
An Extended GHKM Algorithm for Inducing λ-SCFG

Peng Li, Yang Liu and Maosong Sun
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

pengli09@gmail.com, {liuyang2011,sms}@tsinghua.edu.cn

Abstract

Semantic parsing, which aims at mapping a natural lan-
guage (NL) sentence into its formal meaning represen-
tation (e.g., logical form), has received increasing at-
tention in recent years. While synchronous context-free
grammar (SCFG) augmented with lambda calculus (λ-
SCFG) provides an effective mechanism for semantic
parsing, how to learn such λ-SCFG rules still remains
a challenge because of the difficulty in determining
the correspondence between NL sentences and logical
forms. To alleviate this structural divergence problem,
we extend the GHKM algorithm, which is a state-of-
the-art algorithm for learning synchronous grammars in
statistical machine translation, to induce λ-SCFG from
pairs of NL sentences and logical forms. By treating
logical forms as trees, we reformulate the theory be-
hind GHKM that gives formal semantics to the align-
ment between NL words and logical form tokens. Ex-
periments on the GEOQUERY dataset show that our
semantic parser achieves an F-measure of 90.2%, the
best result published to date.

Introduction
Semantic parsing is a task of mapping a natural language
(NL) sentence into its formal meaning representation (MR).
For example, given an English sentence

Every boy likes a star

its meaning representation could be a logical form

∀x(boy(x)→ ∃y(human(y) ∧ pop(y) ∧ like(x, y)))

where boy, human, pop and like are predicates, x and y
are variables, → denotes implication, ∧ denotes conjunc-
tion, and ∀ and ∃ are universal and existential quantifiers.

As semantic parsing is important for deep understanding
of natural languages, it has attracted intensive attention over
the past decade (Zelle and Mooney 1996; Tang and Mooney
2001; Ge and Mooney 2005; Zettlemoyer and Collins 2005;
Kate, Wong, and Mooney 2005; Wong and Mooney 2006;
Kate and Mooney 2006; Wong and Mooney 2007; Zettle-
moyer and Collins 2007; Lu et al. 2008; Kwiatkowski et al.
2010; Jones, Johnson, and Goldwater 2011; 2012). While

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

early semantic parsers mainly use inductive logic program-
ming (Zelle and Mooney 1996; Tang and Mooney 2001)
and semantically augmented parse tree (Ge and Mooney
2005), probabilistic grammars such as synchronous context-
free grammar (SCFG) (Wong and Mooney 2006; 2007) and
combinatorial categorial grammar (CCG) (Zettlemoyer and
Collins 2005; Kwiatkowski et al. 2010) or tree transducers
(Jones, Johnson, and Goldwater 2012) have been success-
fully applied to semantic parsing recently.

SCFG is a generalization of context-free grammar (CFG)
that generates pairs of related strings rather than single
strings. Wong and Mooney (2007) firstly introduce SCFG
into semantic parsing to model the translation of an NL sen-
tence into its MR. As logical variables play an important
role in predicate logic (Blackburn and Bos 2005), Wong and
Mooney (2007) augment SCFG with lambda calculus (λ-
SCFG) to handle variables. More recently, Lu and Ng (2011)
have shown that the λ-SCFG based method achieves state-
of-the-art performance in language generation as well, the
goal of which is to generate NL sentences given MRs.
Therefore, λ-SCFG has proven to be a powerful mechanism
for modeling bidirectional transformation between NL sen-
tences and MRs.

However, how to learn λ-SCFG from training data still
remains a challenge for semantic parsing. As logical forms
usually have complex internal structures and variable depen-
dencies across subparts (Lu and Ng 2011), it is much more
difficult to identify the correspondence between an NL sen-
tence and its logical form than between two NL sentences.
To alleviate this problem, Wong and Mooney (2007) rep-
resent a logical form as a linearized parse tree (i.e., a list
of CFG productions that generate the logical form) in top-
down, left-most order. They use a word alignment tool to
find the correspondence between two linear structures. Un-
fortunately, as the order of CFG productions has an impor-
tant effect on the number of rules that can be extracted, log-
ical forms must be carefully transformed to ensure that NL
sentences and MR parse trees are maximally isomorphic.

