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Abstract

Learning from multi-view data is important in many
applications. In this paper, we propose a novel convex
subspace representation learning method for unsuper-
vised multi-view clustering. We first formulate the sub-
space learning with multiple views as a joint optimiza-
tion problem with a common subspace representation
matrix and a group sparsity inducing norm. By exploit-
ing the properties of dual norms, we then show a con-
vex min-max dual formulation with a sparsity inducing
trace norm can be obtained. We develop a proximal bun-
dle optimization algorithm to globally solve the min-
max optimization problem. Our empirical study shows
the proposed subspace representation learning method
can effectively facilitate multi-view clustering and in-
duce superior clustering results than alternative multi-
view clustering methods.

Introduction
In many real world application domains, the data sets are
naturally comprised of multiple views. For example, web-
pages can be represented using both the page-text and the
hyperlinks pointing to them, which form their two inde-
pendent views (Blum and Mitchell 1998). In natural lan-
guage processing tasks, the same document can have mul-
tiple representations in different languages (Amini, Usunier,
and Goutte 2009). Although each individual view can be suf-
ficient for characterizing the data object, the multiple views
often contain complementary information to each other to
alleviate the difficulty of a giving learning problem. Exploit-
ing multiple redundant views to effectively learn from unla-
beled data and improve the performance of the target learn-
ing task has been a common theme of multi-view learn-
ing. Much work on multi-view learning has been focused
on classification problems, which share a general princi-
ple of maximizing agreement of different views on unla-
beled data (Blum and Mitchell 1998; C. Christoudias and
Darrell 2008; Collins and Singer 1999; Dasgupta, Littman,
and McAllester 2001; Guo and Xiao 2012; Sindhwani and
Rosenberg 2008; Sridharan and Kakade 2008).

Recently, exploiting multiple views to improve unsuper-
vised clustering has gained increasing attention from ma-
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chine learning research community. A number of multi-view
clustering methods have been developed in the literature,
including the Co-EM method (Bickel and Scheffer 2004),
the canonical correlation analysis (CCA) method (Chaud-
huri et al. 2009), the generalized multi-view normalized cut
method (Zhou and Burges 2007), the two-view spectral clus-
tering over bipartite graphs (de Sa 2005), and the multi-
view spectral clustering methods (Kumar and Daumé III
2011; Kumar, Rai, and Daumé III 2011). The CCA method
in (Chaudhuri et al. 2009) shows that extracting shared rep-
resentation across different views can alleviate the difficulty
of clustering. The methods in (Kumar, Rai, and Daumé III
2011) conduct co-regularized multi-view spectral clustering,
whose nature is to identify consistent low-dimensional rep-
resentations of the multiple views in terms of eigenvector
matrices. They also suggest that learning low-dimensional
representations consistent across multiple views can im-
prove the clustering performance. Nevertheless, these ex-
isting multi-view clustering methods are limited by either
focusing only on two-view learning problems (Chaudhuri
et al. 2009; de Sa 2005), or pursuing only alternating op-
timization procedures to reach arbitrary local optimal so-
lutions for the underlying subspace representations (Bickel
and Scheffer 2004; Kumar and Daumé III 2011; Kumar, Rai,
and Daumé III 2011).

In this paper, we propose a novel convex subspace rep-
resentation learning approach for general multi-view clus-
tering. A fundamental assumption of multi-view learning is
that the true underlying clustering would assign correspond-
ing points across different views into the same cluster. Our
key idea is to identify a common intrinsic subspace repre-
sentation of the data across multiple views, and then perform
standard clustering on this shared representation. Hence the
fundamental assumption of multi-view clustering can be au-
tomatically captured. We first formulate this common sub-
space representation learning in the framework of standard
matrix factorization, with a group sparsity inducing norm
over the shared representation matrix. We then show a con-
vex formulation can be obtained by pursuing its dual relax-
ation with a matrix trace norm regularizer. We develop a
proximal bundle optimization procedure to solve the convex
dual optimization problem. Our empirical results demon-
strate the efficacy of the proposed approach comparing to
a number of alternative methods.
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Notations
In this paper, we use capital letters to denote matrices, use
boldface lower-case letters to denote vectors, and use lower-
case letters to denote scalars. For a matrix X , we use Xi:

