2 matrix and extracts the final rank list
from this matrix. However, their method requires the input
rank lists to be complete (with no missing values), which is
limited in real world scenarios of rank aggregation.

In this paper, we propose the Robust Rank Aggregation
(RRA), a novel method that simultaneously handles the pos-
sible noises as well as missing values in the individual rank
lists. As shown in Fig.1, we firstly use a pairwise compari-
son matrix to encode the (possibly incomplete) order infor-
mation in each individual rank list. Then, based on our ob-
servations, we show that this comparison matrix can be nat-
urally decomposed into (1) a shared latent matrix with low
rank, and (2) a deviation error matrix which is the combina-
tion of a column-sparse matrix and a row-sparse matrix. The
final rank list can be easily extracted from the learned low-
rank matrix. Consequently, we propose to formulate rank
aggregation as a problem of low-rank and structured-sparse
decomposition. Different from the formulation in (Ye et al.
2012), our formulation introduces the element-wise multi-
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Figure 1: Overview of Robust Rank Aggregation (RRA). Given n
possibly incomplete and noisy input rank lists π(i)(i = 1, 2, ..., n),
RRA constructs n matrices T (i)(i = 1, 2, ..., n), where each T (i)

encodes the pairwise relations between every two items in π(i).
Then T (i)(i = 1, 2, ..., n) are used as input of RRA to learn a
shared, low-rank matrix Z. Each T (i) can be reconstructed by Z
combining with an additive sparse matrix N (i), which can be de-
composed into a column-sparse matrix E(i) and its negative trans-
pose (−(E(i))T ). At last, RRA recovers a final and more accurate
rank list π from Z.

plication to handle the missing values, a symmetric con-
straint on the noise structure, and a factorization trick to
explicitly restrict the maximum rank of the shared latent
matrix, resulting in a considerably more challenging opti-
mization problem. We propose an algorithm to solve the
optimization problem based on the Augmented Lagrangian
Multiplier (ALM) scheme (Lin et al. 2010). Experimental
results on benchmark datasets of meta-search and collabora-
tive filtering show that the proposed RRA outperforms sev-
eral state-of-the-art rank aggregation methods.

Related Work
Rank aggregation ia a classical problem which can be traced
back to the 1780s in social choice research (Borda 1781).
Recently, rank aggregation attracts much attention again
in modern applications such as meta-search (Dwork et al.
2001), recommendation systems (Gleich and Lim 2011),
spam webpage detection (Dwork et al. 2001) and machine
translation (Rosti et al. 2007).

The rank aggregation methods can be categorized into
two main streams. The first stream is the score-based meth-
ods (Manmatha et al. 2001; Montague and Aslam 2001;
Gleich and Lim 2011), where each item in an individual
rank list is assigned a score. The second stream is the
order-based methods (Dwork et al. 2001; Fagin et al. 2003;
Liu et al. 2007; Qin et al. 2010a), where only the order re-
lations of the items in the individual rank list are used. In
real world applications, methods in the second stream are
more popular because (1) the scores in some input rank
lists might not be sufficiently accurate and less reliable than
the order information, and (2) in some applications such as
meta-search, only the order information of the results from

individual search engines is available. Our proposed method
belongs to the second stream.

The representative order-based methods for rank aggre-
gation include: BordaCount (Borda 1781), median rank ag-
gregation (Fagin et al. 2003), Markov Chain based meth-
ods (Dwork et al. 2001), probabilistic rank aggregation (Qin
et al. 2010a) and matrix completion based rank aggrega-
tion (Gleich and Lim 2011). In BordaCount (Borda 1781),
each item is sorted by counting the number of items ranked
before it in all the individual rank lists. Median rank ag-
gregation (Fagin et al. 2003) sorts the items by their me-
dian ranks in all the individual rank lists. The Markov Chain
based methods (Dwork et al. 2001) learns a Markov Chain
on the items using the order information in the individual
rank lists, and then uses the stationary distribution of the
learned Markov Chain to sort the items. Probabilistic rank
aggregation (Qin et al. 2010a) uses a distance-based proba-
bilistic model on permutation to model the generation of a
rank list. The matrix completion based method (Gleich and
Lim 2011) constructs a possibly incomplete pairwise com-
parison matrix by averaging the pairwise relation between
items over all the individual rank lists, and then recovers a
rank-2 matrix from the pairwise comparison matrix, finally
the items are sorted by a score list exacted from the recov-
ered matrix. However, these methods blindly combine the
individual rank lists that might be corrupted by considerable
noises, which often degrades their performances.

