
Fast Equilibrium Computation for Infinitely Repeated Games

Garrett Andersen
Department of Computer Science

Duke University
Durham, NC 27708, USA

garrett@cs.duke.edu

Vincent Conitzer
Department of Computer Science

Duke University
Durham, NC 27708, USA

conitzer@cs.duke.edu

Abstract

It is known that an equilibrium of an infinitely repeated
two-player game (with limit average payoffs) can be
computed in polynomial time, as follows: according to
the folk theorem, we compute minimax strategies for
both players to calculate the punishment values, and
subsequently find a mixture over outcomes that ex-
ceeds these punishment values. However, for very large
games, even computing minimax strategies can be pro-
hibitive. In this paper, we propose an algorithmic frame-
work for computing equilibria of repeated games that
does not require linear programming and that does not
necessarily need to inspect all payoffs of the game.
This algorithm necessarily sometimes fails to compute
an equilibrium, but we mathematically demonstrate that
most of the time it succeeds quickly on uniformly ran-
dom games, and experimentally demonstrate this for
other classes of games. This also holds for games with
more than two players, for which no efficient general
algorithms are known.

Introduction
The computation of game-theoretic equilibria is a topic
that has long been of interest to the AI community, with
applications such as computer poker as well as in secu-
rity domains. Computing an equilibrium of a two-player
zero-sum game (which must consist of maximin/minimax
strategies for both players) is equivalent to linear program-
ming (Dantzig 1951; Adler forthcoming) and can hence
be done in polynomial time. On the other hand, comput-
ing a Nash equilibrium of a two-player general-sum game
is PPAD-complete (Daskalakis, Goldberg, and Papadim-
itriou 2009; Chen, Deng, and Teng 2009) (and this is FIXP-
complete for games with three or more players (Etessami
and Yannakakis 2010)).

In reality, it is rare to have a truly single-shot game with
players that have never interacted previously and never will
again. On perhaps the other extreme of the modeling spec-
trum, in an infinitely repeated game, the same game is
played infinitely many times. Future payoffs may be dis-
counted, or agents may care about their limit average payoff
(defined later in the paper); we focus on the latter here. In

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this context, the famous folk theorem characterizes the vec-
tors of limit average payoffs that can be obtained in equi-
libria of two-player games as follows: (1) enforceability: ev-
ery player must obtain at least her maximin value, and (2)
feasibility: the vector of payoffs must be a convex combina-
tion of outcomes in the game. It has been observed that this
characterization also allows one to compute such an equilib-
rium in polynomial time (Littman and Stone 2005). This al-
gorithm requires the computation of minimax strategies for
both players.

On sufficiently large games, however, even the com-
putation of a minimax strategy can be challenging or
even prohibitive. For example, it is known to be challeng-
ing to compute minimax strategies in certain hider-seeker
games (Halvorson, Conitzer, and Parr 2009) or security
games on graphs (Jain et al. 2011). Perhaps more interest-
ingly, if one thinks of the exceptionally complex game of
real life, it is unimaginable that we could even specify all
the payoffs of this game, let alone compute minimax strate-
gies. But we somehow manage to get on in real life. One
might argue that this is due to a perhaps unappreciated as-
pect of the folk theorem: while we can maximially punish a
deviating player by playing a minimax strategy, such draco-
nian punishment is generally not necessary. All that is really
needed is a punishment strategy that is sufficiently harsh to
make the player regret having deviated.1

In this paper, we take advantage of this insight to save our-
selves from expensive minimax computations. Rather, we
attempt to find punishment strategies that have a reason-
ably high deterrent effect, as well as to find feasible pro-
files that are reasonably desirable. Once the utilities corre-
sponding to the latter (weakly) exceed those corresponding
to the former, we have an equilibrium. Specifically, to pun-
ish a specific player, we randomly select a small set of strate-
gies for each other player, and have each of them randomize
uniformly over these. From this, we can compute the best-
response value for the punished player to this punishment
profile. Once we have these values for each player, we scan
through outcomes of the game until we find one that has all
its payoffs greater than or equal to these punishment values

1Indeed, in practice, we like for the punishment to fit the crime,
rather than (to be a bit dramatic) to impose the death penalty on
jaywalkers.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

53

(so that no player would want to deviate from this outcome
and get punished instead). We note that this algorithm does
not necessarily need to inspect every payoff of the game,
which is particularly valuable if there is significant deliber-
ation cost to determining each individual payoff.