to denote its ith row, use X:j to denote its jth column, and
use Xij to denote its entry at the ith row and jth column.
We use {θv}k to denote a set of variables {θ1, · · · , θk} and
use the boldface letter θ to denote its corresponding column
vector. Similarly, we use {bv}k to denote a set of vectors
{b1, · · · ,bk} where each bv is a column vector, and use
{X(v)}k to denote a set of matrices {X(1), · · · , X(k)}. We
use Id to denote a d × d identity matrix, and use 0d (or 1d)
to denote a d × 1 vector with all 0 (or 1) entries. The no-
tation ◦ denotes the Hadamard product between two matri-
ces. In terms of norms, ‖b‖2 denotes the Euclidean norm
of a vector b, and ‖X‖F denotes the Frobenius norm of
a matrix X . The matrix block norm ‖X‖2,1 is defined as
‖X‖2,1 = (

∑
j(
∑
i |Xij |2)

1
2 ). The matrix spectral norm is

denoted as ‖X‖sp = maxi σi(X), where σi(X) denotes the
singular value of X . The conjugate of spectral norm is the
trace norm ‖X‖∗ =

∑
i σi(X).

Convex Subspace Representation Learning
with Multi-view Data

Given a data set with k views (k ≥ 2), represented using k
matrices {X(v) ∈ IRt×dv}k, we aim to learn a common sub-
space representation Ψ ∈ IRt×m of the data shared across
the multiple views. The idea is that such a common subspace
representation can capture the intrinsic structure of the data
that is consistent across the multiple views, and thus the dif-
ficulty of the clustering task can be greatly alleviated. We
formulate this multi-view subspace representation learning
as a joint optimization problem that minimizes the recon-
struction errors over the multiple views of the data while us-
ing a `2,1 norm regularizer over the subspace representation
matrix to induce the most intrinsic common representation
of the data. Specifically, the optimization problem is

min
Ψ

min
m∈N

min
{B(v)∈Bm

v }k

k∑
v=1

βv
2
‖X(v) −ΨB(v)‖2F +γ‖Ψ‖2,1

(1)

where {βv}k and γ are tradeoff parameters; each B(v) is a
m×dv basis matrix for the vth view, which contains row ba-
sis vectors such that Bmv = {B̃ ∈ IRm×dv : ‖B̃i:‖2 ≤ 1 ∀i}.
The individual basis constraints over each B(v) ensure the
multi-view problem (1) differs from a concatenated single
view problem. Note m is the size of the basis matrices,
which is a model parameter typically being pre-fixed. In-
stead of selecting such am parameter beforehand, we would
rather determine it automatically within the optimization
problem by adding the minimization over m ∈ N in (1).
Since m can be any natural number, from now on, we will
use min
{B(v)∈B∞

v }k
as a shorthand for min

m∈N
min

{B(v)∈Bm
v }k

.

The optimization problem formulated in (1) is a general-
ization of the standard single view subspace representation

learning by simultaneously conducting subspace representa-
tion learning in multiple views with a shared representation
matrix Ψ. The problem is convex in {B(v)}k given Ψ and
vice versa, but unfortunately is not jointly convex in both and
thus does not admit directly global training. Most research
for subspace representation learning resorts to alternating
minimization even in the single view case, which unavoid-
able has the drawback of local optimal solutions. Recently,
convex reformulations have been developed for single view
subspace representation learning (Bach, Mairal, and Ponce
2008; Zhang et al. 2011) and two-view subspace represen-
tation learning (White et al. 2012). However, a convex so-
lution for general multi-view subspace representation learn-
ing, e.g., the problem we propose to tackle here, is not read-
ily available or extendable from any of these previous work.
In this paper, we thus derive a principled convex reformula-
tion of the general multi-view representation learning prob-
lem in (1) to facilitate multi-view data analysis.

