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Abstract

Multitask Bregman Clustering (MBC) alternatively updates
clusters and learns relationship between clusters of differ-
ent tasks, and the two phases boost each other. However, the
boosting does not always have positive effect, it may also
cause negative effect. Another issue of MBC is that it can-
not deal with nonlinear separable data. In this paper, we show
that MBC’s process of using cluster relationship to boost the
updating clusters phase may cause negative effect, i.e., cluster
centroid may be skewed under some conditions. We propose
a smart multi-task Bregman clustering (S-MBC) algorithm
which identifies negative effect of the boosting and avoids
the negative effect if it occurs. We then extend the framework
of S-MBC to a smart multi-task kernel clustering (S-MKC)
framework to deal with nonlinear separable data. We also pro-
pose a specific implementation of the framework which could
be applied to any Mercer kernel. Experimental results confirm
our analysis, and demonstrate the superiority of our proposed
methods.

Introduction
Clustering is a fundamental problem in machine learning
and data mining. Traditional clustering methods deal with
a single clustering task on a single data set. However, there
are many related tasks in real applications, such as web
pages from different universities and slowly time-evolving
data sets, which motivate multi-task clustering. Multi-task
clustering is desired to improve the clustering performance
of individual tasks through learning the relationship between
clusters of different tasks.

Recently, (Zhang and Zhang 2010) proposed a Bregman
divergence based multi-task clustering (MBC) algorithm,
which can solve the multi-task clustering problem when the
data sets are from a same distribution or similar distributions
(the tasks share a set of data points). MBC alternatively up-
dates clusters and learns the relationship between clusters of
different tasks, and the two phases boost each other. The al-
ternative boosting was shown by (Zhang and Zhang 2010) to
gain better performance compared with single-task Bregman
divergence clustering. However, the boosting of the second
phase to the first phase does not always have positive effect
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as desired, it may cause negative effect under some condi-
tions. Another issue of MBC is that it cannot deal with non-
linear separable data.

In this paper, we show that using the cluster relation-
ship to boost clustering can bring negative effect, i.e., for
data points not shared by other tasks, the centroids may be
skewed. We propose a smart multi-task Bregman clustering
(S-MBC) algorithm which identifies the negative effect of
the boosting and avoids the negative effect if it occurs. The
basic idea of S-MBC is using a local loss of each task to
measure whether the negative effect of boosting clusters in
this task occurs, i.e., the centroids deviate from the optimal
positions. If the local loss of one task calculated by MBC is
larger than the single-task Bregman divergence clustering,
S-MBC will stop using the boosting. To tackle the nonlinear
separable data multi-task clustering problem, we introduce
Mercer kernel into the framework of S-MBC and get a smart
multi-task kernel clustering (S-MKC) framework. We also
propose a specific optimization method, which is quite dif-
ferent from that of MBC, to implement the multi-task kernel
clustering framework.

Experimental results confirm our observation on the neg-
ative effect of MBC’s boosting under some conditions, and
demonstrate the superiority of our proposed S-MBC in terms
of avoiding the negative effect, and the superiority of our
proposed S-MKC for nonlinear separable data.

Related Work
(Caruana 1997), (Ando and Zhang 2005) and (Argyriou, Ev-
geniou, and Pontil 2006) have proposed algorithms to tackle
supervised multi-task learning. Recently, multi-task cluster-
ing (unsupervised multi-task learning) attracts much atten-
tion. (Gu and Zhou 2009) learned a subspace shared by mul-
tiple related tasks. (Gu, Li, and Han 2011) handled multi-
task clustering problem by learning a kernel. Both the two
methods above focus on cross-domain multi-task clustering,
and assume all tasks share an identical set of clusters, which
is too restrictive in practice. (Zhang and Zhang 2010) pro-
posed a multitask Bregman clustering algorithm, which al-
ternatively updates the single-task Bregman clustering and
learns the relationship between clusters of different tasks,
and the two phases boost each other. It has no need to as-
sume that all tasks share an identical set of clusters. Empir-
ical results show that MBC can improve the clustering per-
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formance over the traditional Bregman divergence cluster-
ing, but it may cause negative effect under some conditions
and cannot solve multi-task clustering problem of nonlinear
separable data.

