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Abstract
This paper studies distributed cooperative multi-agent
exploration methods in settings where the exploration
is costly and the overall performance measure is deter-
mined by the minimum performance achieved by any
of the individual agents. Such an exploration setting is
applicable to various multi-agent systems, e.g., in Dy-
namic Spectrum Access exploration. The goal in such
problems is to optimize the process as a whole, consid-
ering the tradeoffs between the quality of the solution
obtained and the cost associated with the exploration
and coordination between the agents. Through the anal-
ysis of the two extreme cases where coordination is
completely free and when entirely disabled, we man-
age to extract the solution for the general case where
coordination is taken to be costly, modeled as a fee that
needs to be paid for each additional coordinated agent.
The strategy structure for the general case is shown to
be threshold-based, and the thresholds which are ana-
lytically derived in this paper can be calculated offline,
resulting in a very low online computational load.

1 Introduction
In many settings, the benefits from the different alternatives
available to an agent are uncertain. For example, in eCom-
merce, a shopbot does not know a priori the pricing of a re-
quested product among the different merchants’ web-sites.
Similarly, in the Mars exploration rover mission, the rover
does not know a priori the terrain conditions in the dif-
ferent locations it can potentially visit. In both examples,
the agents can explore the alternatives (denoted “opportuni-
ties” onwards) available to them, revealing the actual benefit
(“value”) with which they are associated, however incurring
a cost (e.g., consuming some of their resources) as such ex-
ploration is inherently costly. The goal of the agent is not
necessarily to find the opportunity associated with the max-
imum value, but rather to maximize the overall benefit, de-
fined as the value of the opportunity eventually picked minus
the costs accumulated along the exploration process.

This exploration process becomes more complex when-
ever conducted cooperatively by several agents. For exam-
ple: when the agents are robots that need to evaluate sev-
eral potential locations for mining a certain mineral on the
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face of Mars (Hazon, Aumann, and Kraus 2009); a group of
buyers that need to evaluate several potential sellers for buy-
ing different products (Sarne, Manisterski, and Kraus 2010);
and secondary users in Dynamic Spectrum Access applica-
tions that need to evaluate different connections to a cen-
tral server in order to establish a common communication
link (Akyildiz et al. 2006). The cooperative exploration is
more complex in the sense that the agents’ exploration is
now affected also by findings of other agents in the group,
calling for inter-agent coordination. Alas, coordination is
inherently costly. Therefore the agents’ cooperative explo-
ration strategy also needs to take into consideration the over-
head associated with the coordination between them along
the process.

In this paper, we formally introduce a cooperative multi-
lateral exploration model with costly coordination. Specifi-
cally, we focus on a type of problems where the benefit of
each agent is the minimum among the best results obtained
in any of the individual exploration efforts. For example, in
Dynamic Spectrum Access applications the quality of ser-
vice experienced by all of the agents depends on the lowest-
quality channel selected for the communication by any of the
agents. A similar setting arises in coordination-management
applications (e.g., DARPA’s project) where the quality of
performance of a task is commonly defined by a quality ac-
cumulation minimum function over the sub-tasks (Smith et
al. 2007; Atlas and Decker 2010). The overall system’s per-
formance, which the agents attempt to maximize, is thus the
sum of the resulting individual benefits minus the costs (of
exploration and coordination) accumulated by the different
agents along the process. Therefore, the agents may choose
to have only some of them coordinate their exploration ef-
forts, while others explore individually with no coordination
with the other group members. To the best of our knowledge,
this is the first attempt to analyze a model of cooperative ex-
ploration constrained by individual findings with communi-
cation costs, where the agents can decide on the extent of
coordination they will employ throughout their exploration.

2 Related Work
In many multi-agent environments, autonomous agents may
benefit from cooperating and coordinating their actions
(Rosenfeld et al. 2008). Cooperation is mainly useful when
an agent is incapable of completing a task by itself or when

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

847



operating as a group can improve the overall performance
(Lermann and Shehory 2000). Consequently, group-based
cooperative behavior has been suggested in various domains
(Talukdar et al. 1998; Dias 2004; Tsvetovat et al. 2000).
The recognition of the advantages encapsulated in team-
work and cooperative behaviors is the main driving force of
many coalition formation models in the area of cooperative
game theory and multi-agent systems (MAS) (Li et al. 2003;
Shehory and Kraus 1998). Overall, the majority of coopera-
tion and coalition formation MAS-related research tends to
focus on the way coalitions are formed, and consequently
concerns issues such as the optimal division of agents into
disjoint exhaustive coalitions (Sandholm et al. 1999), divi-
sion of coalition payoffs (Yamamoto and Sycara 2001) and
enforcement methods for interaction protocols (Michiardi
and Molva 2005).