Ye et al. (Ye et al. 2012) proposed a robust data fusion
method for object categorization, which explicitly handles
the noises in the individual rank lists. However, their method
requires all the input rank lists to be complete and cannot be
applied to partial rank aggregation in real world scenarios.

Robust Rank Aggregation
General framework
We first present the general framework for robust rank ag-
gregation via matrix learning. Given m items and n (incom-
plete) individual rank lists π(1), π(2), ..., π(n) (each of which
is a partial ordered list of the m items), the task of rank ag-
gregation is to obtain a better rank list by combining these
individual rank lists. Fig. 1 illustrates the framework of the
proposed RRA. We first convert each π(i) into an m × m

comparison matrix T (i), in which each T (i)
j,k is defined as:

T
(i)
j,k =

{
sign(π

(i)
j − π

(i)
k ) if π(i)

j and π(i)
k are observed

unknown if π(i)
j or π(i)

k is missing

where π(i)
j /π(i)

k denotes the rank position of j-th/k-th item
in π(i) (for convenience, we assume top items in a rank list
have larger rank positions). To handle the possible missing
values in the input rank lists, we define an indicator matrix
W (i) of the same size as T (i), where W (i)

j,k = 0 if T (i)
j,k is

unknown, otherwise W (i)
j,k = 1. Note that each W (i) is sym-

metric (i.e., Wj,k = Wk,j).
In real world applications such as meta-search and recom-

mendation system, the quality of each item is usually mea-
sured by some relevance level. For example, in meta-search,
the relevance of the web pages is measured by five levels:
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Figure 2: An illustration of the low-rank pattern in the shared
latent matrix, and the structure-sparse pattern in the error matrix
caused by noises. (a) An example of comparison matrix with an
item being in an incorrect position. (b) The shared latent matrix is
block-diagonal and of low-rank. (c) The pattern in the error matrix
caused by an item being in an incorrect position. Please refer to
the text in Section Low-rank and structured-sparse modeling for
details.

perfect, excellent, good, fair and bad; in movie recommen-
dation systems, the quality of each movie is measured by
1 ∼ 5 stars. Assume that L(i) is the fixed but unknown rel-
evance level of the i-th item, L(i) ∈ {1, 2, ..., k}. The larger
L(i) is, the more relevant the i-th item is. Ideally, the target
pairwise comparison matrix Z ∈ Rm×m that encodes the
true order relations between items should be defined by:

Zj,k = sign(L(j)− L(k)).

Each comparison matrix T (i) is an isotonic representation
that encodes the relative order relations between the items.
Some entries in T (i) correctly reflect the relative order be-
tween the items, while other entries may be incorrect due to
the wrong predictions in the individual rank list π(i). T (i)

can be viewed as a combination of two parts: the target pair-
wise comparison matrix Z that reflects the correct relations
between the items, and a deviation error matrixN (i) that en-
codes the errors made by the incorrect entries in π(i). Con-
cretely, for all i, we have

W (i) � T (i) = W (i) � (Z +N (i)). (1)
where � denote element-wise (Hadamard) multiplication.

If Z is given, we can easily obtain a score list z on the
items by z = 1

mZe
T (Gleich and Lim 2011) (where e is a

m-dimensional vector with all ones), and then get the final
rank list by sorting the items using z.

To sum up, given T (i) (i = 1, 2, ..., n), the central task of
robust rank aggregation is to infer the latent matrix Z.

Low-rank and structured-sparse modeling
A key question raised by the framework of RRA is how to
model the structures in the shared matrix Z and each de-
viation error matrix N (i). To answer this question, without
loss of generality, we assume each item has a fixed but un-
known relevance level from {1, 2, ..., k}. Then we will show
that, by this assumption, (1) the target pairwise comparison
matrix Z is naturally of low-rank, and (2) each error matrix
N (i) has a structured-sparse pattern.