On the other hand, inducing synchronous grammars from
aligned tree-string pairs is a well-studied problem in the ma-
chine translation community. Galley et al. (2004) present
a well-founded mathematical theory and a linear algorithm
called GHKM for learning syntactically motivated transfor-
mation rules from parallel data with various granularities.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

605

r1 S → 〈X 1 , X 1 〉
r2 X → 〈Every X 1 , λf.∀x(f(x))�X 1 〉
r3 X → 〈X 1 X 2 , λf.λg.λx.f(x)→ g(x)�X 1 �X 2 〉
r4 X → 〈boy, λx.boy(x)〉
r5 X → 〈X 1 , λf.λx.∃y(f(x, y))�X 1 〉
r6 X → 〈X 1 a star, λf.λx.λy.human(y) ∧ pop(y) ∧ f(x, y)�X 1 〉
r7 X → 〈like, λx.λy.like(x, y)〉

〈S 1 , S 1 〉
r1=⇒ 〈X 2 , X 2 〉
r2=⇒ 〈Every X 3 , λf.∀x(f(x))�X 3 〉
r3=⇒ 〈Every X 4 X 5 , λf.λg.∀x(f(x)→ g(x))�X 4 �X 5 〉
r4=⇒ 〈Every boy X 5 , λg.∀x(boy(x)→ g(x))�X 5 〉
r5=⇒ 〈Every boy X 6 , λf.∀x(boy(x)→ ∃y(f(x, y)))�X 6 〉
r6=⇒ 〈Every boy X 7 a star, λf.∀x(boy(x)→ ∃y(human(y) ∧ pop(y) ∧ f(x, y)))�X 7 〉
r7=⇒ 〈Every boy likes a star, ∀x(boy(x)→ ∃y(human(y) ∧ pop(y) ∧ like(x, y)))〉

Table 1: A derivation for a NL sentence Every boy likes a star and its logical form ∀x(boy(x) → ∃y(human(y) ∧ pop(y) ∧
like(x, y))). Each step involves the rewriting of a pair of co-indexed non-terminals by the same λ-SCFG rule.

The theory behind GHKM gives formal semantics to word
alignments and draws connections among word alignments,
derivations and rules. Due to its efficiency and effective-
ness, it has been widely used in most syntax-based machine
translation systems (Galley et al. 2006; Mi and Huang 2008;
Liu, Lü, and Liu 2009; Wu, Matsuzaki, and Tsujii 2010;
Zhang et al. 2011; Liu, Liu, and Lü 2011).

In this paper, we extend the GHKM algorithm to induce
λ-SCFG from pairs of NL sentences and logical forms for
semantic parsing. By treating logical forms as trees, we re-
formulate the theory behind GHKM to give semantics to
the alignment between NL words and logical forms. While
the tree nodes in (Wong and Mooney 2007) are CFG pro-
ductions, we treat atomic logical form tokens as tree nodes
to facilitate adapting GHKM. This hopefully alleviates the
data sparseness problem especially when training set only
contains hundreds of sentences. In addition, λ-SCFG rules
extracted by GHKM are robust to the structural divergence
between NL sentences and logical forms because GHKM
explicitly identifies tree nodes where both sides are isomor-
phic. Furthermore, our algorithm is capable of extracting λ-
SCFG rules with various granularities and therefore gener-
alizes well to unseen text. Experiments on the GEOQUERY
dataset show that our method achieves an F-measure of
90.2%, the best result published to date.

λ-SCFG for Semantic Parsing
The formal semantics we use in this paper is lambda cal-
culus expressions (λ-expression). Following Chiang (2007),
we define a λ-SCFG rule as follows:

X → 〈α, β,∼〉 (1)
where X is a non-terminal, α is an NL string of terminals
and non-terminals, β is a λ-production (Lu and Ng 2011),∼
is a one-to-one alignment between non-terminals occurrence
in α and β.

Consider a λ-SCFG rule without non-terminals:
X → 〈boy, λx.boy(x)〉 (2)

The source right-hand side is an NL word boy. The target
right-hand side is a λ-production λx.boy(x). It represents a
function named boy that takes a variable x as its argument,
and the operator λ is said to bind x in the function.