Proposition 1 The minimization problem (1) admits the fol-
lowing principled convex dual relaxation

min
M

max
θ>1=1,θ>0

k∑
v=1

βv
2
‖X(v)−M (v)‖2F +γ‖MEθ‖∗ (2)

where M = [M (1), · · · ,M (k)], (3)

Eθ = diag([
√
θ11d1 ; · · · ;

√
θk1dk ]). (4)

This is the main result of this work. We will prove this
proposition by presenting a series of derivation results.

First, by simply settingM (v) = ΨB(v) for all v, the prob-
lem (1) can be equivalently rewritten as

min
{M(v)}k

k∑
v=1

βv
2
‖X(v) −M (v)‖2F + (5)

γ min
{B(v)∈B∞

v }k
min

Ψ:{M(v)=ΨB(v)}k
‖Ψ‖2,1

Lemma 1 For a set of given {M (v)}k, assume the inner
minimization over Ψ, {B(v) ∈ B∞v }k in (5) is within proper
bounded closed sets {B∞v }k, one has

min
{B(v)∈B∞

v }k
min

Ψ:{M(v)=ΨB(v)}k
‖Ψ‖2,1

= min
{B(v)∈B∞

v }k
max
{Λ(v)}k

∑k
v=1 tr(Λ(v)>M (v))−∥∥∑k
v=1 Λ(v)B(v)>

∥∥
2,∞

 (6)

Proof: For any fixed feasible m ∈ N and {B(v) ∈ B∞v }k,
we first exploit the following Lagrange dual formulation

min
Ψ:{M(v)=ΨB(v)}k

‖Ψ‖2,1

= min
Ψ

max
{Λ(v)}k

‖Ψ‖2,1+
∑
v

tr(Λ(v)>(M (v)−ΨB(v))) (7)

= max
{Λ(v)}k

min
Ψ
‖Ψ‖2,1+

∑
v

tr(Λ(v)>(M (v)−ΨB(v))) (8)
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The min-max order switching from (7) and (8) is due to the
strong Lagrange duality property of the problem (Boyd and
Vandenberghe 2004). Since the dual norm of ‖·‖2,1 is ‖·‖2,∞
by norm duality, we then have

(8)= max
{Λ(v)}k

min
Ψ

max
Γ

(
tr(Γ>Ψ)− ‖Γ‖2,∞+∑
v tr(Λ(v)>(M (v)−ΨB(v)))

)
(9)

= max
{Λ(v)}k

max
Γ

∑v tr(Λ(v)>M (v))− ‖Γ‖2,∞+

min
Ψ

tr
(
Ψ>
(
Γ−
∑
v Λ(v)B(v)>

))
(10)

= max
Γ,{Λ(v)}k:

Γ=
∑

v(Λ(v)B(v)>)

∑
v

tr(Λ(v)>M (v))− ‖Γ‖2,∞ (11)

= max
{Λ(v)}k

∑
v

tr(Λ(v)>M (v))−
∥∥∥∑

v

Λ(v)B(v)>
∥∥∥

2,∞
(12)

where (9) follows by the Fenchel conjugate function (Rock-
afellar 1970), (10) follows by the strong duality (Rockafel-
lar 1970), and (11) follows by eliminating Ψ. Since feasible
m ∈ N and {B(v) ∈ B∞v }k are assumed to exist for the
given {M (v)}k, thus (6) is proved. �

Proposition 2 For a set of given {Λ(v)}k, with proper
bounded closed sets {B∞v }k, one has

max
{B(v)∈B∞

v }k

∥∥∥∑
v

Λ(v)B(v)>
∥∥∥2

2,∞

= max
b:{‖bv‖22≤1}k

b>Λ>Λb (13)