Multi-task Bregman Clustering Framework
Problem Formulation
Suppose we are given T clustering tasks, each with a set of
points, i.e.,X(t) = {x(t)1 , x

(t)
2 , ...., x

(t)

n(t)}, 1 ≤ t ≤ T , where
n(t) is the number of data points in the t-th task. Each data
corpus is to be partitioned into c(t) clusters. For each task
t, we need to find a partition P (t) = {M (t), h(t)}, which
is defined by a set of centroids M (t) = {m(t)

1 , ...,m
(t)

c(t)
}

and an assigning function h(t) : X(t) → {1, ..., c(t)}.
P = {P (t)}Tt=1 denotes all the partitions, M = {M (t)}Tt=1

denotes the set of all the centroids, and H = {h(t)}Tt=1 de-
notes all the assigning functions. dφ(x, y) denotes the Breg-
man divergence between data x and y.

Multitask Bregman Clustering
(Zhang and Zhang 2010) proposed a general framework for
multi-task clustering to minimize the following loss function

J =
1

T

T∑
t=1

L(t)(P (t), X(t)) + λΩ(P ). (1)

In Eq.(1), L(t)(P (t), X(t)) = 1
n(t)

n(t)∑
i=1

dφ(x
(t)
i ||m

(t)

h(t)(x
(t)
i )

)

is a local loss, Ω(P ) = 1
T (T−1)

T∑
t=1

T∑
s=1,s6=t

d(P (t), P (s)) is

a task regularization incorporating relationship among tasks.
And λ ≥ 0 is a free parameter, which allows the loss func-
tion to be balanced between the local loss functions and
the task regularization. d(P (t), P (s)) reflects the relationship
between clusters of task t and s, it is deduced from earth
mover distance (EMD) (Rubner, Tomasi, and Guibas 1998)
and defined as

d(P (t), P (s)) = min
W ts

c(t)∑
z=1

c(s)∑
l=1

wtszldφ(m(t)
z ||m

(s)
l )

s.t.
c(t)∑
z=1

wtszl = πsl ,
c(s)∑
l=1

wtszl = πtz, w
ts
zl ≥ 0,∀z, l

(2)

where W ts is a nonnegative matrix of size c(t) × c(s), and
wtszl is the correlation coefficient between m(t)

z and m(s)
l . In

the constraints, πtz =
n(t)
z

n(t) is the proportion of cluster z in the

data corpusX(t), and πsl =
n
(s)
l

n(s) is the proportion of cluster l
in X(s). W ts can be considered as a joint probability matrix
between clusters of task t and task s.

Negative Effect of MBC
The second term in Eq.(1) minimizes the difference between
the partitions of any two tasks, it is designed to boost the

clustering. The boosting may have positive effect, i.e., helps
the current cluster centroid approach the optimal one. It may
also have negative effect, i.e., causes the current cluster cen-
troid to deviate from the optimal one. We analyze the effect
as follows.

The difference is measured by a distribution metric EMD,
which means minimizing the difference between the parti-
tions of any two tasks is equivalent to minimizing the dif-
ference between the distributions. Assume the Bregman di-
vergence we use is squared Euclidean distance, (Zhang and
Zhang 2010) get the optimal m(t)

z by minimizing Eq.(1)

m(t)
z =

A · uL +B · uR
A+B

(3)

where A =
n(t)
z

n(t) + λ
c(t)

, B = λ
c(t)

, and

uL =
1

A
(

1

n(t)

∑
i∈I(t)z

x
(t)
i +

λ

T − 1

T∑
s6=t

c(s)∑
l=1

wtszlm
(s)
l ),

uR = (∇φ)−1(
λ

B · (T − 1)

T∑
s6=t

c(s)∑
l=1

wtszl∇φ(m
(s)
l )).