This algorithm will not always succeed in finding an equi-
librium. For example, if we have an infinitely repeated two-
player zero-sum game, each player must obtain exactly the
value of the game on the path of play, or otherwise one of
them would deviate to a maximin strategy. But, in a ran-
dom two-player zero-sum game, it is unlikely that both (a)
there is a single outcome of the game that gives each player
exactly the value, and (b) there are minimax strategies that
uniformly randomize over a subset of the pure strategies. On
other families of games, however, our algorithm does quite
well, leading to the perhaps surprising conclusion that in this
case, zero-sum games are the hardest ones!

Another benefit of our approach is that it also (often)
works on games with three or more players. The algorithm
based on linear programming does not work for this setting:
when two agents are attempting to jointly punish a third
agent as much as possible, they actually face an NP-hard
problem (Borgs et al. 2010) (see also (Hansen et al. 2008)).
Indeed, it has been shown that computing a Nash equilib-
rium of a three-player infinitely-repeated game is PPAD-
hard (Borgs et al. 2010). This is assuming that the punishing
players must each pick a mixed strategy, i.e., they cannot
correlate their punishing actions; if they can, then the prob-
lem can indeed be solved with linear programming (Konto-
giannis and Spirakis 2008). However, when our approach is
successful, the punishing players will play mixed strategies.

Background
An m-player normal-form game is defined by a (finite) set
of pure strategies Si for every player i ∈ {1, . . . ,m}, and,
for each player i, a payoff function ui : S → R, where
S = S1× . . .×Sm. For simplicity, we focus on n× . . .×n
games, i.e., |Si| = n for all i. Consider now a sequence
(s0, s1, . . .) ∈ S∞ of play in the infinitely repeated game.
We assume that player i attempts to maximize i’s limit aver-
age payoff, that is,

lim inf
T→∞

E[(1/T)
T−1∑
t=0

ui(s
t)]

(It is standard to put in the inf to ensure the limit
is well defined.) Let σi denote a mixed strategy for i,
i.e., a probability distribution over Si, and let σ−i =
(σ1, . . . , σi−1, σi+1, . . . , σm) denote a mixed strategy pro-
file for the players other than i. Player i’s minimax
value is vi = minσ−i maxi ui(σi, σ−i). A payoff profile
(a1, . . . , am) is said to be enforceable if ai ≥ vi for all i; it is
said to be feasible if there exists a distribution p : S → [0, 1]
over S such that for all i,

∑
s∈S p(s)ui(s) = ai.

Theorem 1 (Folk Theorem) If a payoff profile
(a1, . . . , am) is enforceable and feasible, then it is
attained in a Nash equilibrium of the game.

The intuition is simple: by the feasibility condition, we
can create an infinite sequence of strategy profiles that will
give limit average payoffs (a1, . . . , am). Every player j’s
strategy is to follow that sequence, unless some player i has
deviated, in which case j will play according to the strat-
egy profile σ−i that guarantees that i gets at most vi forever.
Because the latter situation results (at best) in limit average
payoff vi ≤ ai for player i, i has no incentive to deviate.

For the case of a two-player game, it has been previously
shown that the folk theorem can be used to compute such an
equilibrium in polynomial time (Littman and Stone 2005).
The most computationally demanding part of this algorithm
consists of computing each player’s minimax strategy (to de-
termine the optimal way to punish the other player), which
corresponds to a linear programming problem. With three
or more players, this approach fails because computing the
joint minimax strategy σ−i is NP-hard (Borgs et al. 2010).

Algorithm
In this section, we present the basic version of our algorithm.
In the next section, we analyze this version for uniformly
random games. We then consider a variant of this algorithm
in the experimental section after that.

As mentioned above, the key idea of our algorithm is to
quickly find punishment strategies that have a reasonable
(though not necessarily optimal) deterrent effect. We do so
by randomly picking k pure strategies for each player and
considering the strategy that mixes uniformly over these k
strategies. Subsequently, we can scan through the outcomes
to find one that has all players’ payoffs greater than or equal
to the punishment values.