The application of Jack to the above λ-production yields

λx.boy(x)� Jack = boy(Jack) (3)

Following Lu and Ng (2011), we use the symbol � as the
notation for function application. Such function applica-
tion is called β conversion in lambda calculus. In addition,
lambda calculus defines α conversion to allow bound vari-
able names to be changed to facilitate name resolution:

λx.boy(x) = λy.boy(y) (4)

Now, consider a λ-SCFG rule with one non-terminal:

X → 〈Every X 1 , λf.∀x(f(x))�X 1 〉 (5)

where f denotes a function and the subscript indicates the
correspondence between non-terminals of the NL string and
λ-production. We follow Lu and Ng (2011) to allow the ar-
guments to be non-terminals such as λf.∀x(f(x)) � X 1 ,
indicating that the functor λf.∀x(f(x)) expects another λ-
production to serve as its argument.

Table 1 shows a derivation composed of seven λ-SCFG
rules that produce a NL sentence Every boy likes a star and
its logical form ∀x(boy(x) → ∃y(human(y) ∧ pop(y) ∧
like(x, y))) simultaneously. Each step of a derivation in-
volves the rewriting of a pair of co-indexed non-terminals
by the same λ-SCFG rule. The yield is a pair of NL sen-
tence and logical form.

An Extended GHKM Algorithm
Figure 1 shows a training example for our rule extraction
algorithm. It consists of a NL sentence Every boy likes a
star, a logical form ∀x(boy(x)→ ∃y(human(y)∧pop(y)∧
like(x, y))), and an alignment between NL words and tree
nodes. The goal of our algorithm is to extract all λ-SCFG

606

∀x

→

boy ∃y

x ∧

human pop like

y y x y

Every boy likes a star

node minimal rule
∀x X → 〈EveryX 1 , λf.∀x(f(x)) �X 1 〉
→ X → 〈X 1 X 2 , λf.λg.λx.f(x) → g(x) �X 1 �X 2 〉
boy X → 〈boy, λx.boy(x)〉
∃y X → 〈X 1 , λf.λx.∃y(f(x, y)) �X 1 〉
∧ X → 〈X 1 a star,

λf.λx.λy.human(y) ∧ pop(y) ∧ f(x, y) �X 1 〉
like X → 〈likes, λx.λy.like(x, y)〉

Figure 1: A training example consisting of an NL sentence,
a logical form, and the alignment between them. Minimal
rules extracted from shaded nodes are listed below.

rules that can explain how the NL sentence and the logical
form are synchronously generated, as shown in Table 1.

To do this, we first need to transform a logical form to
a tree structure. This can be done by treating atomic ele-
ments of logical forms (e.g., variables and predicates) as
tree nodes. 1 For example, the logical form λx.boy(x) can
be converted to the following λ-expression tree:

(λx (boy (x))) (6)

Note that our tree representation treats logical form tokens
as tree nodes in order to facilitate adapting GHKM. This is
different from those in (Wong and Mooney 2007; Lu and Ng
2011), the tree nodes of which are CFG productions.

Given an NL sentence and a logical form tree, there are
exponentially many derivations that can explain how they
are synchronously generated. Therefore, alignment is usu-
ally introduced to constrain the search space. While the orig-
inal GHKM algorithm uses word alignment, our algorithm
introduces an alignment between tree nodes and NL words.
We distinguish between content and function nodes. By
content, we mean that the nodes are supposed to be aligned
to some NL words. Content nodes are usually predicate
names such as boy, human, and pop, and constants may
also be considered, depending on the meaning representa-
tion chosen. In contrast, function nodes are usually logical
form tokens that are not supposed to be aligned with any

1We define 11 transformation rules, which are omitted here due
to the space limit.

node σ(v) γ(v) δ(v) frontier
∀x ∅ {1, 2, 3, 4, 5} ∅ 1
→ ∅ {2, 3, 5} ∅ 1
boy {2} {2} {3, 5} 1
∃y ∅ {3, 5} {2} 1
∧ ∅ {3, 5} {2} 1

human {5} {5} {2, 3, 5} 0
pop {5} {5} {2, 3, 5} 0
like {3} {3} {2, 5} 1

Table 2: Node attributes for non-leaf nodes in Figure 1. σ(v)
denotes node corresponding span, γ(v) denotes tree corre-
sponding span, δ(v) denotes complement span, and “fron-
tier” denotes frontier node.

words (e.g., variables, quantifiers, etc.). To obtain the node-
to-word alignment, we extract a list of content nodes from
a logical form tree with a pre-order traversal. For example,
the content node list for the tree in Figure 1 is 2

boy human pop like

Then, word alignment tools such as GIZA++ (Och and Ney
2003) can be used to produce the alignment between the
content node list and its corresponding NL sentence.