Firstly, as illustrated in Fig. 2(b), given a list of 6 items
whose relevance levels are 3, 3, 3, 2, 2, 1, the corresponding
pairwise comparison matrix has a block-diagonal structure.
In this matrix, since the first three columns are identical and
the 4th and 5th columns are identical, it is obvious that the
rank of this matrix is 3. In general, for any pairwise compar-

ison matrix generated by an item list associated with k rel-
evance levels, we can convert it into a block-diagonal with
k blocks (note that this conversion does not change the rank
of the matrix because exchanging two columns/rows of any
matrix A does not change the rank of A), and the rank of the
block-diagonal matrix is not larger than k. This motivates us
to assume the underlying pairwise comparison matrix Z in
Eq. (1) to be of low-rank. Note that this is different from the
rank-2 assumption on T within score-based settings in (Gle-
ich and Lim 2011).

Secondly, in practice, an input rank list π(i) might be
partially incorrect, resulting in incorrect order information
in T (i). Concretely, the corruptions in an individual rank
list can be regarded as some items being in incorrect rank
positions. For example, Fig. 2 is an illustration of the ef-
fect caused by putting item C in an incorrect rank position.
More specifically, Assume the true rank list is (A B C) →
(D E) → F (associated with the true comparison matrix
in Fig. 2(b)). If we change item C from the 3rd position
to the 5th position, then the rank list becomes (A B) →
(D E) → (C F ) and the comparison matrix in Fig. 2(b) is
changed to the one in Fig. 2(a). The errors caused by this
position change are in the matrix of Fig. 2(c), which can
be decomposed into a column [1, 1, 0, 2, 2, 1]T and a row
[−1,−1, 0,−2,−2,−1], where the row is exactly the nega-
tive transpose of the column. In general, if there are a small
fraction of items being in incorrect positions within an indi-
vidual rank list, the corresponding error matrix (N (i) in Eq.
(1)) is the combination of a column-sparse matrix and its
negative transpose (a row-sparse matrix). More specifically,
for an input pairwise matrix T (i), we have:

W (i) � T (i) = W (i) � (Z + E(i) − (E(i))T ),

where E(i) is a column-sparse matrix, and its transpose
(E(i))T is a row-sparse one.

Problem formulation
With the low-rank and column-sparse assumptions, RRA
can be formulated as

min
Z,E(i)

||Z||∗ + λ

n∑
i=1

||E(i)||2,1

s.t. W (i) � T (i) = W (i) � (Z + E(i) − (E(i))T )

(i = 1, 2, ..., n),

(2)

where the trace norm regularization term ||Z||∗ induces the
desirable low-rank structure in the matrix Z, the `2,1-norm

regularization term ||E(i)||2,1 =
∑m
k=1

√∑m
j=1(E

(i)
j,k)2

which encourages the column-sparsity in E(i) (correspond-
ingly, it also encourages the row-sparsity in (E(i))T ), and λ
is a non-negative trade-off parameter.

Note that the trace norm in a matrix Z is a well-known
convex surrogate of the rank in Z. Hence, minimizing the
trace norm in Z does not guarantee the rank of Z not ex-
ceeding a pre-specified value (although the trace norm usu-
ally encourages a relative low-rank structure). However, in
rank aggregation, it is desirable to restrict the learned matrix
Z to have a pre-specified rank. For example, assuming there
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are k relevance levels in meta-search, it is ideally to restrict
the rank of Z to be k1(see the explanation in the previous
subsection).

To address this issue, we propose to factorize the pair-
wise comparison matrix Z ∈ Rm×m into the product of two
size-reduced matrices (i.e.,m×k and k×m). Similar meth-
ods (Liu et al. 2012; Liu and Yan 2012) take advantage of
a fixed rank for a different purpose, i.e., to accelerate the
optimization for low-rank matrix learning problems such as
RPCA (Candes et al. 2011) and LRR (Liu et al. 2010).

More specifically, we assume the factorization be Z =
QJ where Q ∈ Rm×k is column-orthogonal and J ∈
Rk×m. Then the problem in Eq. (2) can be rewritten as:

min
Z,Q,J,E(i)

||J ||∗ + λ

n∑
i=1

||E||2,1

s.t. W (i) � T (i) = W (i) � (Z + E(i) − (E(i))T ),

Z = QJ, QTQ = Ir(i = 1, 2, ..., n).