Algorithm 1
for each i, j ∈ {1, . . . ,m} with i 6= j
Pk ← RandomSample(Si, k)
σji ← Uniform(Pk)

for each j ∈ {1, . . . ,m}
wj ← maxsj∈Sj uj(sj , σ

j
−j)

Saccessed ← {s ∈ S : |{i ∈ {1, . . . ,m} : si /∈ Pi}| ≤ 1}
for each s ∈ S starting with s ∈ S \ Saccessed
if for all i ∈ {1, . . . ,m}, ui(s) ≥ wi
then return (s;σ1

−1, . . . , σ
m
−m)

return failure

Here, RandomSample(Si, k) returns a random subset of
Si of size k; Uniform(Pk) returns the uniform strategy
over Pk; σji is the mixed strategy that i uses to punish j;
σj−j = (σj1, . . . , σ

j
j−1, σ

j
j+1, . . . , σ

j
m) is the profile of strate-

gies punishing j; wj is the punishment value for j, i.e., the
highest utility j can obtain when the others are punishing
j; Saccessed is the set of pure strategy profiles whose payoffs
the algorithm accessed while determining the punishment
values (these entries will not be visited in the “exploration”
phase because they would be correlated with the wj , which
complicates analysis); and (s;σ1

−1, . . . , σ
m
−m) denotes the

strategy profile where everyone plays according to s, unless
player j has deviated, in which case player i plays σji . (If

54

multiple players have deviated, the players can play arbitrar-
ily.)

Proposition 1 If Algorithm 1 does not return failure, then it
returns a Nash equilibrium of the infinitely repeated game
with limit-average utilities.
Proof. If player i does not deviate, i will obtain a limit-
average utility of ui(s). If player i does deviate at some
point, this will result in all other players playing σi−i, and
player i will be able to obtain a limit-average utility of
at most wi. Because wi ≤ ui(s), there is no incentive to
deviate. �

This algorithm only tries one random selection of punish-
ment strategies, and if it fails, it gives up. A natural variant
is to redraw the punishment strategies in case of failure. We
discuss such a variant in the experimental section, but in the
next, theoretical section, we do not consider such redrawing.

Theoretical results for
uniformly random games

In this section, we theoretically analyze how the algorithm
performs on games where all the payoffs are drawn indepen-
dently from the uniform distribution U [0, 1]. We first give
some intuition about why one might expect the algorithm to
perform well here, and then proceed with a formal analysis.

Intuition
In a two-player game, if the row player’s mixed strategy is
to play uniformly at random over a given k rows (say, the
first k rows), then consider the expected utility η1 of the col-
umn player for playing the first column of the game. η1 will
be different depending on the game; because the game is
drawn at random, η1 is itself a random variable. Its expecta-
tion is 1/2. As k increases, η1’s probability distribution will
quickly become concentrated around 1/2, by the law of large
numbers. In fact, if we let ηj denote the column player’s ex-
pected utility for playing the jth column, even maxj ηj be-
comes unlikely to be far away from 1/2 as k increases. But
maxj ηj is the column player’s best-response utility against
the row player’s strategy. Thus, if k is large enough, then
with high probability, the row player playing uniformly ran-
domly over the first k rows (or a randomly selected set of
k rows) results in a punishment value for the column player
that is close to 1/2. The same will be true when we switch
the roles of the row and column players.

Now, for any entry of the game, there is a probability of
1/4 that both players’ utilities in this entry exceed 1/2, and
a somewhat smaller probability that both players’ utilities
in this entry exceed their punishment values. To be precise,
we should worry about the correlation between the entries’
utilities and the punishment values—but if k is significantly
smaller than the number of rows/columns, then plenty of the
entries have not even been considered in the punishment
value calculation and are therefore independent of them.
Thus, if we scan through these entries one at a time, we
would expect to relatively quickly find one that exceeds the
punishment value for both players, and we will have found
a Nash equilibrium of the infinitely repeated game.

Formal analysis
Besides being informal, the above does not give much in-
sight into how large k needs to be, and how all this varies
with the size of the game. We now provide a more formal
analysis. To do so, we first prove two lemmas. The first
bounds the probability that some of the punishment values
are high (i.e., not all of the punishment strategies are effec-
tive). The second bounds the probability that we fail to find
an outcome all of whose payoffs are greater than or equal to
the punishment values.

For the first bound, we first review the special case of Ho-
effding’s concentration bound that we use.

Theorem 2 (Hoeffding’s inequality) Let X1, ..., Xc be in-
dependent random variables that are bounded between 0
and 1, and let X = (

∑c
i=1Xi)/c be their average. Then

the following inequality holds:

Pr(X − E[X] ≥ t) ≤ e−2ct
2

We are now ready to present our bound on the probability
that at least one of the punishment strategies does not have a
significant deterrent effect.