If we set λ = 0, we can get m(t)
z = 1

n
(t)
z

∑
i∈I(t)z

x
(t)
i , which

is just the centroid calculated by K-means. In Eq.(3), MBC
utilizes the relationship wtszl between the clusters of task t
and task s to affect the centroidm(t)

z calculated by K-means.
From the analysis above, minimizing the second term has
positive effect on the data points shared by other tasks to get
their optimal centroids, and negative effect on ones that are
not shared by other tasks.

For example, suppose we have two tasks: A and B, the
data points of the two tasks are in a two-dimensional space
(see Figure 1). Task A is composed of three clusters: a, b and
c, task B is composed of three clusters: a, b and d, i.e., the
two tasks share the data points in cluster a and b. Assume
the two tasks have been clustered correctly, the optimal cen-
troids are ma, mb, mc and md (the solid points in Figure 1).
As the second term of MBC need minimize the difference
among the partitions of all the tasks, we can get the optimal
W by Eq.(2) with standard linear programming techniques
to affect the centroids, the computed W is expressed as

W =

(
0.2133 0.0000 0.1200
0.0000 0.2133 0.1200
0.1200 0.1200 0.0933

)
(4)

The centroids of task A and task B are recomputed ac-
cording to W by Eq.(3) (the hollow points in Figure 1). Ob-
viously, the W in Eq.(4) is not a real optimal result. For ex-
ample, the weight between the centroids of cluster c in task
A and cluster d in task B is 0.0933. As cluster c in task A and
cluster d in task B have no relationship, the weight between
them is supposed to be zero. However, they will influence
each other because of the constraints in Eq.(2), which will
bring a negative effect to the optimal centroids selection.
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Figure 1: The recomputed centroids of task A and task B,
the arrow means the centroid skewing direction

Smart Multi-task Bregman Clustering
Avoiding Negative Effect
We compare the local loss of each task calculated by
MBC with one calculated by single-task Bregman diver-
gence clustering to judge whether the negative effect oc-
curs. More specifically, in each iteration, we firstly com-
pute the corresponding centroids corpora M (t) and assign-
ing function h(t) through single-task Bregman clustering al-
gorithm and the MBC algorithm considered the task regu-
larization respectively for each task t. Secondly we calcu-
late the local loss function in Eq.(1) with M (t) and h(t)

of both methods. Thirdly we choose the M (t) and h(t)

whose corresponding method has a smaller local loss. Then
we recompute the M (t) and h(t) iteratively until Jst =
1
T

∑T
t=1 L

(t)(P (t), X(t)) converges to a stable state. In this
way, we can prevent centroids skewing caused by MBC and
get the optimal centroids.

Optimization
Due to space limitation, we simply introduce the optimiza-
tion problem of the S-MBC algorithm. The optimization of
MBC is a part of the S-MBC optimization problem.

Computation of W : Given M and H , each matrix W ts

is independently determined by Eq.(2). This problem can be
easily solved by standard linear programming techniques.

Computation of M :
1) Given W and H , we consider the situation when the

clustering centroids M = {M (t)}Tt=1 are resulted by the
task regularization first. The optimal m(t)

z is computed by

min
m

(t)
z

A · dφ(uL||m(t)
z ) +B · dφ(m(t)

z ||uR) (5)

where A, B, uL and uR is defined in Eq.(3).
2) When the clustering centroids M is obtained with-

out considering the task regularization, optimizing m(t)
z is

equivalent to minimize Eq.(5) with λ = 0. The optimal m(t)
z

is calculated by

min
m

(t)
z

A · dφ(uL||m(t)
z ) (6)

where uL = 1

n
(t)
z

∑
i∈I(t)z

x
(t)
i .

Computation of H: Given M and W , each assigning
function h(t) for task t is independently determined by

h(t)(x
(t)
i ) = arg min

z

n(t)∑
i=1

dφ(x
(t)
i ||m

(t)
z ). (7)

The overall process is listed in Algorithm 1.