Given an aligned tree-string pair as input, our algorithm
generally involves three steps:

1. Identifying frontier nodes: to find tree nodes in the logical
form tree that subsume tree-string pairs consistent with
alignment;

2. Extracting minimal rules: to obtain atomic λ-SCFG rules
that forms a unique derivation of the training example;

3. Rule composition: to obtain composed rules by combin-
ing minimal rules.

Identifying Frontier Nodes
A tree node is said to be frontier if and only if the tree-string
pair it subsumes is consistent with alignment. Alignment
consistency is firstly introduced by Och and Ney (2002) to
extract phrase pairs. As an effective heuristic for identify-
ing translation equivalents, it has become the fundamental
criterion in GHKM. For example, consider the node boy in
Figure 1, it subsumes a subtree (boy (x)) and a substring
boy. As the subtree is exclusively aligned to the substring
and vice versa, they are likely to be translation equivalents.
Therefore, boy is a frontier node. On the contrary, as the sub-
tree subsumed by the node pop is aligned to star but star is
also aligned to human, they are said to be inconsistent with
alignment. Therefore, pop is not a frontier node.

More formally, our algorithm calculates a number of node
attributes to identify frontier nodes. 3

Definition 1. Given a node v, its node corresponding span
σ(v) is an index set of NL words to which it is aligned.

2In our experiments, we treat all predicate names and constants
as content nodes, the same definition is applied to this example.

3Our definitions of corresponding spans and complement spans
are significantly different from the original GHKM because node-
word alignment rather than word-word alignment is used in the
semantic scenario.

607

∀x

→

boy ∃y

pop

y

∃y

∧

λf

λx

∃y

f

x y

⇒

(a) (b) (c) (d)

Figure 2: (a) A frontier tree, (b) a non-frontier tree, (c) a
minimal frontier tree, and (d) λ-expression tree correspond-
ing to the minimal frontier tree. The λ-expression tree can
be easily converted to a λ-expression: λf.λx.∃y(f(x, y)).

For example, as node boy is aligned to the second English
word boy, its node corresponding span is {2}.
Definition 2. Given a node v, its tree corresponding span
γ(v) is an index set of NL words to which the subtree it
subsumes is aligned.

For example, although node → is not aligned to any NL
words, the subtree it subsumes is aligned to boy, likes, and
star. Therefore, its tree corresponding span is {2, 3, 5}.

We define that the tree corresponding span of a root node
is always the index set of all NL words.

Definition 3. Given a node v, its complement span δ(v) is
defined as

δ(v) =
(
∪v′∈a(v) σ(v′)

)
∪(

∪v′ s.t. v′ /∈a(v)∧v′ /∈d(v) γ(v
′)
)

(7)

where a(v) denotes the set of antecedents of v, d(v) denotes
the set of descendants of v.

For example, consider node boy, nodes ∀x and→ are an-
tecedents of boy, and the union of their node correspond-
ing span is ∅, node ∃y and its descendants are neither an-
tecedents nor descendants of boy, and the union of their tree
corresponding span is {3, 5}. So the complement span of
boy is ∅ ∪ {3, 5} = {3, 5}.
Definition 4. A node v is said to be a frontier node if and
only if closure(γ(v)) ∩ δ(v) = ∅, where closure(γ(v)) is
the smallest set of consecutive integers such that γ(v) ⊂
closure(γ(v)).

For example, consider node ∧, the closure of its tree cor-
responding span {3, 5} is {3, 4, 5}, its complement span is
{2}, the intersection of {3, 4, 5} and {2} is an empty set.
Therefore, node ∧ is a frontier node. Similarly, it is easy to
verify that human and pop are not frontier nodes.

In Figure 1, frontier nodes are highlighted by shading,
from which λ-SCFG rules are ready to extract.