(3)

where Ir is the r×r identity matrix, and we use the fact that
||Z||∗ = ||QJ ||∗ = ||J ||∗ because Q is column-orthogonal.

Optimization Procedure
In the section, we propose a novel procedure to solve the op-
timization problem in Eq. (3) based on the Augmented La-
grangian Multiplier (ALM) scheme (Lin et al. 2010). ALM
has shown a good balance between efficiency and accuracy
in many matrix learning problems.

Algorithm based on ALM
We first convert Eq. (3) into the following equivalent prob-
lem:

min
Z,Q,J,E(i),F (i)

||J ||∗ + λ

n∑
i=1

||E||2,1

s.t. W (i) � T (i) = W (i) � (Z + F (i) − (F (i))T ), Z = QJ,

QTQ = Ir, F
(i) = E(i) (i = 1, 2, ..., n),

(4)
where we introduce the auxiliary variables F (i) to make it
easier to solve the corresponding subproblems.

The corresponding Lagrangian function of Eq. (4) is:

L(Q, J, Z,E(i), F (i)) = ||J ||∗ + λ

n∑
i=1

||E(i)||2,1

+
µ

2
||W (i) � (T (i) − Z − F (i) + (F (i))T )||2F )

+

n∑
i=1

(〈X(i),W (i) � (T (i) − Z − F (i) + (F (i))T )〉

+
µ

2

n∑
i=1

||F (i) − E(i)||2F ) +

n∑
i=1

(〈Yi, F (i) − E(i)〉

+
µ

2
||Z −QJ ||2F + 〈L,Z −QJ〉 s.t. QTQ = Ir,

where X(i), Y (i) and L are Lagrangian multipliers.

1However, if there is large variation in the input rank lists, Z
might have an unknown rank larger than k. Hence, one can also set
the rank of Z to be k + p where p is a small integer.

Algorithm 1 shows the sketch of the proposed algo-
rithm. Next, we will present the update rule for each of
Z, Q, J, E(i), F (i) when other variables being fixed.
Please refer to Algorithm 1 for the details.

Algorithm 1 Robust Rank Aggregation via ALM

Input: λ, T (i) ∈ Rm×m(i = 1, . . . , n).
Initialize:All zeros for Q, J, Z, L,E(i), F (i), X(i), Y (i)

(i=1,. . . ,n). µ = 10−6, ρ = 1.9, ε = 10−8.
Repeat

Updating Q via Eq.(6).
Updating J via Eq.(8).
Updating Z via Eq.(10).
Updating E(i) via Eq.(11).
Updating F (i) via Eq.(15).
L← L+ µ(Z −QJ)

X(i) ← X(i) + µW (i) � (T (i) − Z − F (i) + (F (i))T )

Y (i) ← Y (i) + µ(F (i) − E(i))
µ← min(ρµ, 1010).

Until ||Z −QJ ||∞ ≤ ε, ||F (i) − E(i)||∞ ≤ ε
and ||W (i) � (T (i) − Z − F (i) + (F (i))T )||∞) ≤ ε.

Output: Z,E(i)(i = 1, . . . , n).

Solving Q
When other variables are fixed, the subproblem w.r.t. Q is:

min
Q

µ

2
||Z −QJ + L/µ||2F s.t. QTQ = Ir. (5)

This is the well-known orthogonal procrustes problem,
whose solution can be derived from the Singular Value De-
composition (SVD) of (Z+L/µ)JT . Concretely, if U1Σ1V1
is the SVD form of (Z + L/µ)JT , then the solution to Eq.
(5) is given by:

Q = U1V
T
1 . (6)

Solving J
The subproblem w.r.t. J is simplified as:

min
J
||J ||∗ +

µ

2
||Z −QJ + L/µ||2F . (7)

This can be solved by the Singular Value Threshold method
(Cai et al. 2010). Specifically, by assuming U2Σ2V2 be the
SVD form of QT (Z+L/µ), the solution to E.q. (7) is given
by:

J = U2S1/µ(Σ2)V T2 , (8)

where S1/µ(X) = max(0, X + 1/µ) + min(0, X − 1/µ) is
the shrinkage operator (Lin et al. 2010).