Algorithm 1: Smart Multi-task Bregman Clustering(S-
MBC)

Input: T tasks, {X(t)}Tt=1, clustering numbers of all tasks
{c(t)}Tt=1, parameter λ ≥ 0.

Output: Clustering assignments H .
Initialization: Initialize clustering assignments H of all tasks,

and compute M according to H without considering task
regularization.

1: repeat
2: Update W by solving the linear programming of Eq.(2).
3: for t = 1 to T do
4: Update each m(t)

z of M (t) by Eq.(5).
5: Update h(t) with M (t) in step 4 by Eq.(7).
6: Calculate L(t)(P (t), X(t)) in Eq.(1) as J1 according

to M (t) in step 4 and h(t) in step 5.
7: Update each m(t)

z of M (t) by Eq.(6).
8: Update h(t) with M (t) in step 7 by Eq.(7).
9: Calculate L(t)(P (t), X(t)) in Eq.(1) as J2 according

to M (t) in step 7 and h(t) in step 8.
10: if J1 ≤ J2 then
11: Save M (t) in step 4 and h(t) computed in step 5.
12: else
13: Save M (t) in step 7 and h(t) computed in step 8.
14: end if
15: end for
16: until Jst = 1

T

∑T
t=1 L

(t)(P (t), X(t)) is convergent.

Smart Multi-task Kernel Clustering
In this section, we introduce a smart multi-task kernel clus-
tering (S-MKC) algorithm. It can apply to any kind of Mer-
cer kernel (Saunders et al. 1998).

Problem Formulation
Suppose we are given T clustering tasks, each with a set of
points, i.e., X(t) = {x(t)1 , x

(t)
2 , ...., x

(t)

n(t)} ∈ Rd, 1 ≤ t ≤ T ,
where n(t) is the number of data points in the t-th task, and
X = {X(1), ..., X(T )} denotes all data corpora. Each data
corpus is to be partitioned into c(t) clusters. For each task
t, we need to find a partition P (t) = {M (t), Z(t)}, which
is defined by a set of centroids M (t) = {m(t)

1 , ...,m
(t)

c(t)
} ∈

Rd×c
(t)

and a partition matrix Z(t) ∈ {0, 1}n(t)×c(t) . P =
{P (t)}Tt=1 denotes all the partitions, M = {M (t)}Tt=1 de-
notes the set of all the centroids, andZ = {Z(t)}Tt=1 denotes
all the partition matrixes. We consider a nonlinear mapping
φ from data space to feature space F such that φ : Rd →
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F , the inner product in F is defined as 〈φ(x), φ(y)〉F =

K(x, y). Then for each task t, X(t) mapped in F is defined
as φ(X

(t)
) = {φ(x

(t)
1 ), ..., φ(x

(t)

n(t))}, 1 ≤ t ≤ T .

Objective
We use the multi-task framework in Eq.(1), but inherit the
local loss function for Kernel K-means in the matrix form

L(t)(P (t), X(t)) =
1

n(t)

∥∥∥φ(X(t))−M (t)Z(t)T
∥∥∥2
F

s.t. Z(t) ∈ {0, 1}n
(t)×c(t)

(8)

where ‖·‖F is a Frobenius norm. And the task regularization
is defined as

Ω(P ) =
1

T (T − 1)

T∑
t=1

T∑
s=1,s6=t

d(P (t), P (s)) (9)

where d(P (t), P (s)) is defined in Eq.(2).

Optimization

In Eq.(8), the elements in Z(t) can only take binary values,
which makes the minimization in Eq.(1) very difficult, (Gor-
don and Henderson 1977) has given a complete proof that
Z(t) can be relaxed into nonnegative continuous domain. We
relax πtz = 1

c(t)
and πsl = 1

c(s)
(Zhang and Zhang 2010).

