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Abstract

The implication problem of probabilistic conditional in-
dependencies is investigated in the presence of missing
data. Here, graph separation axioms fail to hold for satu-
rated conditional independencies, unlike the known ide-
alized case with no missing data. Several axiomatic, al-
gorithmic, and logical characterizations of the implica-
tion problem for saturated conditional independencies
are established. In particular, equivalences are shown
to the implication problem of a propositional fragment
under Levesque’s situations, and that of Lien’s class of
multivalued database dependencies under null values.

1 Introduction

Background. The concept of conditional independence is
important for capturing structural aspects of probability
distributions, for dealing with knowledge and uncertainty
in artificial intelligence, and for learning and reasoning
in intelligent systems (Dawid 1979; Pearl 1988; Darwiche
2009). Application areas include natural language process-
ing, speech processing, computer vision, robotics, compu-
tational biology, and error-control coding (Halpern 2005;
Darwiche 2009). A conditional independence (CI) statement
I1(Y, Z | X) represents the independence of two sets of ran-
dom variables relative to a third: given three mutually dis-
joint subsets X, Y, and Z of a set V' of random variables,
if we have knowledge about the state of X, then knowledge
about the state of Y does not provide additional evidence
for the state of Z and vice versa. Fundamental to the task of
building a Bayesian network is the implication problem of
CI statements, which is to decide for an arbitrary set V' of
random variables, and an arbitrary set 3 U {¢} of CI state-
ments over V', whether every probability model that satisfies
every CI statement in 3 also satisfies (. Indeed, if some CI
statement ¢ is not implied by X, then adding ¢ to X results
in new opportunities to construct complex probability mod-
els with polynomially many parameters and to efficiently
organize distributed probability computations (Geiger and
Pearl 1990). The implication problem for CI statements is
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not axiomatizable by a finite set of Horn clauses (Studeny
1992), and every axiom for CI statements is an axiom for
graph separation, but not vice versa (Geiger and Pearl 1993).
Recently, the implication problem of stable CI statements
(Matds 1992; de Waal and van der Gaag 2005) has been
shown to be finitely axiomatizable (Niepert, Van Gucht,
and Gyssens 2008), and coNP-complete to decide (Niepert,
Van Gucht, and Gyssens 2010). Stability means that the va-
lidity of I(Y,Z | X) over V implies the validity of every
I(Y,Z | X') where X C X' C V —YZ. An important
subclass of CI statements are saturated conditional indepen-
dence (SCI) statements. These are CI statements (Y, Z |
X) over V that satisfy XY Z = V. Indeed, graph separation
and SCI statements enjoy the same axioms (Geiger and Pearl
1993), and their implication problem is decidable in almost
linear time (Galil 1982; Link 2012b). These results con-
tribute to the success of Bayesian networks (Darwiche 2009;
Geiger and Pearl 1993).

Motivation. Surprisingly, the implication problem of CI
statements has not been studied yet in the presence of miss-
ing data. Indeed, Al has long recognized the need to re-
veal missing data, to explain where they come from, and
to develop imputation techniques. Significant contributions
towards that aim have been made, e.g. (Batista and Monard
2003; Chickering and Heckerman 1997; Dempster, Laird,
and Rubin 1977; Fayyad, Piatetsky-Shapiro, and Smyth
1996; Friedman 1997; Lauritzen 1995; Lou and Obradovic
2012; Marlin et al. 2011; Saar-Tsechansky and Provost
2007; Singh 1997; Zhang, Jin, and Zhu 2011; Zhu et al.
2007). However, it is impossible to reveal many missing data
because they do not exist, the process is too inaccurate, or
resources are insufficient to reveal them. It is thus a natu-
ral question to ask what a CI statement in the presence of
missing data constitutes, and what can be said about the im-
plication problem. The question is even more important to
address than in the classical case, where idealistic assump-
tions are made that no data are missing or all missing data
can be revealed correctly in time. Our findings may start
a foundation for reasoning about conditional independence
in the presence of missing data, much like the findings of
(Dawid 1979; Geiger and Pearl 1990) for complete data. For
practice, we recommend to reveal as much missing data as
possible, and then to reason about conditional independence
under the remaining missing data.