Extracting Minimal Rules
Given frontier nodes, the next step is to identify consistent
tree-string pairs, from which λ-SCFG rules derive. Follow-
ing Galley et al. (2006), we distinguish between minimal
and composed rules. While minimal rules are atomic and
cannot be decomposed, composed rules can be decomposed

r3 X → 〈X 1 X 2 , λf.λg.λx.f(x)→ g(x)�X 1 �X 2 〉
r4 X → 〈boy, λx.boy(x)〉
r5 X → 〈X 1 , λf.λx.∃y(f(x, y))�X 1 〉
+ X → 〈boy X 1 , λf.λx.boy(x)→ ∃y(f(x, y))�X 1 〉

Table 3: Rule composition.

into a number of minimal rules. Also, we introduce a num-
ber of notions to help identify minimal λ-SCFG rules.
Definition 5. A frontier tree is a subtree satisfying:

1. Its root is a frontier node;
2. Its leaves are either frontier nodes or the leaves of the in-

put tree.
For example, while Figure 2(a) is a frontier tree, Fig-

ure 2(b) is not because its root is not a frontier node.
Definition 6. A minimal frontier tree is a frontier tree such
that all nodes other than the root and leaves are non-frontier
nodes.

For example, Figure 2(a) is not a minimal frontier tree be-
cause the internal node→ is a frontier node. On the contrary,
Figure 2(c) is a minimal frontier tree because both the root
and leaves are frontier nodes and there are no internal nodes.

Given a minimal frontier tree, it is trivial to identify its
corresponding NL string using alignment information. Con-
sider Figure 2(c), as its leaf node is a non-terminal, its cor-
responding NL string is simply X 1 .

However, unlike syntactic GHKM, a minimal frontier tree
does not directly correspond to a λ-expression because the
associated lambda operators and dominated variables are not
explicitly attached to the tree structure. Therefore, to re-
cover a minimal λ-SCFG rule from a minimal frontier tree,
we need first to transform the minimal frontier tree to a λ-
expression.

Consider Figure 2(c) again, as node ∧ is a frontier leaf,
it should be a non-terminal. As the variables dominated by
node ∧ are x and y, node ∧ should correspond to f(x, y) in
the λ-expression.

More formally, we introduce inside variable set, outside
variable set, and variable set to determine arguments of func-
tions for frontier nodes.
Definition 7. Given a node v, its inside variable set in(v)
is a set of logical variables that appear in the subtree it sub-
sumes.

For example, as x and y appear in the subtree rooted at
node ∧, its inside variable set is {x, y}. The inside variable
sets can be computed in a bottom-up way.
Definition 8. Given a node v, its outside variable set
out(v) is a set of logical variables such that v falls in their
domains.

For example, as node ∧ falls in the domains of x and y,
which are introduced by ∀x and ∃y respectively, its outside
variable set is {x, y}. Similarly, as node boy falls in the do-
mains of x, its outside variable set is {x} 4. The outside vari-
able sets can be computed in a top-down way.

4The inside and outside variable sets of a node are not always
the same, e.g., in(human) = {x} and out(human) = {x, y}.

608

1: procedure EXTRACT(T, S,A)
2: R ← ∅
3: Vf ← FRONTIER(T, S,A) . Frontier nodes
4: for each v ∈ Vf do . Extract minimal rules
5: r ← MINIMAL(T, S,A, v)
6: R← R∪ {r}
7: end for
8: COMPOSE(R) . Get composed rules
9: returnR

10: end procedure

Figure 3: The extended GHKM algorithm for extracting λ-
SCFG rules from a logical form tree T , a natural language
sentence S, and the alignment A between them.

Definition 9. Given a node v, its variable set var(v) is the
intersection of inside variable set and outside variable set:
var(v) = in(v) ∩ out(v).

Finally, λf and λx are added in the beginning of the λ-
expression to ensure all functions and variables are bound.
Therefore, the minimal rule extracted from node ∃y is

X → 〈X 1 , λf.λx.∃y(f(x, y))�X 1 〉 (8)

Figure 1 lists the minimal rules extracted from frontier
nodes. It is easy to verify that minimal rules extracted in
this way form a valid derivation of the training example.

Rule Composition
Although minimal rules are capable of explaining the train-
ing data, they hardly take surrounding context into consid-
eration to resolve parsing ambiguity. Generated by combin-
ing minimal rules, composed rules are able to memorize lo-
cal context. Galley et al. (2006) report that using composed
rules significantly improves rule coverage and finally im-
proves translation quality. It still holds for semantic parsing.

Table 3 gives an example of rule composition. As there
are usually exponentially many composed rules, we follow
Liu et al. (2006) to use tree height h to maintain a reason-
able grammar size. This can be done by composing rules
for frontier nodes using the cube pruning algorithm (Chiang
2007) in a bottom-up way.