Then according to Eq.(8-9),we obtain the following objec-
tive function

min
P,W

J =

T∑
t=1

1

n(t)

∥∥∥φ(X(t))−M (t)Z(t)T
∥∥∥2
F

+
2λ

(T − 1)

T∑
t6=s

c(t)∑
z=1

c(s)∑
l=1

wtszl ||m(t)
z −m

(s)
l ||

2
2 (10)

s.t.Z(t) ≥ 0,

c(t)∑
z=1

wtszl =
1

c(s)
,

c(s)∑
l=1

wtszl =
1

c(t)
, wtszl ≥ 0.

Minimizing Eq.(10) is with respect to three groups of vari-
ables, i.e., cluster centroids M , partition matrices Z, and re-
lation matrices W = {W ts}.

Computation of M : 1) Given Z and W , optimizing
Eq.(10) with respect to M is equivalent to optimizing

min
T∑
t=1

1

n(t)

∥∥∥φ(X(t))−M (t)Z(t)T
∥∥∥2
F

+
2λ

(T − 1)

T∑
t6=s

(tr(E(t)(M (t))T (M (t))) (11)

+ tr(E(s)(M (s))T (M (s)))− 2tr(W ts(M (s))T (M (t))))

where E(t) is a diagonal matrix with E
(t)
ii = 1

c(t)
(i =

1, ..., c(t)). Fixing {M (s)}Ts6=t, optimizing Eq.(11) with re-

spect to M (t) is equivalent to optimizing

J1 =
1

n(t)

∥∥∥φ(X(t))−M (t)Z(t)T
∥∥∥2
F

+
2λ

T − 1
(tr(E(t)(M (t))TM (t)) (12)

+
T∑
s6=t

(tr(E(s)(M (s))
T
M (s))− 2tr(W ts(M (t))

T
M (s))).

Setting ∂J1
∂M(t) = 0, we obtain

M (t) = (
1

n(t)
φ(X(t))Z(t) +

2λ

T − 1

T∑
s6=t

M (s)W st)

(
1

n(t)
Z(t)TZ(t) +

2λ

T − 1
E(t))−1.

(13)

In Eq.(13), φ(X(t)) and M (s) are unknown, however,
φ(X(s))TM (t) and (M (s))TM (t) can be calculated. Setting
F (s,t) = φ(X(s))TM (t), G(s,t) = (M (s))TM (t)(t, s =
1, ..., T ), then optimizing M (t) is equivalent to optimiz-
ing F (s,t) and G(s,t)(s = 1, ..., T ). Setting K(s,t) =
φ(X(s))Tφ(X(t)), we obtain

F (s,t)new = (
1

n(t)
K(s,t)Z(t) +

2λ

T − 1

T∑
p6=t

F (s,p)W pt)

(
1

n(t)
Z(t)TZ(t) +

2λ

T − 1
E(t))−1, (14)

G(s,t)new = (
1

n(s)
Z(s)TZ(s) +

2λ

T − 1
E(s))−1V

(
1

n(t)
Z(t)TZ(t) +

2λ

T − 1
E(t))−1

(15)

where V = 1
n(s)n(t)Z

(s)TK(s,t)Z(t)

+
2λ

n(s)(T − 1)

T∑
p6=t

Z(s)TF (s,p)W pt

+
2λ

n(t)(T − 1)

T∑
q 6=s

W sqF (t,q)TZ(t)

+
4λ2

(T − 1)2

T∑
q 6=s

T∑
p6=t

W sqG(q,p)W pt.

2) When the clustering centroids M is obtained with-
out considering the task regularization, optimizing M (t) is
equivalent to minimize Eq.(14) and Eq.(15) with λ = 0.

Computation of Z: Given M and W , each Z(t) can be
obtained by optimizing

min
∥∥∥φ(X(t))−M (t)Z(t)T

∥∥∥2
F

s.t. Z(t) ≥ 0.