Contributions. As a first contribution we assign a suitable
semantics to CI statements under uncertainty, that is, in the
presence of missing data. Here, it is important to select an
appropriate representation of missing data. For this purpose,
we choose the most primitive approach in which we use
a marker, denoted by p. An occurrence of y as a marked
“value” of some random variable is interpreted as no infor-
mation, i.e., either a value does not exist, or it exists but is
currently unknown. While there is a potential loss in repre-
senting knowledge with this interpretation, it is possible to
model missing values for which it is not known whether a
value exists or is currently unknown. For example, it is dif-
ficult to decide whether a missing maiden name does not
exist at all, or is currently unknown. Our other contribu-
tions further justify this interpretation. Due to the infeasi-
bility of the implication problem for CI statements, we fo-
cus in the remaining contributions on SCI statements. It is
shown that some graph separation axioms fail to hold for
SCI statements under uncertainty. Our second contribution
is an axiomatic characterization of their associated implica-
tion problem. The axiomatization is similar to that of Geiger
and Pearl’s in the case of certainty (Geiger and Pearl 1990),
but one of their rules is no longer sound under uncertainty.
We show that completeness under uncertainty is regained by
exploiting another sound rule. Our completeness argument
is based on special probability models in which two events
are assigned probability one half, showing that the implica-
tion problem for SCI statements under uncertainty is equiva-
lent to that over special probability models. This insight has
remarkable consequences. As a third contribution we estab-
lish a logical characterization of the implication problem. In
fact, an equivalence is shown to the implication of formu-
lae in a fragment of propositional logic, where implication
is defined in terms of Levesque’s situations. That is, truth
values are assigned to atoms and their negations, but both
cannot be false (but they can both be true). As a fourth con-
tribution an equivalence is established to the implication of
multivalued database dependencies in the presence of null
values, investigated by (Lien 1982). Hence, we establish a
counterpart of the known trinity between SCI statements un-
der certainty, classical propositional logic, and multivalued
dependencies in purely relational databases (Link 2012b;
Malvestuto 1992; Sagiv et al. 1981), for the realistic case of
missing data. The equivalence to multivalued dependencies
leads to our fifth contribution, an algorithmic characteriza-
tion showing that the implication of SCI statements under
uncertainty is decidable in almost linear time.

Organization. We introduce CI statements under uncer-
tainty in Section 2. In Section 3 we establish an axiomatic
characterization of the implication problem for SCI state-
ments under uncertainty. Our completeness argument is used
in Section 4 to derive a logical characterization in terms of
Levesque’s situations. Section 5 establishes a characteriza-
tion in terms of Lien’s multivalued dependencies. An equiv-
alence between instances of the implication problems under
uncertainty and sliced instances of the implication problems
under certainty allows us in Section 6 to exploit Galil’s al-
most linear time algorithm to decide implication. We con-
clude and comment on future work in Section 7.
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2 Conditional Independence and Uncertainty

We denote by V' a finite set {v1,...,v,} of random vari-
ables. A domain mapping associates a set dom(v;) with each
random variable v;. This set is called the domain of v; and
each of its elements is an event of v;. We assume that each
domain dom(v;) contains the element p, which we call the
marker. Although we use p like any other event, we think
of u as a marker, denoting that no information is currently
available about the event of v;. The interpretation of this
marker as no information means that an event does either
not exist (known as a structural zero in statistics, and the
null value inapplicable in databases), or an event exists but is
currently unknown (known as a sampling zero in statistics,
and the null value applicable in databases). The disadvan-
tage of using this interpretation is a loss in knowledge when
representing values known to not exist or known to exist but
currently unknown. One advantage of this interpretation is
its simplicity. As another advantage one can represent miss-
ing values, even if it is unknown whether they do not ex-
ist or exist but are currently unknown. Further advantages
will be revealed by the results established in this paper. For
X = {v1,...,u5} € V we say that e is an event of X,
if e € dom(vy) x -+ x dom(vy,). For an event e of X we
write e(y) for the projection of e onto Y C X. We say that
e=(ey,...,e)is X-certain,ife; # pforalli = 1,... k.

A probability model over a finite set V = {v1,...,v,} of
random variables is a pair (dom, P) where dom is a domain
mapping that maps each v; to a finite domain dom(v;), and
P : dom(vy1) x -+ x dom(v,) — [0,1] is a probability
distribution having the Cartesian product of these domains
as its sample space.