In practice, we handle unaligned words in a similar way
with Galley et al. (2006) to further improve rule coverage. 5

For example, the following rule can also be extracted from
the frontier node like in Figure 1:

X → 〈likes a, λx.λy.like(x, y)〉 (9)

Therefore, our algorithm is capable of extracting all gran-
ularities of λ-SCFG rules, which potentially improve the
generalization ability (i.e., the ability to parse correctly on
unseen text) of our semantic parser.

To estimate rule probability p(β|α), we use the relative
frequency estimate of a logical form given an NL sentence.6

5We also attach unaligned words in multiple ways but do not
estimate rule probabilities based on forest for simplicity.

6We find that the reverse probability p(α|β) fails to result in
improvements. Therefore, we exclude it in our experiments.

System P R F
Independent Test Set

Zettlemoyer and Collins (2005) 96.3 79.3 87.0
Zettlemoyer and Collins (2007) 95.5 83.2 88.9
Kwiatkowski et al. (2010) 94.1 85.0 89.3

Cross Validation Results
Kate et al. (2005) 89.0 54.1 67.3
Wong and Mooney (2006) 87.2 74.8 80.5
Kate and Mooney (2006) 93.3 71.7 81.1
Lu et al. (2008) 89.3 81.5 85.2
Ge and Mooney (2005) 95.5 77.2 85.4
Wong and Mooney (2007) 92.0 86.6 89.2
this work 93.0 87.6 90.2

Table 4: Comparison with existing English semantic parsers
on GEOQUERY.

Figure 3 shows the entire extended GHKM algorithm.
While identifying frontier nodes and extracting minimal
rules generally runs in linear time, the complexity of obtain-
ing composed rules can be controlled using the tree height
limit parameter h.

Experiments
Our semantic parser resembles the CKY parser used in sta-
tistical machine translation (Chiang 2007), which is based
on a discriminative model (Och and Ney 2002) with rule
probabilities, rule count, and language models as features.
The model parameters are optimized with minimum error
rate training (Och and Ney 2003). Given an NL sentence S,
our semantic parser finds the target yield of the single best
derivation D that has source yield of S: 7

T̂ = β

(
argmax

D s.t. α(D)=S

P (D)

)
(10)

We evaluated our semantic parser on the GEOQUERY
corpus, a corpus consists of 880 English questions on USA
geography with Prolog logical forms (Wong and Mooney
2006). The following is an example from this corpus:

How big is Alaska ?
answer(A, (size(B,A), const(B, stateid(alaska))))

The metrics for evaluating performance include precision
(percentage of logical forms that are correct), recall (per-
centage of test sentences that are correctly parsed), and F-
measure (harmonic mean of precision and recall). Note that
a logical form is considered correct only if it retrieves the
same answer as the correct logical form.

We compared our method with 9 semantic parsers on the
GEOQUERY dataset. Standard 10-fold cross validation with
the same data splits as (Wong and Mooney 2007) was used.

As shown in Table 4, our approach achieves the best re-
sults with the tree height limit h is set to 7. We find that se-
mantic parsers based on lambda calculus (e.g., Zettlemoyer

7We use an efficient cubic-time CKY-style parsing algorithm
proposed by DeNero et al. (2009). In addition, we follow Wong and
Mooney (2007) to use type checking to prune impossible deriva-
tions as early as possible during parsing.

609

2 3 4 5 6 7
50

60

70

80

90

100

Maximum Tree Height

F
−

m
ea

su
re

minimal + composed

minimal

Figure 4: Effect of tree height limit.

1 2 3 4 5 6 7
0

200

400

600

800

1000

Height

R
u

le
 N

u
m

b
er

composed rule

initial rule

minimal rule

Figure 5: Distribution of rules in terms of tree height.

and Collins (2005), Wong and Mooney (2007), Kwiatkowski
et al. (2010), and this work) generally outperform those us-
ing variable free MR, suggesting that lambda calculus is a
powerful mechanism for semantic parsing.