Lemma 1 In n× . . .× n︸ ︷︷ ︸
m

games where every payoff is

drawn independently fromU [0, 1], if every punishment strat-
egy σji is the uniform distribution over k pure strategies, then
the probability that all players have punishment values of at
most w is at least

1−mne−2k
m−1(w−1/2)2

Proof. Suppose player j is being punished, so that the rest of
the players will each play uniformly randomly over k strate-
gies. Then, for each pure strategy sj that j may play, there
are km−1 equally likely outcomes of the game. The expected
utility uj(sj , σ

j
−j) that j experiences as a result is the av-

erage of km−1 independent random variables drawn from
U [0, 1]. The Hoeffding bound implies:

Pr(uj(sj , σ
j
−j)− 1/2 ≥ t) ≤ e−2k

m−1t2

Player j has n actions to choose from in response to the pun-
ishment, so by the union bound, the probability that player j
has a punishment value larger than 1

2 + t is at most:

Pr(max
sj∈Sj

{uj(sj , σj−j)} − 1/2 ≥ t) ≤ ne−2k
m−1t2

There are m players, so by the union bound again, the prob-
ability that some player has a punishment value larger than
1
2 + t is at most:

Pr(max
j∈{1,...,m},sj∈Sj

{uj(sj , σj−j)} − 1/2 ≥ t) ≤

mne−2k
m−1t2

The lemma follows from considering the complementary
event and letting t = w − 1/2. �

55

Next, we give our bound on the probability that we fail
to find an outcome of the game that (weakly) exceeds the
punishment values. This bound is very simple, as long as we
restrict ourselves to only considering outcomes that have not
been used to compute the punishment values and are there-
fore uncorrelated with the punishment values. (In general,
there will be plenty of these, because at most mnkm−1 out-
comes are used to compute the punishment values, which is
much smaller than the total number of outcomes nm as long
as k is not too large.)

Lemma 2 In n× . . .× n︸ ︷︷ ︸
m

games where every payoff is

drawn independently from U [0, 1], if the punishment value
for every player is at most w, and we consider x outcomes
of the game that are uncorrelated with the punishment val-
ues, then there is a probability of at most (1 − (1 − w)m)x

that we fail to find an outcome such that all of its payoffs
exceed the punishment values.
Proof. Any outcome of the game that is uncorrelated
with the punishment values has a probability of at least
(1−w)m of exceeding all the punishment values. Thus, the
probability that this is not true for all x outcomes is at most
(1− (1− w)m)x. �

Theorem 3 For ε > 0, if there exist positive integers k and
x with x ≤ nm −mnkm−1 such that√

log(mnε)

2km−1
+

m

√
1− x
√
ε ≤ 1/2

then Algorithm 1 using value k will, with probability at
least 1 − 2ε, return an equilibrium after accessing at most
mnkm−1 + xm payoffs of the game.

Proof. Set w = 1/2 +

√
log(mnε)

2km−1 , so that

1−mne−2km−1(w−1/2)2 = 1− ε. Then, by Lemma 1, if we
use Algorithm 1 with value k then there is a probability of at
most ε that there is a player with a punishment value greater
than w. Additionally, by the inequality in the theorem,

w = 1/2 +

√
log(mnε)

2km−1 ≤ 1 − m
√
1− x
√
ε. Let us say

w′ = 1 − m
√
1− x
√
ε, so that (1 − (1 − w′)m)x = ε. We

have w′ ≥ w, so that if w is greater than or equal to all the
punishment values, then so is w′. And, by Lemma 2, if all
the punishment values are at most w′, there is a probability
of at most ε that after considering x outcomes that are
uncorrelated with the punishment values (and there exists
x such outcomes because x ≤ nm − mnkm−1) we fail
to find an outcome such that all of its payoffs exceed the
punishment values. Thus, the probability of the algorithm
failing is at most ε+ (1− ε)ε ≤ 2ε. �

Setting the parameters optimally
Theorem 3 gives us sufficient conditions on k and x for
Algorithm 1 to have a 1 − 2ε probability of success after
accessing mnkm−1 + xm payoffs of the game. Taking the
number of payoffs accessed as a proxy for runtime, this

Figure 1: Fraction of the total number of payoffs that must be
accessed by the algorithm to get a 99% chance of success,
as a function of the total number of payoffs (mnm) in the
game, according to Theorem 3 for the optimal values of k
and x.