The expression I(Y, Z | X) where X,Y and Z are dis-
joint subsets of V' is called a conditional independence (CI)
statement over V. The set X is called the condition of
IY,Z | X).f XYZ =V, wecal I(Y,Z | X) a sat-
urated CI (SCI) statement. Let (dom, P) be a probability
model over V. A CI statement I(Y, Z | X) is said to hold
for (dom, P) if for every certain event x of X, and for every
event y,z of Y and Z, respectively,

P(y,Z,X)'P(X) :P(Y7x)'P(Xaz)‘

Equivalently, (dom, P) is said to satisfy I(Y, Z | X).

The satisfaction of I(Y,Z | X) requires Equation 1 to
hold for certain events x of X only. That is, we exclude
events that condition on the missing marker, i.e. for x, but
not when the independence is judged for the missing marker,
i.e. for y and z. Indeed, the independence between an event
y and an event z is conditional on the event x. If there is no
information about x, then there should not be any require-
ment on the independence between y and z.

Consider a simplified version of the classic burglary ex-
ample. A r(obbery) hopefully sets off an a(larm), hopefully
causing s(heldon) or b(atman) to call security. The indepen-
dence between s and b, given r and a, can be stated as the
SCI statement I(s,b | ar) over V. = {b,a,r,s}. Assume
all domains contain t rue, false and p. Clearly, the inde-
pendence between Sheldon calling in and Batman calling in
should not be conditional on events for which the alarm went
off and it is unknown whether a robbery took place. Events

)



1(Y,Z| X)

Iw-X,0|X) 1(Z,Y | X)
(saturated trivial independence, 7)  (symmetry, S)
I(ZW)Y | X) I(Z,W|XY) IY,ZW |X)

I(Z, YW | X) Y,z | Xw)

(weak contraction, C) (weak union, W)

Table 1: Axiomatization € under Certainty

for which no information is available about a robbery are ex-
cluded from judging the independence between Sheldon and
Batman calling in.

If we exclude p from the domains, we recover the stan-
dard semantics of CI statements. We will use the phrase
under uncertainty to indicate that the marker is present in
every domain, and the phrase under certainty when p is
absent from the domains. The phrases are short for under
(un)certain semantics.

Let C denote a class of CI statements, for example, SCI
statements under uncertainty. Let ¥ U {¢} be a set of CI
statements over V' in C. We say that X implies ¢, denoted by
Y | ¢, if every probability model over V' that satisfies ev-
ery CI statement in X also satisfies the CI statement . The
implication problem for C is to decide whether for any given
V and any given set U {¢} over VinC, ¥ |= ¢. For ¥ we
let * = {p € C | ¥ |= ¢} be the semantic closure of %,
that is, the set of all CI statements implied by >. We use a
syntactic approach to determine implied CI statements by in-

remise .
ference rules of the form —ProMS€ o here inference rules
conclusion’

without any premise are called axioms. An inference rule is
sound, if the set of CI statements in the premise imply the
CI statement in the conclusion. We let ¥ Fg; ¢ denote the
inference of p from X by the set R of inference rules. That
is, there is some sequence y = [0, . .., 0,,] of CI statements
such that o, = ¢ and every o; is an element of ¥ or results
from an application of an inference rule in R to some ele-
ments in {o1,...,0;_1}. For ¥, let E; ={p | TFtn ¢}
be its syntactic closure under inferences by R. A set R of
inference rules is said to be sound (complete) for the impli-
cation of CI statements in class C, if for every V and for
every set X of CI statements over V' in C we have Eg; c ¥
(Z* C =3,). The (finite) set R is said to be a (finite) axioma-
tization for the implication of CI statements in C if R is both
sound and complete.

For instance, Geiger and Pearl established the set € =
{T,S,C,W} from Table 1 as a finite axiomatization for the
implication of SCI statements under certainty.

Under certainty the SCI statements I(sb,r | a) and
I(s,b | ar) imply the SCI statement I(s,br | a), as the
soundness of the weak contraction rule C shows. That situa-
tion is quite different under uncertainty.