(16)

For the constraint Z(t) ≥ 0, we cannot get a closed
form solution of Z(t). In the following, we introduce the
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Lagrangian multiplier γ ∈ Rn
(t)×c(t) , and the Lagrangian

function is

L(Z(t)) =
∥∥∥φ(X(t))−M (t)Z(t)T

∥∥∥2
F
− tr(γZ(t)T ). (17)

Setting ∂L(Zt))
∂Z(t) = 0, we obtain γ = −2A + 2Z(t)B, where

A = φ(X(t))TM (t)φ = F (t,t)new, B = (M (t)φ)TM (t)φ =
G(t,t)new.

Using the Karush-Kuhn-Tucker condition γijZ
(t)
ij =

0 (Boyd and Vandenberghe 2004), we get [−A +

Z(t)B]ijZ
(t)
ij = 0. IntroduceA = A+−A− andB = B+−

B−, whereA+
ij = (|Aij |+Aij)/2 andA−ij = (|Aij |−Aij)/2

(Ding, Li, and Jordan 2008), we obtain

[A− + Z(t)B+ −A+ − Z(t)B−]ijZ
(t)
ij = 0. (18)

Eq.(18) leads to the following updating formula

Z
(t)
ij ← Z

(t)
ij

√
[A+ + Z(t)B−]ij
[A− + Z(t)B+]ij

(19)

Computation ofW : GivenM and Z, each matrixW ts is
independently determined by

min
W ts

c(t)∑
z=1

c(s)∑
l=1

wtszl ||m(t)
z −m

(s)
l ||

2
2

s.t.
c(t)∑
z=1

wtszl = πsl ,
c(s)∑
l=1

wtszl = πtz, w
ts
zl ≥ 0,∀z, l.

(20)

This problem can be efficiently solved by standard linear
programming techniques. ||m(t)

z −m(s)
l ||22 in Eq.(20) can be

calculated by

||m(t)
z −m

(s)
l ||

2
2

= (m(t)
z )T (m(t)

z )− 2(m(t)
z )T (m

(s)
l ) + (m

(s)
l )T (m

(s)
l )

= G(t,t)(z, z)− 2G(t,s)(z, l) +G(s,s)(l, l). (21)

The local loss function in Eq.(8) can be calculated by

L(t)(P (t), X(t)) =
1

n(t)
tr(K(t,t) − F (t,t)Z(t)T

−Z(t)F (t,t)T + Z(t)G(t,t)Z(t)T ). (22)

The overall process of S-MKC is listed in Algorithm 2.

Experiments
We compare the proposed multi-task clustering methods S-
MBC and S-MKC, with typical single-task clustering meth-
ods: K-means (KM) and Kernel K-means (KKM), and typi-
cal multi-task clustering method: MBC. To evaluate the clus-
tering results, we adopt two performance measures in (Xu,
Liu, and Gong 2003): clustering accuracy (Acc) and nor-
malized mutual information (NMI), which are widely used
in the literature.

Algorithm 2: Smart Multi-task Kernel Clustering (S-
MKC)

Input: T tasks, {X(t)}Tt=1, clustering numbers of all tasks
{c(t)}Tt=1, parameter λ ≥ 0.

Output: Clustering assignments {Z(t)}Tt=1.
Initialization: Initialize clustering assignments Z of all tasks,

and compute M according to Z without considering task
regularization. Compute the kernel matrix K using a specific
Mercer kernel.

1: repeat
2: Update W by solving the linear programming of Eq.(20).
3: for t = 1 to T do
4: Update F (s,t) and G(s,t) by Eq.(14) and Eq.(15).
5: Update Z(t) with F (t,t) and G(t,t) in step 4 by Eq.(19).
6: Calculate L(t)(P (t), X(t)) in Eq.(22) as O1 according

to F (t,t) and G(t,t) in step 4 and Z(t) in step 5.
7: Update F (s,t) and G(s,t) by Eq.(14) and Eq.(15)

respectively with λ = 0.
8: Update Z(t) with F (t,t) and G(t,t) in step 7 by Eq.(19).
9: Calculate L(t)(P (t), X(t)) in Eq.(22) as O2 according

to F (t,t) and G(t,t) in step 7 and Z(t) in step 8.
10: if O1 ≤ O2 then
11: Save F (s,t) and G(s,t) in step 4 and Z(t) in step 5.
12: else
13: Save F (s,t) and G(s,t) in step 7 and Z(t) in step 8.
14: end if
15: end for
16: until Jst = 1

T

∑T
t=1 L

(t)(P (t), X(t)) is convergent.