leads to the following natural optimization problem: for
given m, n, and desired error probability 2ε, choose k and x
to minimize mnkm−1 + xm under the constraint of having
at most 2ε probability of failing. Theorem 3 allows us to
formulate this as the following simple optimization problem.

minimize mnkm−1 + xm
subject to √

log(mnε)

2km−1
+

m

√
1− x
√
ε ≤ 1/2

Figure 1 shows the number of payoffs in the game that
Algorithm 1 needs to access to succeed with probability
2ε = .01, for the optimal values of k and x calculated
according to the above optimization problem. The x-axis
shows the total number of payoffs in the game. As can be
seen, the fraction of the payoffs that needs to be accessed is
sublinear.2

Experiments
The theoretical results in the previous section only concern
games in which all the payoffs are drawn i.i.d. from U [0, 1].
How does our approach fare on other classes of games? In
this section, we study this question experimentally, using the
GAMUT family of game generators (Nudelman et al. 2004).

The algorithm we use here is different from Algorithm 1
in a few ways. Most notably, instead of drawing the punish-
ment strategies only once, we resample them periodically,
after scanning through a number of outcomes and failing to

2The graph is cut off at the left end before going up to 100%
because we choose to ignore a certain portion of the game in or-
der to simplify analysis. As mentioned previously, any outcome of
the game used in the computation of the players’ punishment val-
ues will not be accessed again in the “exploration” phase in order
to not have to deal with correlation. Notice, however, that when
an outcome of the game is accessed in the punishment phase, the
punishing players’ utilities are not relevant. Thus, these utilities are
never accessed, which is why we are never able to use 100% of the
utilities in the game.

56

Figure 2: Average runtimes in seconds of the LP-based algorithm and our algorithm for various values of k, for various GAMUT
classes with 2-player games, as a function of n. Each point is an average of 1000 samples.

Figure 3: Average runtimes in seconds of the LP-based algorithm and our algorithm for various values of k, for various GAMUT
classes with 3-player games, as a function of n. Each point is an average of 1000 samples.

57

find one that meets or exceeds all the punishment values.
Specifically, we do the resampling so that the number of pay-
offs that we consider in the scanning phase is is half of the
number of payoffs that we consider when calculating pun-
ishment values (which is mnkm−1 payoffs per punishment
phase). We keep the best punishment value found for each
player so far. This significantly improves the performance
of the algorithm, because some game families require quite
specific punishment strategies that one would be unlikely to
find sampling only once. In each scanning phase, we ran-
domly choose the next outcome to scan, and unlike in Algo-
rithm 1, we do not keep track of which outcomes have been
accessed before.

In order to compare to the LP-based algorithm, we first
need to address the previously mentioned issue that our al-
gorithm is not complete: for example, in 2-player zero-sum
games, generally there will not be any equilibrium that can
be discovered by our algorithm. To address this, we can
imagine running the LP-based algorithm in parallel to ours.
If one of these two algorithms finishes first after t seconds,
then 2t total seconds of work will have been done (possibly
across multiple machines). Because the LP-based algorithm
is complete, so is the algorithm that runs both in parallel.
In the experiments we run below, this is how we count the
runtime of our algorithm: imagining the LP-based algorithm
running in parallel, and charging for its runtime as well (un-
til a solution has been found). This directly implies that our
algorithm can never take more than twice the runtime of the
LP-based approach: the worst case is when the LP-based ap-
proach is always faster, in which case our approach has twice
the cost.

Figure 2 shows the results on 2-player games for various
values of k, compared to the pure LP-based approach. Our
algorithm performs better on RandomGame (as expected
per the theoretical results), DispersionGame, Random-
GraphicalGame, MinimumEffortGame, PolymatrixGame,
CovariantGame, TravelersDilemma, and WarOfAttrition.
It performs worse on BertrandOligopoly, MajorityVoting,
UniformLEG, BidirectionalLEG, GrabTheDollar, Random-
LEG, CournotDuopoly, GuessTwoThirdsAve, RandomZe-
roSum, and LocationGame. (Some of these game families
are (close to) zero-sum, so it is not surprising that our algo-
rithm fails.)

Figure 3 shows the results on 3-player games for various
values of k, compared to the pure LP-based approach. The
LP-based approach, in this case, allows for punishing play-
ers to correlate their strategies, because otherwise the prob-
lem is known to be hard. There are fewer game classes here
because some of the GAMUT game classes do not extend to
three players. The results are similar to the 2-player case.