Solving Z
When other variables are known, we update Z by solving:

min
Z

n∑
i=1

||W (i) � (T (i) − Z − F (i) + (F (i))T +X(i)/µ)||2F

+ ||Z −QJ + L/µ||2F
(9)
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By setting the derivative of Eq. (9) w.r.t. Z to be zero, we
have

∑n
i=1(W (i)� (T (i)−Z−F (i) +(F (i))T +X(i)/µ)−

(Z −QJ + L/µ) = 0. Simple algebra operations yield:

Z =(QJ − L

µ
+

n∑
i=1

W (i) � (T (i) − F (i) + (F (i))T +
X(i)

µ
))

� (

n∑
i=1

W (i) + 1m×m),

(10)
where � denotes element-wise division (i.e., if C = A �
B for matrices A, B and C, then we have ∀i, j, Cij =
Aij/Bij) and 1m×m denotes an m × m matrix with all
ones.

Solving E(i)

With other variables fixed, we update each of E(i) (i =
1, 2, ..., n) by solving

min
E(i)

λ||E(i)||2,1 +
µ

2
||F (i) − E(i) + Y (i)/µ||2F .

This problem has the following closed-form solution (see
e.g., Lemma 3.2 in (Liu et al. 2010)):

E(i)(:, j) =

{ ||K(:,j)||2−λ/µ
||K(:,j)||2

K(:, j) if λ/µ < ||K(:, j)||2,
0 otherwise,

(11)
where K = F (i) + Y (i)/µ, and K(:, j) (E(:, j)) is the j-th
column of K (E), respectively.

Solving F (i)

Given other variables, each of F (i) is updated by solving
min
F (i)
||W (i) � (T (i) − Z − F (i) + (F (i))T +X(i)/µ)||2F

+ ||F (i) − E(i) + Y (i)/µ||2F .
(12)

By setting the derivative of Eq. (12) w.r.t. F (i) to be zero
and using the fact that W (i) is symmetric, we have 2W (i) �
(F (i)− (F (i))T ) +F (i) = E(i)−Y (i)/µ+W (i)� [(T (i)−
Z + X(i)/µ) − (T (i) − Z + X(i)/µ)T ]. Let C = E(i) −
Y (i)/µ + W (i) � [(T (i) − Z + X(i)/µ) − (T (i) − Z +
X(i)/µ)T ]. Then we have

6W (i) � (F (i) − (F (i))T ) + 3F (i) = 3C, (13)
and

4W (i) � ((F (i))T − F (i)) + 2(F (i))T = 2CT . (14)
By summing up Eq. (13) and Eq. (14), we have:
W (i)�(2F (i)−2(F (i))T )+3F (i)+2(F (i))T = 3C+2CT .

Finally, simple algebra operations yields the solution to
F (i):
F (i) =

1

5
W (i) � (3C + 2CT ) + (1m×m −W (i))� C, (15)

where 1m×m denotes an m×m matrix with all ones.
Remarks. Please note that the objective in Eq. (4) is non-

convex due to the bilinear form QJ . To the best of our
knowledge, there is no convergence proof of inexact ALM
for a non-convex objective. However, we empirically found
that the proposed RRA (based on ALM) converges with less
than 200 iterations in all our experiments, regardless of the
initialization.

Experiments
In this section, we evaluate the accuracy of the proposed
RRA on meta-search and collaborative filtering benchmarks.
We compare RRA with five rank aggregation baselines, in-
cluding the BordaCount algorithm, two Markov Chain based
algorithms (MC2 andMC4) in (Dwork et al. 2001), a prob-
abilistic rank aggregation algorithm (CPS) in (Qin et al.
2010a), and an algorithm based on matrix completion (SVP)
in (Gleich and Lim 2011). Note that the method in (Ye et al.
2012) is not used as a baseline because it cannot handle the
input rank lists with missing values. In addition, we conduct
experiments to investigate the parameter sensitivity of RRA.

Results on meta-search
We evaluate and compare the algorithms on MQ2007-agg
and MQ2008-agg datasets, which are from the LETOR 4.0
benchmark (Qin et al. 2010b) for meta-search.