We investigated the effect of multi-level rules on pars-
ing performance. On one hand, as shown in Figure 4, the
F-measures of using both minimal and composed rules rise
with the increase of tree height limit h, suggesting that big-
ger rules improve accuracy because they memorize local
context. However, the gains shrink when h is greater than
4 due to the sparse data. Furthermore, it is clear to see
that using composed rules brings significant improvements.
Note that minimal rules are not limited by h. On the other
hand, We find that more than 60% of rules used in 10-fold
cross validation are composed rules, as shown in Figure 5 8.
Therefore, multi-level rules did play an important role.

Table 5 shows the performance on the German, Greek
and Thai version of the GEOQUERY corpus (Jones, John-
son, and Goldwater 2012). Following Jones et al. (2012), we
used 600 sentences for training and the remaining 280 for
test. Our method outperforms the baseline systems on the
English and Greek dataset and achieves comparable result
on German and Thai. We find that Thai sentences are sig-
nificantly longer than other languages. In addition, Thai has
quite different word order and distinct characteristics (e.g.,
using duplicated adverbs to express intensity), which makes
it quite difficult to find the alignment between NL words and
logical form tree nodes 9.

8The same set of initial rules as (Wong and Mooney 2006) was
used in our experiments.

9We merge each of the top 16 bigrams measured by frequency
into one symbol in Thai sentences to improve alignment quality.

System en ge el th
Wong and Mooney (2006) 77.7 74.9 78.6 75.0
Lu et al. (2008) 81.0 68.5 74.6 76.7
Kwiatkowski et al. (2010) 82.1 75.0 73.7 66.4
Jones et al. (2012) 79.3 74.6 75.4 78.2
this work 84.2 74.6 79.4 76.7

Table 5: F-measures on the multilingual version of GEO-
QUERY. “en”, “ge”, “el” and “th” stand for English, Ger-
man, Greek and Thai, respectively.

Related Work
Our work follows Wong and Mooney (2007) to couple the
generation of NL sentences and logical forms with λ-SCFG.
The most significant difference lies in the way to represent
a logical form as a tree. While the tree nodes in (Wong and
Mooney 2007) are CFG productions, we treat atomic logical
form tokens as tree nodes to facilitate adapting GHKM. This
hopefully alleviates the data sparseness problem as GEO-
QUERY only contains hundreds of sentences. In addition,
tree-to-string rules extracted by GHKM are robust to the
nonisomorphism between NL sentences and logical forms
because it explicitly identifies frontier nodes where both
sides are isomorphic. Furthermore, our algorithm is able to
extract rules with varying granularities in a principled way.
Another interesting direction is to directly learn λ-SCFG
without explicit tree-string alignment. Lu and Ng (2011)
propose a hybrid tree model from a transformative perspec-
tive and apply tree transversal algorithms to extract λ-SCFG.

Different from the original GHKM algorithm and its vari-
ants used in syntactic machine translation (Galley et al.
2004; 2006; Mi and Huang 2008; Liu, Lü, and Liu 2009;
Wu, Matsuzaki, and Tsujii 2010; Liu, Liu, and Lü 2011), our
extended GHKM relies on node-to-word alignment rather
than alignment between surface strings. More importantly,
we need to reformulate the semantics of alignment to trans-
form frontier tree fragments to λ-expressions.

Conclusion
In this paper, we have presented a semantic version of
GHKM for inducing λ-SCFG. This is done by transforming
logical forms to tree structures and finding correspondence
between logical form trees and natural language sentences.
Our semantic parser achieves promising results on the mul-
tilingual GEOQUERY corpus.

It is necessary to develop alignment models that consider
characteristics of logical forms to link logical forms and nat-
ural language sentences. We also plan to investigate tree
binarization to further improve rule coverage (Zhang et al.
2011). Finally, it is interesting to use EM or Monte Carlo
methods to better estimate λ-SCFG rule probabilities.

Acknowledgments
This research is supported by the 863 Program under the
grant No 2012AA011102 and No. 2011AA01A207 and by
the Singapore National Research Foundation under its In-
ternational Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