Table 1: Data Sets
Data set Task id #Sample #Feature Class

NG1
Task 1 1493 43586 3(6-8)

Task 2 1494 43586 3(6-8)

NG2
Task 1 1600 43586 4(3, 4, 12, 15)

Task 2 1600 43586 2

NG3
Task 1 4000 43586 10(1-10)

Task 2 4800 43586 12(4-15)

Task 3 6400 43586 16(5-20)

Reviews
Task 1 3520 18482 3(1-3)

Task 2 2658 18482 3(2-4)

Task 3 1937 18482 3(3-5)

Data Sets
We use 2 data sets 20Newsgroups and Reviews in (Zhong
and Ghosh 2003)1.

Original 20Newsgroups2 data set is composed of 6 root
categories, under which are 20 sub categories. We use three
splitting schemes to construct 3 data sets to demonstrate
three typical cases of multi-task clustering.

1) The first case is that all data sets are from a same distri-
bution. We construct NG1 to represent this case, by splitting

1http://www.shi-zhong.com/software/docdata.zip.
2http://kdd.ics.uci.edu/databases/20newsgroups.
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Table 2: Clustering Results on NG1
Method Task id Acc(%) NMI(%)

KM
Task 1 34.8091± 2.7814 14.1337± 3.3576

Task 2 33.7282± 0.1450 12.5061± 0.5498

MBC
Task 1 52.3538± 6.9629 26.7529± 0.6507

Task 2 49.7456± 4.5002 27.2322± 5.5268

S-MBC
Task 1 52.7482± 5.6311 27.6567± 0.2784

Task 2 50.6158± 5.9836 28.7772± 5.0728

KKM
Task 1 72.9190± 3.2077 42.1187± 3.8203

Task 2 74.8126± 5.8943 44.9751± 8.5358

S-MKC
Task 1 79.0308± 2.6404 45.4786± 3.0120
Task 2 80.3186± 5.8329 49.0151± 6.1227

the selected documents into 2 parts, with each part having 3
sub categories.

2) The second case is that all tasks are on an identical
data set but requires clusters at different resolutions. NG2 is
constructed to represent this case. We randomly select 400
documents in class 3,4,12,15, and combine the selected doc-
uments as the identical data set, which also belong to Comp
and Sci root categories.

3) The third case is that the distributions of all tasks are
not identical but similar, the tasks share some data sets from
the same class labels. We construct NG3 and Reviews to rep-
resent the case. In NG3, we randomly select 400 documents
in each sub category.

Parameter Settings
For MBC, S-MBC and S-MKC, we set the same λ = 0.5
for all the algorithms to ensure a fair comparison for them
and make all the algorithms reach a good performance. The
Bregman divergence we choose is Euclidean distance. We
use the Gaussian kernel function for S-MKC to compute the
kernel matrix as its good separability, the width of the Gaus-
sian kernel σ is set by searching the grid {0.1, 1, 10, 100}.
Under each parameter setting, we repeat clustering 10 times,
and the mean result as well as the standard deviation is com-
puted. We report the mean and standard deviation corre-
sponding to the best parameter setting for each method to
compare with each other.

Clustering Results
The average results for all the data sets in Table 1 are shown
in Table 2, Table 3, Table 4 and Table 5. We can summarize
the following points from the clustering results.

1) When the tasks are from a same distribution (Table 2
and Table 3), MBC can get a fairly good clustering result
compared with single-task clustering algorithm K-means. S-
MBC improves a little upon MBC.

2) When the distributions of all tasks are not identical but
similar (Table 4 and Table 5), MBC cannot get a very good
clustering result, since it has negative effect on the cluster-
updating process. While S-MBC improves much upon MBC
by avoiding the negative effect.