When considering games with more than 2 players, one
advantage of our algorithm is that it produces equilibria that
do not require punishing players to be able to correlate (un-
less the LP-based approach finishes faster and we use its so-
lution). Of course, some of the time, the LP-based approach
also happens to return an equilibrium that does not require
correlated punishment. Figure 4 shows how often the algo-
rithms return an equilibrium that does not require correlated
punishment. Regardless of k or the size of the game, our

Figure 4: The fraction of cases in which the LP-based al-
gorithm and our algorithm return an equilibrium with in-
dependent punishment strategies, taken on average across
GAMUT classes with 3-player games, as a function of n.
Each point is based on 1000 samples from each game class.

algorithm (with the LP-based algorithm in parallel) returns
such a strategy more than 80% of the time, whereas the LP-
based approach does so about 40% of the time. Whether
each algorithm returns such a strategy depends primarily on
the game class.

Conclusion
Narrowly viewed, the contribution of this paper is a sim-
ple algorithm for finding Nash equilibria of infinitely re-
peated games that is often much faster than the standard al-
gorithm based on linear programming. However, we believe
that there is also a broader interpretation that is perhaps even
more significant to AI. This broader interpretation is that,
to find equilibria for the kinds of complex, messy, general-
sum repeated games that we encounter in the real world,
it is generally not necessary to have a complete and per-
fect model of the game and to compute punishment strate-
gies that are exactly optimal. All that is needed is to find
punishment strategies that have a sufficient deterrent effect,
and this does not always require difficult optimization prob-
lems to be solved (we simply used random samples). This
view of equilibrium computation seems to align well with
the notion of “game theory pragmatics” (Shoham 2008a;
2008b).

Acknowledgements
We thank ARO and NSF for support under grants W911NF-
12-1-0550, W911NF-11-1-0332, IIS-0953756, and CCF-
1101659. We would also like to thank our anonymous re-
viewers for their helpful feedback.

References
Adler, I. (forthcoming). The equivalence of linear programs
and zero-sum games. International Journal of Game The-
ory.
Borgs, C.; Chayes, J.; Immorlica, N.; Kalai, A. T.; Mirrokni,
V.; and Papadimitriou, C. 2010. The myth of the Folk The-
orem. Games and Economic Behavior 70(1):34–43.
Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the com-
plexity of computing two-player Nash equilibria. Journal of
the ACM 56(3).

58

Dantzig, G. 1951. A proof of the equivalence of the pro-
gramming problem and the game problem. In Koopmans,
T., ed., Activity Analysis of Production and Allocation. John
Wiley & Sons. 330–335.
Daskalakis, C.; Goldberg, P.; and Papadimitriou, C. H. 2009.
The complexity of computing a Nash equilibrium. SIAM
Journal on Computing 39(1):195–259.
Etessami, K., and Yannakakis, M. 2010. On the complexity
of Nash equilibria and other fixed points. SIAM Journal on
Computing 39(6):2531–2597.
Halvorson, E.; Conitzer, V.; and Parr, R. 2009. Multi-
step multi-sensor hider-seeker games. In Proceedings of the
Twenty-First International Joint Conference on Artificial In-
telligence (IJCAI), 159–166.
Hansen, K. A.; Hansen, T. D.; Miltersen, P. B.; and
Sørensen, T. B. 2008. Approximability and parameter-
ized complexity of minmax values. In Proceedings of
the Fourth Workshop on Internet and Network Economics
(WINE), 684–695.
Jain, M.; Korzhyk, D.; Vanek, O.; Conitzer, V.; Pechoucek,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In Proceedings of the
Tenth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 327–334.
Kontogiannis, S. C., and Spirakis, P. G. 2008. Equilib-
rium points in fear of correlated threats. In Proceedings of
the Fourth Workshop on Internet and Network Economics
(WINE), 210–221.
Littman, M. L., and Stone, P. 2005. A polynomial-time Nash
equilibrium algorithm for repeated games. Decision Support
Systems 39:55–66.
Nudelman, E.; Wortman, J.; Leyton-Brown, K.; and
Shoham, Y. 2004. Run the GAMUT: A comprehensive ap-
proach to evaluating game-theoretic algorithms. In Proceed-
ings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 880–887.
Shoham, Y. 2008a. Computer science and game theory.
Communications of the ACM 51(8):74–79.
Shoham, Y. 2008b. Game theory pragmatics: A challenge
for AI. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI), 1606–1608.

59