Lemma 1 The weak contraction rule (C) is not sound for
the implication of SCI statements under uncertainty.
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(Y, 2| X)

1(Z,Y | X)
(symmetry, S)

Iw-Xx,0|X)
(saturated trivial independence, 7")

1YY", 2Z' | X)I(YZ,Y'Z' | X) I(Y,ZW | X)

yy'z,z' X) Y,z | XwW)
(algebra, A) (weak union, W)

Table 2: Axiomatization ${ under Uncertainty

Proof The probability distribution that assigns one half to
each of the events (¢« = 1,7 = p,s = 1,b = 1) and (a =
1,7 =p,s=0,b=0) satisfies [(sb,r | a) and I(s,b | ar),
but violates I(s,br | a). [

Intuitively, I(s,br | a) is not implied by I(sb,r | a) and
I(s,b | ar) under uncertainty since we cannot find certain
values for r in the distribution of the proof above that satisfy
both I(sb,r | a) and I(s,b | ar). For examples, (a = 1,r =
1,s =1,b=1)and (a = 1,r = 1,s = 0,b = 0) satis-
fies I(sb,r | a) and violates I(s,b | ar); and (a = 1,r =
0,s=1,b=1)and (a = 1,7 = 1,s = 0,b = 0) violates
I(sb,r | a) and satisfies I(s,b | ar). These certain probabil-
ity models show that I(sb,r | a) does not imply I(s,br | a)
under certainty, and I(s,b | ar) does not imply I(s,br | a)
under certainty, respectively.

Note that probability distributions, under uncertainty, can
feature markers in one event but not in others, for any ran-
dom variable. The example above is just a special case.

Lemma 1 means that € does not axiomatize the implica-
tion of SCI statements under uncertainty. In particular, not
all axioms for graph separation are also axioms of SCI state-
ments under uncertainty, in contrast to the case of certainty
(Geiger and Pearl 1990).

3 Axiomatic Characterization

We show that the set 4l from Table 2 is sound and com-
plete for the implication of SCI statements under uncer-
tainty. The completeness argument uses special probability
models where two events have probability one half. This in-
sight will later be used to derive further characterizations.
The rules 7, S, A, and W are all sound for the impli-
cation of SCI statements under uncertainty. The key obser-
vation is that, for each rule, the condition in the conclusion
contains the condition of each of its premises. If there is a
probability model that violates the conclusion, then there is
an event which is certain on the condition and violates Equa-
tion (1). Hence, the same event is certain on the conditions
of all premises. The soundness of € (Geiger and Pearl 1993)
means that one of the premises is also violated. The key ob-
servation does not apply to the rule C, in which the condition
of the second premise is not contained in the condition of its
conclusion.
Independence basis. For some V', some set 3 of SCIs over
V,and some X C V let IDepy,(X) = {Y CV — X |
Y by I(Y,Z | X)} denote the setof all Y C V — X



such that I(Y,Z | X) can be inferred from X by . The
soundness of the algebra rule .4 implies that (IDepy;(X), C
,U,N, (-)¢,0,V — X) forms a finite Boolean algebra where
(-)¢ maps a set W to its complement V — X . Recall that
an element a € P of a poset (P, C, 0) with least element 0 is
called an atom of (P, C,0) precisely when a # 0 and every
element b € P with b C a satisfies b = 0 or b = a. Further,
(P,,0) is said to be atomic if for every element b € P —
{0} there is an atom ¢ € P with a C b. In particular, every
finite Boolean algebra is atomic. Let IDepBy. (X ) denote the
set of all atoms of (IDepy(X), <, ). We call IDepBs-(X)
the independence basis of X with respect to .

Theorem 2 Let 3 be a set of SCI statements. Then ¥ ¢
1Y, Z | X)iff Y = J Y for some Y C IDepBy,(X).

Proof Let Y € [Deps,(X). Since every element b of a
Boolean algebra is the union over those atoms a with a C b
it follows that Y = |J Y for Y = {W € I[DepBy,(X) | W C
Y'}. Vice versa, let Y = |J Y for some ) C [DepBy,(X).
Since I(W, W' | X) € X holds for every W € Y, appli-
cations of the algebra rule resultin I(Y, Z | X) € . |

For ¥ = {I(sb,r | a),I(s,b | ar)} the independence
basis is IDepBy.(a) = {sb,r}. Hence, ¥ [~ I(s,br | a)
since s is not a union of members of the independence basis.
Completeness. Our completeness proof is based on the as-
sumption that every domain contains at least two different
events plus the marker. In some relevant scenarios, e.g. in
causal reasoning, this assumption in regard to specific in-
terventional distributions (upon the creation of certain func-
tional constraints) does not hold, but this case lies outside
the scope of this work (Tian and Pearl 2000).

Theorem 3 The set L is complete for the implication of SCI
statements under uncertainty.