≤ min∑
v
θv=1,θv>0

‖ΛE−1
θ ‖

2
sp (dual relaxation) (14)

where Λ = [Λ(1), · · · ,Λ(k)]; each bv ∈ IRdv×1 and b ∈
IRd×1 such that d =

∑
v dv and b = [b1; · · · ;bk]; and the

matrix Eθ is defined in (4).
Proof: Let

B = [B(1), · · · , B(k)], Λ = [Λ(1), · · · ,Λ(k)], (15)
we can then rewrite∥∥∥∑

v

Λ(v)B(v)>
∥∥∥

2,∞
= ‖ΛB>‖2,∞

= max
j∈{1···m}

(
∑
i

|Λi:B>j: |2)
1
2

= max
j∈{1···m}

(Bj:Λ
>ΛB>j: )

1
2 (16)

This then leads to

max
{B(v)∈B∞

v }k

∥∥∥∑
v

Λ(v)B(v)>
∥∥∥2

2,∞

= max
{B(v)∈B∞

v }k
max

j∈{1..m}
Bj:Λ

>ΛB>j:

= max
b:{‖bv‖22≤1}k

b>Λ>Λb (17)

which proves equation (13). We next consider the following
Lagrangian for the primal maximization problem in (13)

L({bv}k; {µv}k) = b>Λ>Λb +
∑
v

µv(1− ‖bv‖22) (18)

where the dual variables satisfy µv ≥ 0 for all v. In this case,
however, the strong duality does not hold in general, which
induces a duality gap

max
{bv}k

min
{µv}k

L({bv}k; {µv}k)

≤ min
{µv}k

max
{bv}k

L({bv}k; {µv}k) (19)

Nevertheless, the optimal solutions of the relaxed problem
should satisfy the following KKT conditions

∂L

∂bv
= 2Λ(v)>Λb− 2µvbv = 0, ∀v; (20)

µv ≥ 0, ‖bv‖22 ≤ 1, ∀v; (21)

µv(1− ‖bv‖22) = 0, ∀v. (22)

From (20), it is easy to see that µv = 0 implies all entries of
Λ(v)>Λ are 0s, which is unlikely to happen. It is thus reason-
able to assume µv > 0 and consider only the interior points
{µ : µv > 0, v = 1, · · · , k} of the feasible dual region in
this proof. Then the conditions in (22) lead to ‖b∗v‖22 = 1,∀v
for optimal solution b∗. The conditions in (20) further in-
duce the following equation system

Λ>Λb∗ = Cµb
∗ (23)

for Cµ = diag([µ11d1 ; · · · ;µk1dk ]), (24)

which suggests a generalized eigenvalue problem. More-
over, based on these conditions, the dual objective function
in (19) can be equivalently rewritten as

L({µv}k) = L({b∗v}k; {µv}k) =
k∑
v=1

µv (25)

Lemma 2 For any feasible solution µ of (19), the largest
generalized eigenvalue of (Λ>Λ, Cµ) is upper-bounded by

1; that is, λmax(Λ>Λ, Cµ) = λmax(C
− 1

2
µ Λ>ΛC

− 1
2

µ ) =

‖ΛC−
1
2

µ ‖2sp ≤ 1.

This Lemma can be proved by simply showing that any
{µv}k with λmax(Λ>Λ, Cµ) > 1, will lead to an unbounded
objective L({bv}k; {µv}k).