There are 1700 (800) queries and 21 (25) input rank lists
in MQ2007-agg (MQ2008-agg). Each query has 6 ∼ 147
documents. There are three relevance levels for the doc-
uments. There exist missing values in the individual rank
lists. To compare the performances, we use the standard
Mean Average Precision (MAP) (Baeza-Yates and Ribeiro-
Neto 1999) and Normalized Discounted Cumulative Gain
(NDCG) (Jarvelin and Kekalainen 2002) as the evaluation
measures.

The results of BordaCount and CPS are cited from the
LETOR web site 2. The results of SVP are obtained by di-
rectly running its open source code 3. The results of MC2

and MC4 are obtained by our careful implementations. We
set r = 3 and λ = 10−2 in RRA.

As shown in Table 1, compared to the baseline algo-
rithms, RRA achieves substantially better performances on
both datasets. Here are some statistics. On MQ2007-agg,
the results of RRA indicate a relative increase of 24.5%,
12.6%, 11.1%, 6.4% w.r.t. NDCG@1,@3,@5,@10, respec-
tively, compared to the second best algorithm. On MQ2008-
agg, RRA has a relative increase of 37.2%, 15.0%, 4.3%,
8.3% w.r.t. NDCG@1,@3,@5,@10, respectively, compared
to the second best algorithm.

Table 2: Comparison results on Movielen100K.
dK dS

BordaCount 0.3010 0.4581
MC2 0.3015 0.4234
MC4 0.2941 0.4102
SVP 0.2912 0.4065
RRA 0.2798 0.3877

Results on collaborative filtering
We also test the performance of RRA to find out the top
movies from the MovieLens100K dataset, which is a col-

2http://research.microsoft.com/en-us/um/beijing/projects
/letor/letor4baseline.aspx. There are three variants of CPS. Here
we use CPS-SpearmanRankCorrelation which has the best results.

3http://www.cs.purdue.edu/homes/dgleich/. Arithmetic mean
of score differences is used to average the input matrices.
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Table 1: Comparison results on the meta search datasets from LETOR 4.0. We denote NDCG@i as N@i for short.
N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP

MQ2007-agg
BordaCount 0.1902 0.2014 0.2081 0.2128 0.2188 0.2247 0.2312 0.2377 0.2444 0.2507 0.3252
MC2 0.3263 0.3493 0.3631 0.3696 0.3759 0.3832 0.3895 0.3968 0.4027 0.4085 0.4285
MC4 0.3198 0.3173 0.3049 0.3117 0.3211 0.3271 0.3340 0.3416 0.3492 0.3568 0.3910
CPS 0.3196 0.3318 0.3386 0.3409 0.3476 0.3519 0.3573 0.3616 0.3668 0.3718 0.4069
SVP 0.2794 0.2937 0.3060 0.3146 0.3223 0.3324 0.3413 0.3488 0.3576 0.3630 0.3982
RRA 0.4063 0.4044 0.4090 0.4141 0.4177 0.4213 0.4237 0.4274 0.4310 0.4348 0.4367

MQ2008-agg
BordaCount 0.2368 0.2806 0.3080 0.3432 0.3713 0.3888 0.3992 0.3724 0.1643 0.1694 0.3945
MC2 0.2351 0.2616 0.2942 0.3258 0.3553 0.3768 0.3923 0.3674 0.1581 0.1658 0.3804
MC4 0.2478 0.2169 0.2439 0.2767 0.3077 0.3298 0.3460 0.3255 0.1318 0.1383 0.3481
CPS 0.2652 0.3138 0.3459 0.3763 0.4004 0.4192 0.4280 0.3975 0.1828 0.1864 0.4102
SVP 0.2670 0.3267 0.3520 0.3720 0.3914 0.4112 0.4237 0.3964 0.1754 0.1795 0.4079
RRA 0.3664 0.3989 0.4051 0.4103 0.4180 0.4314 0.4451 0.4191 0.1973 0.2019 0.4227

laborative filtering benchmark collected through the Movie-
Lens web site4. MovieLens100K consists of 100,000 ratings
from 943 users on 1682 movies. All the ratings are integers
of 1 ∼ 5. Each user is an incomplete input rank list for rank
aggregation. Existing theoretical results show that it is diffi-
cult to recover a low-rank matrix from an input matrix with
too many missing values (Candes et al. 2011). Hence, we
only use a subset of input rank lists, each of which has at
least 80 ratings. The results of SVP are obtained by running
its open source code. Other results are obtained by our care-
ful implementations. For the parameters of RRA, we empir-
ically set λ = 100 and r = 5.