Proof Let XU {I(Y,Z | X)} be a set of SCIs over V, and
suppose that I(Y, Z | X) cannot be inferred from X using 4.
We will show that I(Y, Z | X) is not implied by 3. For this
purpose, we will construct a probability model that satisfies
all SCI statements of X, but violates I(Y, Z | X).

Let IDepBy,(X) be the disjoint union of {{v} | v € X}
and {W7y,..., W}, in particular V- = XW - - - Wy. Since
I(Y,Z | X) ¢ © we conclude by Theorem 2 that Y is not
the union of some elements of IDepBy.(X ). Consequently,
there is some i € {1,...,k} such that Y N W; # () and
W; —Y # 0 hold. For every v € V we define dom(v) =
{0, 1, u}. We define the following two events e; and ey of
V. We define e;(v) = 0iff v € XW,;, and e;(v) = p
otherwise. We further define ez (v) = 0iff v € X, ex(v) =
1iff v € W, and e3(v) = pu otherwise. As probability
measure we define P(e;) = P(e3) = 0.5. The construction
implies that (dom, P) does not satisfy I(Y, Z | X).

It remains to show that (dom, P) satisfies every SCI state-
ment I(S,T | R) in X. Suppose that for some value r of
R, P(r) = 0. Then Equation (1) will always be satisfied.
If P(r,s) = 0 or P(r,t) = 0 for some event r of R,
and for some event s of S or for some event t of T, then
P(r,s,t) = 0. Then Equation (1) is also satisfied. Suppose
that for some event r of R, P(r) = 0.5. If for some event s
of S and for some event t of T', P(r,s) = P(r,t) = 0.5,
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then P(r,s,t) = 0.5, too. It remains to consider the case
where r is a certain event of R such that P(r) = 1. In this
case, the construction of the probability model tells us that
R C X. Consequently, we can apply the weak union and
symmetry rules to I (S, T | R) € L toinfer [(S—X,T—X |
X) € x. It follows from Theorem 2 that S — X and
T — X are each the union of elements from IDepBy, (X).
Suppose first that W; C S — X. Then, we are either in
the previous case where P(r,s) = 0 or P(r,t) = 0, or
P(r,s) = 0.5, P(r,t) = 1 and P(r,s,t) = 0.5. Otherwise,
W; C T'— X. Then, we are either in the previous case where
P(r,s) =0or P(r,t) =0, 0r P(r,s) =1, P(r,t) = 0.5
and P(r,s, t) = 0.5. This concludes the proof. |

Recall, for ¥ = {I(sb,r | a),I(s,b | ar)} we had ¥ [~
I(s,br | a)asIDepBy,(a) = {sb, r}. The probability model,
according to the proof of Theorem 3, defined by

r a S b P
W4 true true true |0.5
u true false false | 0.5

satisfies 35, but violates .

Normalizing implication. A probability model (dom, P)
over V is special, if for all v € V, dom(v) = {0,1, u},
and there are two events of V such that P(e;) = 0.5 =
P(ez2). Here, we sometimes write (dom, {e1,e3}) instead
of (dom, P). The proof of Theorem 3 shows that it suffices
to consider special probability models.

Corollary 4 Let X U {¢} be a set of SCI statements where
o is not implied by ¥. Then there is a special probability
model (dom, P) that satisfies 3 and violates ¢. |

4 Logical Characterizations

We characterize implication by a propositional fragment us-
ing the concept of situations from (Levesque 1989). This
complements the equivalence between the implication of
SCI statements under certainty and the Boolean implication
of the same fragment. We then establish an equivalence be-
tween instances of implication problems under uncertainty
and sliced instances of implication problems under certainty.
Levesque’s situations. Let L* denote the propositional lan-
guage over a finite set L of propositional variables, gener-
ated from negation —, conjunction A and disjunction V. El-
ements of L* are also called formulae of L, and denoted by
@', " or their subscripted versions. Sets of formulae are de-
noted by Y. We omit parentheses if we can.

Let L denote the set of all literals over L, i.e., Lt = L U
{—v" | v' € L}. A situation of L is a total function w :
L* — {F, T} that does not map both a propositional variable
v" € L and its negation -’ to IF (we must not have w(v') =
F = w(—') for any v’ € L).

A situation w : L* — {FF, T} of L can be lifted to a total
function Q : L* — {F, T}. Assuming that ¢’ is in Negation
Normal Form, this lifting is defined as follows:

e Q¢) =w(y).if ¢ € L,
e Q¢ V') =Tifand only if Q(¢’) = T or Q(¢)") = T,
e Q(p' AY') = Tifand only if Q(¢') = T and Q(¢)') = T.