610

References
Blackburn, P., and Bos, J. 2005. Representation and infer-
ence for natural language: A first course in computational
semantics.
Chiang, D. 2007. Hierarchical phrase-based translation.
Computational Linguistics 33(2):201–228.
DeNero, J.; Bansal, M.; Pauls, A.; and Klein, D. 2009. Ef-
ficient parsing for transducer grammars. In Proceedings of
NAACL HLT 2009, 227–235.
Galley, M.; Hopkins, M.; Knight, K.; and Marcu, D. 2004.
What’s in a translation rule? In Proceedings of HLT/NAACL-
04, 273–280.
Galley, M.; Graehl, J.; Knight, K.; Marcu, D.; DeNeefe, S.;
Wang, W.; and Thayer, I. 2006. Scalable inference and train-
ing of context-rich syntactic translation models. In Proceed-
ings of COLING·ACL 2006, 961–968.
Ge, R., and Mooney, R. 2005. A statistical semantic parser
that integrates syntax and semantics. In Proceedings of
CoNLL-2005, 9–16.
Jones, B.; Johnson, M.; and Goldwater, S. 2011. Formaliz-
ing semantic parsing with tree transducers. In Proceedings
of ALTA Workshop 2011, 19–28.
Jones, B.; Johnson, M.; and Goldwater, S. 2012. Semantic
parsing with bayesian tree transducers. In Proceedings of
ACL 2012, 488–496.
Kate, R. J., and Mooney, R. J. 2006. Using string-kernels for
learning semantic parsers. In Proceedings of COLING·ACL
2006, 913–920.
Kate, R. J.; Wong, Y. W.; and Mooney, R. J. 2005. Learning
to transform natural to formal languages. In Proceedings of
AAAI-05, 1062–1068.
Kwiatkowski, T.; Zettlemoyer, L.; Goldwater, S.; and Steed-
man, M. 2010. Inducing probabilistic CCG grammars from
logical form with higher-order unification. In Proceedings
of EMNLP 2010, 1223–1233.
Liu, Y.; Liu, Q.; and Lin, S. 2006. Tree-to-string alignment
template for statistical machine translation. In Proceedings
of COLING·ACL 2006, 609–616.
Liu, Y.; Liu, Q.; and Lü, Y. 2011. Adjoining tree-to-string
translation. In Proceedings of ACL HLT 2011, 1278–1287.
Liu, Y.; Lü, Y.; and Liu, Q. 2009. Improving tree-to-tree
translation with packed forests. In Proceedings of ACL-
IJCNLP 2009, 558–566.
Lu, W., and Ng, H. T. 2011. A probabilistic forest-to-string
model for language generation from typed lambda calculus
expressions. In Proceedings of EMNLP 2011, 1611–1622.
Lu, W.; Ng, H. T.; Lee, W. S.; and Zettlemoyer, L. S. 2008.
A generative model for parsing natural language to meaning
representations. In Proceedings of EMNLP 2008, 783–792.
Mi, H., and Huang, L. 2008. Forest-based translation rule
extraction. In Proceedings of EMNLP 2008, 206–214.
Och, F. J., and Ney, H. 2002. Discriminative training and
maximum entropy models for statistical machine translation.
In Proceedings of ACL 2002, 295–302.

Och, F. J., and Ney, H. 2003. A systematic comparison
of various statistical alignment models. Computational Lin-
guistics 29(1):19–51.
Tang, L., and Mooney, R. 2001. Using multiple clause con-
structors in inductive logic programming for semantic pars-
ing. 466–477.
Wong, Y. W., and Mooney, R. J. 2006. Learning for semantic
parsing with statistical machine translation. In Proceedings
of HLT-NAACL 2006, 439–446.
Wong, Y. W., and Mooney, R. J. 2007. Learning syn-
chronous grammars for semantic parsing with lambda cal-
culus. In Proceedings of ACL 2007, 960–967.
Wu, X.; Matsuzaki, T.; and Tsujii, J. 2010. Fine-grained
tree-to-string translation rule extraction. In Proceedings of
ACL 2010, 325–334.
Zelle, J. M., and Mooney, R. J. 1996. Learning to parse
database queries using inductive logic programming. In Pro-
ceedings of AAAI-96, 1050–1055.
Zettlemoyer, L. S., and Collins, M. 2005. Learning to
map sentences to logical form: Structured classification with
probabilistic categorial grammars. In Proceedings of UAI-
05, 658–666.
Zettlemoyer, L., and Collins, M. 2007. Online learning of
relaxed CCG grammars for parsing to logical form. In Pro-
ceedings of EMNLP-CoNLL 2007, 678–687.
Zhang, H.; Fang, L.; Xu, P.; and Wu, X. 2011. Binarized for-
est to string translation. In Proceedings of ACL HLT 2011,
835–845.

611