Table 3: Clustering Results on NG2
Method Task id Acc(%) NMI(%)

KM
Task 1 25.1085± 4.9994 10.1312± 7.0321

Task 2 49.6680± 0.1079 18.2581± 0.4278

MBC
Task 1 42.3375± 3.2312 20.4846± 7.8106

Task 2 54.0250± 2.7075 23.6679± 1.1445

S-MBC
Task 1 44.8375± 3.2854 21.1936± 4.8404

Task 2 54.3500± 1.0380 24.0475± 1.3159

KKM
Task 1 60.0875± 6.7322 27.2518± 3.5686

Task 2 78.8750± 4.3853 28.4355± 7.3585

S-MKC
Task 1 71.8333± 4.2864 40.8279± 6.6604
Task 2 84.6257± 2.5977 37.7968± 7.4034

Table 4: Clustering Results on NG3
Method Task id Acc(%) NMI(%)

KM
Task 1 11.8700± 0.7079 6.0105± 1.3500

Task 2 11.9375± 1.1324 7.9813± 1.0814

Task 3 10.0875± 1.1639 9.8231± 1.8123

MBC
Task 1 15.0500± 0.2577 6.6964± 1.3796

Task 2 15.2917± 0.5387 7.8704± 2.1348

Task 3 22.7813± 0.4361 18.6318± 1.4769

S-MBC
Task 1 23.6450± 1.0470 16.2028± 2.2518

Task 2 30.2500± 1.8372 25.3250± 2.0037

Task 3 25.5938± 1.5998 21.4389± 1.8458

KKM
Task 1 34.8500± 1.8365 24.6034± 1.4740

Task 2 34.2917± 0.9169 24.4588± 2.6256

Task 3 30.8125± 1.8455 26.0923± 1.9551

S-MKC
Task 1 41.7500± 1.7170 27.5468± 2.6612
Task 2 42.2917± 2.2997 28.4778± 1.8052
Task 3 38.8750± 1.1862 27.2567± 1.2729

3) For nonlinear separable data sets such as NG1, NG2,
NG3, both single-task Kernel clustering (KKM) and multi-
task Kernel clustering (S-MKC) perform much better. S-
MKC improves upon KKM since it takes advantages of pos-
itive effect of cluster-relationship boosting and avoids nega-
tive effect at the same time. However, for the linear separable
data Reviews, S-MBC performs the best.

Conclusion
In this paper, we have proposed two improved algorithms S-
MBC and S-MKC based on MBC. S-MBC uses a task loss
to identify the negative effect brought by MBC, and avoids
the negative effect when it occurs. S-MKC can deal with
nonlinear separable data by a specific optimization method,
and be applied to any Mercer kernel. Experimental results
confirm our analysis, and demonstrate the superiority of our
proposed methods.
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Table 5: Clustering Results on Reviews
Method Task id Acc(%) NMI(%)

KM
Task 1 46.6761± 5.6301 26.7293± 6.6463

Task 2 58.0625± 5.9307 27.5920± 5.7872

Task 3 62.0960± 9.5752 19.9361± 7.3979

MBC
Task 1 52.5653± 5.6894 23.9243± 6.1550

Task 2 50.7336± 8.6716 24.8309± 8.7917

Task 3 67.2272± 4.0025 20.1917± 5.6629

S-MBC
Task 1 73.2892± 3.1169 43.3727± 5.1202
Task 2 79.7239± 3.9224 46.9371± 5.9629
Task 3 78.8508± 5.5063 37.0873± 7.4804

KKM
Task 1 51.1307± 6.6646 23.8308± 6.2104

Task 2 60.8751± 9.0664 27.9711± 8.9459

Task 3 63.5674± 8.2900 32.2453± 9.9521

S-MKC
Task 1 73.1631± 3.9026 40.5145± 3.9577

Task 2 78.0986± 6.6804 42.6631± 5.0044

Task 3 72.9824± 2.5606 37.0017± 3.7449
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