Combing Lemma 2 and the reexpression of dual objective
in (25), the dual optimization problem (19) can be equiva-
lently rewritten as

min
{µv>0}k

k∑
v=1

µv s.t. ‖ΛC−
1
2

µ ‖2sp ≤ 1. (26)

Now we introduce new variables {αv > 0}k and λ > 0. By
applying a simple variable replacement, µv = λαv,∀v, (26)
can be equivalently rewritten as

min
{αv>0}k

k∑
v=1

αv‖ΛC
− 1

2
α ‖2sp (27)

By another variable replacement, θv = αv∑
v′ αv′

,∀v, it is
simple to show that (27) can be equivalently reexpressed to
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the dual relaxation problem (14). Combing (19), (25), (26)
and (27), the dual relaxation from (13) to (14) is proved. �

By combing the results in (6), (13) and (14), we have

min
{B(v)∈B∞

v }k
min

Ψ:{M(v)=ΨB(v)}k
‖Ψ‖2,1

≥ max
Λ

max∑
v θv=1,θv>0

tr(Λ>M)−‖ΛE−1
θ ‖sp (28)

(dual relaxation)

= max∑
v θv=1,θv>0

max
Λ̃

tr(Λ̃>MEθ)− ‖Λ̃‖sp (29)

(set Λ̃ = ΛE−1
θ )

= max∑
v θv=1,θv>0

‖MEθ‖∗ (30)

where the step from (29) to (30) is based on the simple fact
that the trace norm is the dual norm of the spectral norm.
Finally, by combining (5) and (30), we can obtain the con-
vex dual relaxation formulation (2) in Proposition 1 from its
original primal form (1).

The dual formulation (2) is apparently a convex matrix
optimization problem that minimizes the sum of matrix dis-
tances while using the trace norm to enforce reduced rank.
In next section, we will present a proximal bundle method
to solve the convex dual optimization problem (2).

After solving for the optimal M∗, we recover a low-
dimensional representation matrix Ψ∗ and the concatenated
basis matrix B∗ by first conducting a singular value decom-
position, such that Ψ∗ = UΣ, B∗ = V >, forM∗ = UΣV >.
Starting from these Ψ∗ and B∗, we then run an alternating
gradient descent procedure to update these matrices by min-
imizing the squared reconstruction loss in (1).

Optimization Algorithm
Though the optimization problem (2) is a convex optimiza-
tion problem, it is still difficult to conduct optimization di-
rectly due to the non-smooth trace norm. To develop an ef-
ficient optimization algorithm, we first derive an equivalent
reformulation following a well-known variational formula-
tion of the trace norm (Argyriou, Evgeniou, and Pontil 2006;
Grave, Obozinski, and Bach 2011): Let Z ∈ IRt×d, then the
trace norm of Z is equal to

‖Z‖∗ =
1

2
inf
S�0

tr(Z>S−1Z) + tr(S), (31)

and the infimum is achieved for S = (ZZ>)1/2. Based on
this result, we can reformulate (2) into the following

min
θ:θ>1=1,θ≥0

max
M

sup
S�0

−
k∑
v=1

βv
2
‖X(v) −M (v)‖2F (32)

−γ
2

tr(E2
θM
>S−1M)− tr(S)

For the convenience of algorithm presentation, here we first
switched the order of minM maxθ, and then replaced min
with max and vice versa, while taking a negation of the ob-
jective function. The objective function of (32) is a pointwise
supremum of linear functions over θ, and thus it remains to
be a convex optimization problem. To solve this non-smooth

min-max convex optimization problem, we deploy a subgra-
dient based proximal bundle method. In the following, we
will first present an efficient coordinate ascent solution for
the inner maximization problem over M and S, and then
present the overall proximal bundle optimization procedure.

Coordinate Ascent Method
For given θ, the inner maximization problem of (32) is
jointly concave in both M and S. We conduct inner max-
imization using a coordinate ascent procedure which alter-
nately optimizes M and S until convergence is reached. For
fixed M , it is known the maximization problem over S has
the following closed-form solution

S = (ME2
θM
>)1/2 (33)

For fixed S, the optimization problem over M can be de-
composed into k independently subproblems, one for each
view. For the vth view, the subproblem over M (v) is

min
M(v)

βv
2
‖X(v)−M (v)‖2F +

γθv
2

tr(M (v)>S−1M (v)) (34)

which has a closed-form solution

M (v) = βv(βvIt + γθvS
−1)−1X(v)

=
(
It − (It +

βv
γθv

S)−1
)
X(v) (35)

Since the k subproblems can be solved independently from
each other, parallel computing can be applied to best use the
computer resources.