A situation w is a model of a set ¥/ of L-formulae if and
only if Q(o’) = T holds for every ¢’ € ¥’'. We say that >’
implies an L-formula ¢’, denoted by X’ |=;, ¢/, if and only
if every situation that is a model of X’ is also a model of ’.
Equivalences. Let ¢ : V' — L denote a bijection between a
set V of random variables and the set L = {v' | v € V'} of
propositional variables. We extend ¢ to a mapping ¢ from
the set of SCI statements over V' to the set L*. For an SCI
statement (Y, Z | X) over V, let ®(I1(Y, Z | X)) denote

V(A (Ar)

Disjunctions over zero disjuncts are [F and conjunctions over
zero conjuncts are T. We will denote ®(p) = ¢’ and
(X)) ={P(0) |ce X} =%".

For ¢ = I(s,br | a) we have ¢’ = —d’ vV s’ V (' A1),
and for ¥ = {I(sb,r | a),I(s,b | ar)} we have ¥’ =
{=a' V(s ANV)V T, —ad V—r' Vs VY.

We will now show that for any set X U {¢} of SCI state-
ments over V there is a probability model 7 = (dom, P)
over V that satisfies ¥ and violates ¢ if and only if there is a
situation w,; that is a model of ¥’ but not a model of ¢’. For
arbitrary probability models 7 it is not obvious how to de-
fine the situation w,. However, Corollary 4 tells us that for
deciding the implication problem X |= ¢ it suffices to ex-
amine special probability models. For the special probabil-
ity model m = (dom, {e1,e2}) let w, denote the following
special situation of L:

/ T ,ifei(v) =ez(v)
wr (V) { F , otherwise » and
T ,ifei(v) =p=-es(v)or
wr(—0') = { e1(v) # ez(v)
F , otherwise

Recall that ¥ = {I(sb,r | a),I(s,b | ar)} £ I(s,br|a) =
 as the special probability model 7 defined by

r a s b| P
uw 0 0 0105
L 0 1 1[05

satisfies X, but violates ¢. The special situation where
wa(r) =T = we(—r"), we(—d') = wr(s') =w, (V) =F
isamodel of ¥/ = {—a’ V (s’ AV )V, =d' V—r' Vs V'],
but not a model of ¢’ = —a’ Vs’ vV (V) A7),

The special situation becomes a Boolean interpretation
under certainty. The following lemma justifies the definition
of the special situation semantically.

Lemma 5 Let m = (dom, {ey, es}) be a special probability
model over V, and let p denote an SCI statement over V.
Then T satisfies @ if and only if w, is a model of ¢’

Proof Let o = I(Y,Z | X) and ¢’ = \ oy V
(Avey v")V(Ayez V). Suppose  satisfies . We show that
wy is a model of ¢’. Assume w,(—v') = F forall v € X.
According to the special situation, e;(v) = e3(v) # u for
all v € X. That means P(e;(X)) = 1. Suppose for some
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v €Y, wg(v) = F. Then e1(v) # ea(v) according to the
special situation. Then P(e;(XY)) = P(e;) = 0.5. Since
m satisfies ¢, P(e1(XZ)) = 1. Hence, for every v € Z,
e1(v) = ez(v). This means that forall v € Z, w,(v') = T.
Hence, w, is a model of ',

Suppose w, is a model of ¢'. We show that 7 satisfies
. That is, for every certain event x of X, and every event
y and z over Y and Z, respectively, P(x) - P(x,y,z) =
P(x,y) - P(x,z). We distinguish between a few cases.

Case 1.1f P(x,y) = O or P(x,z) = 0, then P(x,y,z) =
0. For the remaining cases we can assume P(x,y) > 0 and
P(x,z) > 0,1i.e., also P(x) > 0.

Case 2. Suppose that P(x) = 1. Since x is certain over
X, it follows that 1 (v) = ex(v) # p forall v € X. Conse-
quently, w, (v") = T forallv € X. Since w, is a model of ¢’
we conclude that w,(v') = T forallv € Y, orw,(v') =T
for all v € Z. This, however, would mean that P(x,y) = 1
or P(x,z) = 1. Since ¢ is saturated, it follows that exactly
one of P(x,y) and P(x,z) is 1, and the other 0.5. Conse-
quently, (x,y,z) equals e; or es. Hence, P(x,y,z) = 0.5,
too. It follows that 7 satisfies (.