Since there is no “ground truth” for the rank list of
the movies, we follow (Dwork et al. 2001) to use in-
duced Kendall’s tau distance (dK) and induced Spearman’s
footrule distance (dS) for partial rank lists as the evaluation
metrics. Given π as the output rank list of a rank aggregation
algorithm, dK and dS measure the average distance of π to
every input rank list π(1), . . . , π(n)5.

As shown in Table 2, RRA has a 3.9% (4.6%) improve-
ment w.r.t. dk (dS) over the second best SVP algorithm.

Parameter sensitivity
There are two parameters (λ and r) in RRA. A natural ques-
tion arising here is whether the performance of RRA is sen-
sitive to these parameters. To answer this question, we con-
duct experiments on MQ2007-agg and MQ2008-agg to in-
vestigate the effects with different values of λ and r.

Firstly, we compare the performances of RRA with
different values of λ. By fixing r = 3, Table 3 lists
the MAP and NDCG@10 with λ being chosen from
{10−4, 10−3, ..., 103}.

As can be seen, on MQ2007-agg, the values of
MAP/NDCG@10 are close when λ is in the range
[10−4 ∼ 10−1]. Similarly, on MQ2008-agg, the values of
MAP/NDCG@10 are close when λ is chosen from [10−4 ∼
100]. The results indicate that we need to set a relatively

4http://movielens.umn.edu
5Please refer to Section 2.1.1 in (Dwork et al. 2001) for the

detailed description of these metrics

small λ in this task, and RRA is insensitive to λ as long
as λ is chosen from a suitable range (i.e., [10−4 ∼ 10−1]).

Table 3: Results of RRA with different values of λ and r=3.
We denote NDCG@i as N@i for short.

MQ2007-agg MQ2008-agg
MAP N@10 MAP N@10

λ = 10−4 0.4338 0.4390 0.4162 0.1953
λ = 10−3 0.4348 0.4379 0.4150 0.1958
λ = 10−2 0.4367 0.4348 0.4227 0.2019
λ = 10−1 0.4363 0.4286 0.4248 0.2017
λ = 100 0.4283 0.4129 0.4190 0.1978
λ = 101 0.4220 0.4016 0.4110 0.1905
λ = 102 0.4175 0.3930 0.4025 0.1841
λ = 103 0.4137 0.3874 0.3985 0.1802

Secondly, we explore the performance of RRA with dif-
ferent values of r. Note that there are three relevance levels
in both MQ2007-agg and MQ2008-agg. Hence, the value of
r should be close to 3. In this experiment, we fix λ = 10−2

and choose r from {2, 3, 5, 10, 15}.
As shown in Table 4, on both MQ2007-agg and MQ2008-

agg, the values of MAP/NDCG@10 are close when r is in
[3 ∼ 15]. This indicates that RRA is insensitive to r as long
as r is in an appropriate range.

In summary, RRA is insensitive to its parameters as long
as each parameter is chosen from a suitable range. This is
beneficial for the unsupervised RRA because we do not need
much effort for parameter tuning.

Table 4: Comparison results with different values of r and
λ = 10−2. We denote NDCG@i as N@i for short.

MQ2007-agg MQ2008-agg
MAP N@10 MAP N@10

r = 2 0.3824 0.3636 0.4080 0.1857
r = 3 0.4367 0.4348 0.4227 0.2019
r = 5 0.4393 0.4369 0.4253 0.1996
r = 10 0.4392 0.4363 0.4249 0.1991
r = 15 0.4392 0.4364 0.4242 0.1979

765



Conclusions
In this paper, we developed RRA, a rank aggregation algo-
rithm that explicitly handles the possible noises and missing
values in the input rank lists via low-rank and structured-
sparse decomposition. To solve the optimization problem of
RRA, we proposed a procedure based on the ALM scheme.
Extensive experiments in meta-search and collaborative fil-
tering show that RRA has encouraging performance gain
over the state-of-the-arts, and RRA is insensitive to its pa-
rameters as long as the parameters are in suitable ranges,
which makes the algorithm easy to use without much effort
for parameter tuning.
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