Proximal Bundle Method
Proximal bundle method is a subgradient based optimiza-
tion method developed to address non-smooth optimization
problems (Kiwiel 1990). We thus deploy a bundle optimiza-
tion procedure to solve the non-smooth min-max optimiza-
tion problem (32).

Let F (θ,M, S) denote the objective function of the op-
timization problem (32), and let J(θ) denote the objective
function for the outer minimization problem over θ, such
that

F (θ,M, S) = −βv
2
‖X(v) −M (v)‖2F (36)

−γ
2

tr(E2
θM
>S−1M)− tr(S)

J(θ) = F (θ,M∗θ , S
∗
θ) = max

M
sup
S�0

F (θ,M, S) (37)

where M∗θ and S∗θ are the optimal inner maximization solu-
tion for the given θ,

{M∗θ , S∗θ} = arg max
M,S�0

F (θ,M, S) (38)

Let I
(v)
d = diag([0d1 , · · · ,1dv , · · · ,0dk ]), for v =

1, · · · , k, such that Id =
∑k
v=1 I

(v)
d . According to Dan-

skin’s theorem, the subgradient of J(θ) at point θ =
[θ1, · · · , θk]> can be computed as s = [s1, · · · , sk]> for

sv =
∂J(θ)

∂θv
= −γ

2
tr(I(v)

d M∗>θ S∗−1
θ M∗θ ), ∀v. (39)
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Algorithm 1 Proximal Bundle Method
Input: ε > 0, ξ > 0, ρ ∈ (0, 1), ζ0 > 0, θ0

Initialize: r = 0, θ̂0 = θ0

Loop:
1. set r = r + 1, ζr = ξζr−1

2. compute J(θr−1), and the subgradient sr at θr−1

3. update model:
JCPr (θ) := max1≤i≤r{J(θi−1) + (θ − θi−1)>si}

4. compute:
θ̄r = arg minθ>1=1,θ≥0

JCPr (θ)+ ζr
2 ‖θ−θ̂r−1‖2

5. compute:
εr = J(θ̂r−1)−

[
JCPr (θ̄r) + ζr

2 ‖θ̄r − θ̂r−1‖2
]

6. if εr < ε then return θ̄r endif
7. conduct line search:
η∗ = arg min0<η≤1 J(θ̂r−1 + η(θ̄r − θ̂r−1))

8. set θr = θ̂r−1 + η∗(θ̄r − θ̂r−1)

9. if J(θ̂r−1)− J(θr) ≥ ρεr then
θ̂r = θr

else
θ̂r = θ̂r−1

end if
End Loop

Given subgradients s1, s2, · · · , sr evaluated at a sequence
of feasible points θ0,θ1, · · · ,θr−1, the key idea of the prox-
imal bundle method is based on the following subgradient
property:

J(θ) ≥ JCPr (θ) := max
1≤i≤r

{J(θi−1) + (θ − θi−1)>si} (40)

Provided the previous prox-center point θ̂r−1, it seeks the
next potential candidate point by minimizing the piecewise
linear lower bound augmented with a stabilization term as
below

θ̄ = arg min
θ>1=1,θ≥0

JCPr (θ) +
ζr
2
‖θ − θ̂r−1‖2 (41)

The approximation gap at θ̄ can be evaluated as

εr = J(θ̂r−1)−
[
JCPr (θ̄) +

ζr
2
‖θ̄r − θ̂r−1‖2

]
(42)

If εr is less than a pre-defined threshold ε, the algorithm ex-
its. Otherwise, a line search is performed along the line be-
tween θ̂r−1 and θ̄t to produce the new point θr. If θr leads
to a sufficient decrease of the objective function, it is ac-
cepted as the new prox-center point θ̂r. Otherwise, the new
prox-center point is set same as the old prox-center point.
The overall algorithm is given in Algorithm 1.