Case 3. Suppose that P(x) = 0.5. Then P(x,y) = 0.5 =
P(x,z). Then (x,y, z) equals e or ez, as P(x) would have
to be 1 otherwise. Hence, P(x,y,z) = 0.5. ||

Corollary 4 and Lemma 5 allow us to establish the antici-
pated logical characterization under uncertainty.

Theorem 6 Let X U {¢} be a set of SCI statements over
some set V' of random variables, and let ' U {¢'} denote
the set of its corresponding formulae over L. Then ¥ |= ¢ if
and only if ¥’ =p, ¢'.

Proof Suppose ¥ | ¢ does not hold. Corollary 4 shows
there is some special probability model 7 over V' that satis-
fies ¥ and violates . By Lemma 5, w;; is a model of ¥’ but
not a model of ¢’. Hence, ¥’ =, ¢’ does not hold.

Suppose ¥ =, ¢’ does not hold. Then some situation w
over L is a model of ¥’ but not a model of ¢’. Define the
following special probability model m = (dom, {e1,e2})
over V. Forv € V, let dom(v) = {0, 1, u}. We now define
e; and eg as follows. If w(v') = T and w(—w') = F, then
p # er(v) = ex(v) # p. fw@) = T and w(—') =
T, then e1(v) = p = ex(v). Finally, if w(v') = F and
w(—v") = T, then u # e1(v) # ea(v) # u. Since w is not
a model of ¢/, e; # es. Hence, w, = w. By Lemma 5, 7
satisfies X but violates ¢. Hence, 3 |= ¢ does not hold.  |J

Equivalences to Boolean implication. For a set > of SCI
statements over V, and some X C V define the X -cut X[ X]
of X as the set of all SCI statements I(V, W | U) € ¥ where
U C X, i.e., whose condition U is a subset of X.

Theorem 7 Let XU {p} be a set of SCI statements over V,
where ¢ = I(Y,Z | X). Then ¥ = I(Y, Z | X) under un-
certainty ifand only if [ X| = I(Y, Z | X) under certainty.

Proof We show the equivalence in the logical setting, i.e.,
Y Er ¢ if and only if (X[X]) Ecr ¢ where ¢ de-
notes Boolean implication. Suppose 7 : L — {T,F} is
a model of (X[X])’, but not a model of ¢’. Consequently,
7(v") =T forallv € X, 7(v]) = F for some vy € Y, and



7(v}) = F for some vy € Z. Define a situation w : L* —
{T,F} that is a model of ¥’, but not a model of ¢’. In fact,
set w(—v') = Fforallv € X, w(v)) = F, w(vy) = F,
and w(v') =T = w(—') forallv € V — (X U {wg,v1}).
Note that every atom that is true under 7 is true under w, and
every negated atom, not corresponding to a variable in X, is
T under w. Certainly, w is not a model of ¢’. For o € X[ X],
w is a model of ¢’ since the variables in X that are not in
the condition of o correspond to atoms interpreted as T un-
der w. For 0 € ¥ — X[X] there is some v € V — X that
is part of the condition of o and whose negated atom —’ is
interpreted T under w.

Suppose there is some w : LY — {T,F} that is a model
of ', but not a model of ¢'. Hence, w(—w') = F for all
v € X, w(v)) = F for some vy € Y, and w(v}) = F for
some v; € Z. Define a truth assignment 7 : L — {T,F}
that is a model of (X[X])’, but not a model of ¢'. In fact, set
T(vy) =F = 7(v}),and 7(v") = T forallv € V —{vg, v1 }.
Again, every atom true under w is true under 7. It follows
that 7 is not a Boolean model of ¢'. For ¢ € X[X], every
variable in X that is not in the condition of ¢ corresponds to
an atom interpreted as T. Therefore, 7 is a model of o’. |}

For ¥ = {I(sb,r | a),I(s,b | ar)} we have X[a]
{I(sb,r | a)} and the probability model 7’ defined by

r a s b| P
0 0 0 005
0 01 1]05

satisfies X[a], but violates ¢ = I(s,br | a). The Boolean
truth assignment where 7(r') = 7(a’) = T and 7(s') =
F = w,(b) is amodel of X[a])’ = {—a’ V (s’ AV) V '}, but
not a model of ¢/ = —a’ Vs’V (V' A 7).