Experiments
In this section, we report our empirical results for multi-view
clustering, by comparing the proposed approach to a number
of baseline methods over real world multi-view data sets.

Data sets: We constructed a number of multi-view clus-
tering tasks from three real world multi-view data sets. The
major information of the seven constructed tasks is summa-
rized in Table 1.

• 3-Sources text data set: This data set is collected
from three online news sources: BBC, Reuters, and the
Guardian. In total there are 948 news articles covering 416
distinct news stories. Among them, 169 were reported in
all three sources. Each story was manually labeled with
one of the six topic labels. We used all 169 news in our
experiment, while each source is taken as one indepen-
dent view of the story.

• Reuters multilingual data set: This text collection con-
tains documents originally written in five different lan-
guages (English, French, German, Spanish and Italian)
and their translations. This multilingual data set covers a
common set of six categories (Amini, Usunier, and Goutte
2009). We used the data set downloaded from the Internet
1 , where 1200 documents over 6 labels in five languages
are given. From this data set, we constructed two three-
view subsets, Reuters1 and Reuters2. Reuters1 is con-
structed using three languages: English, French and Ger-
man. Reuters2 is constructed in the same way, but with
different languages: English, Spanish and Italian.

• WebKB data set: The WebKB data set has been widely
used for multi-view learning. It contains webpages col-
lected from four universities: Cornell, Texas, Washing-
ton, and Wisconsin, where each webpage is described in
two views: the content view and the link view. We used a
version downloaded from the Internet 1 , which contains
webpages of the four universities distributed across five
classes: course, project, student, faculty and staff.

Approaches: In the experiments, we compared the empir-
ical performance of the following methods.

• FeatConcate: Concatenating the features of all views and
then applying the standard k-means clustering.

• ConcatePCA: Concatenating the features of all views, ap-
plying PCA to extract the low dimensional subspace rep-
resentation, and then applying the standard k-means clus-
tering on the low dimensional representation.

• PairwiseSC: The pairwise multi-view spectral clustering
method developed in (Kumar, Rai, and Daumé III 2011).

• CentroidSC: The centroid multi-view spectral clustering
method developed in (Kumar, Rai, and Daumé III 2011),
which extracts a low dimensional spectral representation
matrix across multiple views.

• NonConvex: We used a proximal gradient optimization
procedure to solve the original nonconvex multi-view sub-
space learning problem in (1) directly, which takes alter-
nating gradient descent steps over {B(v)}k and Ψ. Prox-
imal gradient descent is used for minimizing Ψ with a
`2,1-norm regularizer. K-means clustering is applied on
the learned common subspace representation matrix Ψ.

1http://membres-liglab.imag.fr/grimal/data.html
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Table 1: Information of the multi-view tasks.

Info. 3-Sources Reuters1 Reuters2 Cornell Texas Washington Wisconsin
# of Views 3 3 3 2 2 2 2
# of Clusters 6 6 6 5 5 5 5

Table 2: The clustering results (average±std) on real world multi-view data sets in terms of normalized mutual information
(NMI) measure (%).

Method 3-Sources Reuters1 Reuters2 Cornell Texas Washington Wisconsin
FeatConcate 36.0±2.2 11.4±1.1 8.7±0.6 9.4±0.3 14.3±0.5 15.9±0.7 9.0±0.2
ConcatePCA 60.3±0.5 14.7±0.3 15.4±0.3 11.3±0.2 16.9±0.2 19.9±0.2 9.7±0.2
PairwiseSC 60.1±0.5 11.6±0.1 12.1±0.1 11.2±0.2 17.9±0.2 21.2±0.2 9.8±0.1
CentroidSC 60.0±0.6 10.9±0.0 11.4±0.1 10.4±0.2 16.9±0.2 18.5±0.2 10.8±0.2
NonConvex 56.7±0.4 17.6±0.2 19.7±0.2 11.5±0.1 19.8±0.3 22.5±0.2 11.8±0.1
Convex 61.9±0.5 19.1±0.4 18.3±0.5 23.3±0.1 24.5±0.4 25.1±0.3 30.3±0.3

• Convex: This is the proposed approach, which first con-
ducts convex multi-view subspace representation learn-
ing, and then applies k-means clustering on the learned
common representation matrix.

To maintain a fair comparison, we used the number of clus-
ters as the dimension size of the subspace representations
for all the comparison methods except FeatConcate which
works in the original feature space. For PairwiseSC and
CentroidSC, we tried a set of trade-off parameter values
λ = [0.005, 0.01, 0.05, 0.1] as suggested in (Kumar, Rai,
and Daumé III 2011), and present the best results obtained.
For the proposed approach, Convex, and its nonconvex ver-
sion, NonConvex, the βv regularization parameter associated
with each view is important, since it controls the degree of
importance of each view. The relative informativeness of the
multiple views are simple domain knowledge one should
exploit. The first three data sets, 3-sources, Reuters1 and
Reuters2, have three views, while each view is a description
of the topic in different media sources or languages. Thus
their multiple views could be equally important. We simply
set their βv values as 1. For the four WebKB data sets with
two views, the content view is typically much more infor-
mative than the link view. We thus used β = 100 for the
content view and used β = 1 for the link view in the experi-
ments. We run the Convex and NonConvex methods using a
range of γ values, γ = [0.1, 0.2, 0.3, 0.4] ×maxv(βv), and
present the best results obtained. The computational time of
the NonConvex method is much less than the Convex method
as the nonconvex optimization procedure can quickly return
a local optimal solution. In our experiments, NonConvex
takes only a few minutes to run, while Convex takes a few
minutes on the 3-Sources and WebKB data sets, but takes
about up to half or one hour on the two Reuters data sets.

The experimental results are reported in Table 2, where
the normalized mutual information (NMI) is used as the
clustering quality measure. The results are over 50 runs
of k-means with random initializations. We can see that
ConcatePCA clearly outperforms the simple FeatConcate

method by simply taking the most informative subspace rep-
resentations to reduce noise. The two spectral multi-view
methods, with local optimal solutions on representation
matrix learning, though outperform ConcatePCA in some
cases, e.g., on Texas, Washington and Wisconsin, demon-
strate inferior performance on Reuters1 and Reuters2. The
NonConvex method however demonstrates comparable or
significantly superior performance on most data sets ex-
cept the 3-Sources, comparing to the previous four meth-
ods. This suggests our multi-view subspace representation
learning problem (1) is a very reasonable formulation. The
proposed Convex method on the other hand outperforms all
other methods across six out of seven data sets, except on
Reuters2 where NonConvex is slightly better. Moreover, the
advantage of the Convex method is significant in most cases.
This clearly demonstrates the efficacy of the derived convex
subspace representation learning formulation and the pro-
posed optimization technique. The experimental results sug-
gest the proposed convex subspace representation learning
model has great capacity of extracting the intrinsic informa-
tion of the data shared across multiple views, and facilitating
data analysis tasks consequently.

Conclusion
In this paper, we first derived a convex formulation for
common subspace representation learning across multiple
views. We then developed a proximal bundle method with
coordinate ascent subroutines to solve the obtained min-
max convex optimization problem. We evaluated the learned
subspace representations over seven multi-view clustering
tasks, comparing to a number of alternative methods. Our
empirical study suggests the proposed convex approach can
effectively capture the intrinsic information of the given data
and outperform all the other multi-view clustering meth-
ods used in the experiments. The proposed convex subspace
learning formulation can be directly extended to handle su-
pervised and semi-supervised multi-view learning problems,
which we will consider in the future.
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