5 Characterization by Data Dependencies

Let A = {01, 7o, ...} be an infinite set of distinct symbols,
called attributes. A relation schema is a finite non-empty
subset R of 2. Each attribute v € R has an infinite domain
dom(®). In order to encompass missing values the domain
of each attribute contains the null marker p. The intention of
1 is to mean “no information” (Lien 1982). A tuple over R
is a function ¢ : R — |J;cp dom(0) with ¢(0) € dom(?)
forall © € R. For X C R let t(X) denote the restriction of
t to X. A relation r over R is a finite set of tuples over R.
For a tuple ¢t over R and a set X C R, t is said to be X-
total, if for all b € X, t(0) # p. A relation over R is a fotal
relation, if it is R-total. According to (Lien 1982), a multi-
valued dependency (MVD) over R is a statement X — Y
where X, Y C R. The MVD X — Y over R is satisfied by
a relation 7 over R if and only if for all ¢1,t; € r the fol-
lowing holds: if ¢; and t5 are X-total and ¢ (X) = t2(X),
then there is some ¢ € r such that ¢(XY) = ¢;(XY) and
tX(R-Y)) =t2(X(R—Y)). Thus, the relation r satis-
fies X — Y when every X -total value determines the set of
values on Y independently of the set of valueson R — Y.
One may associate an SCI statement ¢ = [(Y,Z | X)
over VwithanMVD ¢ = X — Y over R= {0 |v € V};
and a set  of SCI statements over V with the set £ = {5 |
o € X}. In the same way we did for SCI statements, one
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can prove that 3 |= ¢ if and only if ¥’ =1, ¢'. In particular,
special probability models reduce to two-tuple relations (the
same events as before, but without probabilities).

Theorem 8 Ler X U {} be a set of SCI statement over V.
Then ¥ = pifandonly if ¥ = ¢. |

6 Algorithmic Characterization
We exploit Theorems 7 and 8 to derive that, for a set ZU{p}

of SCI statements over V, ¥ |= ¢ if and only if X[X] = ¢,

that is, every total relation over R that satisfies X[X] also
satisfies . The latter problem has a nice algorithmic solu-
tion (Galil 1982).

Corollary 9 Using the algorithm in (Galil 1982), the im-
plication problem’ ™ |=1(Y, Z | X) of the set U {I(Y, Z |
X)} of SCI statements over V can be decided in time
o(x| + min{kzrx],logﬁg[x]} x |2[X]|). Herein, |X| de-

notes the total number of attributes occurring in 3} szx]
denotes the cardinality of Z[AX], and px[x) denotes the num-
ber of sets in IDepBy, x| (X ) that have non-empty intersec-

tion with Y, respectively. |}

7 Conclusion and Future Work

We established characterizations of the implication problem
for SCI statements in the presence of missing values. These
include equivalences in terms of axioms, algorithms, classi-
cal and non-classical propositional as well as database logic,
which all form counterparts of well-known results in the ab-
sence of missing values. Our findings hold under the robust
interpretation of a missing value marker as “no informa-
tion”, and are consistent with approaches to sampling and
structural zeros in statistics, and applicable and inapplicable
null values in databases. We recommend to apply our results
after known techniques have been exploited to reveal miss-
ing values. Our reasoning tools for SCI statements under un-
certainty provide sound lower bounds on the opportunities to
factorize joint probability distributions.

While the tools enable us to reason about independence
in the presence of missing values, it is not obvious how
they can be utilized for learning or inference with Bayesian
networks. This should be studied in future work, includ-
ing the relationship to d-separation (in latent projections)
(Pearl 1988; Pearl and Verma 1991). The implication prob-
lem of general CI statements under uncertainty should be
explored, and other fragments including marginal and sta-
ble CI statements. For multivalued dependencies the im-
plication problem has also been studied when the under-
lying set of attributes is left undetermined, both in the
presence (Link 2008; 2006) and absence (Biskup 1980;
Hartmann, Link, and Schewe 2004; Biskup and Link 2012;
Link 2012a) of missing values. For SCI statements this has
only been done in the absence of missing values (Biskup,
Hartmann, and Link 2012). Finally, one should consider to
specify random variables as certain, i.e., missing values are
not permitted to occur for certain random variables. Again,
this idea has only been explored in the database framework
yet (Hartmann and Link 2012).
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