The problem of an agent engaged in exploration in a
costly environment, seeking to maximize its long-term util-
ity, is widely addressed in classical search theory (e.g.,
(McMillan and Rothschild 1994; Smith 2011) and refer-
ences therein). Over the years, several attempts have been
made to adopt search theory concepts for agent-based elec-
tronic trading environments associated with exploration
costs (Sarne, Manisterski, and Kraus 2010; Kephart and
Greenwald 2002). Despite the richness of search theory and
its implications, most models introduced to date have fo-
cused on the problem of a single agent that attempts to max-
imize its own expected benefit. Few studies have attempted
to extend the exploration problem beyond a single goal, e.g.,
attempting to purchase several commodities while facing
imperfect information concerning prices (Hazon, Aumann,
and Kraus 2009; Burdett and Malueg 1981). Some even
considered multi-agent cooperative exploration for multi-
ple goals (Sarne, Manisterski, and Kraus 2010). However,
none of these works applies any constraints on the values
obtained along the exploration process. The only constraint
prior work has considered on the values obtained by an agent
is the availability of recall (i.e., the ability to exploit for-
merly explored opportunities) (Carlson and McAfee 1984;
McMillan and Rothschild 1994). Furthermore, none of these
works considered costly coordination and its different as-
pects. Multi-agent exploration constrained by the findings
of the other agents can be found in our prior work (Rochlin,
Sarne, and Zussman 2011; Rochlin, Sarne, and Laifenfeld
2012) however the models presented there constrain the ex-
ploration scheme, either in the sense that the agents are ar-
bitrarily ordered and each agent can explore only after the
other agents ordered before it have fully completed their ex-
ploration process (hence the coordination question becomes
irrelevant) or by binding all agents to the same opportu-
nity at any given exploration step (hence full coordination is
mandatory). These constraints preclude the use of a hybrid
exploration schemes of the type presented in our paper and
imply different exploration strategies, substantially compli-
cating the analysis.

3 The Model
We consider a setting where a group of k cooperating agents
attempt to achieve a shared goal. In order for the goal to be

achieved each agent needs to engage in a costly exploration.
The individual exploration processes involve the evaluation
of different opportunities which values are a priori uncertain.
This uncertainty is modeled through a probability distribu-
tion function f(x), i.e., the value of each opportunity in any
of the individual exploration processes is drawn from f(x).
The exploring agent can eliminate the uncertainty associ-
ated with the value of any given opportunity at a cost c (ex-
pressed in terms of opportunity values), as the agent needs
to consume some of its resources as part of this process. The
model assumes that the agents are not limited by the num-
ber of opportunities they can evaluate. This individual costly
exploration model is standard and the above assumption are
common in prior work (Kephart and Greenwald 2002).

Once all agents have completed their individual explo-
ration, the benefit of each of the k agents from the result-
ing cooperative exploration process is the minimum among
the best results obtained in any of the individual exploration
processes, denoted v∗. The overall benefit is thus kv∗ mi-
nus the costs accumulated along the individual explorations.
Since the agents are cooperative, their goal is to maximize
the overall expected benefit.

Taking the Dynamic Spectrum Access application domain
as an example, each agent represents a terminal and all ter-
minals are interested in establishing a connection between
them (e.g. for a conference call, document/video sharing or
a multi-player game). The terminals are located in differ-
ent geographical locations and each terminal can use differ-
ent wireless channels to connect to a central server support-
ing the requested application. Each terminal senses different
channels of different qualities until it selects a specific chan-
nel with a specific quality. The sensing is costly in that the
terminal needs to allocate some of its resources for the task
(e.g., energy or delay other transmissions). The quality of
service provided by the application depends on the lowest
quality channel selected by any of the terminals (e.g., if one
of the terminals ends up with a low quality channel, the ex-
perience of all of the users will be negatively affected).

The agents are assumed to be fully rational and acquainted
with the distribution function f(x), the number of agents k
and the exploration cost c. Their decision whether to eval-
uate additional opportunities along their exploration thus
needs to take into consideration the tradeoff between the
marginal improvement in the value of v∗ and the cost in-
curred.

The model assumes the agents can share their findings
along their exploration process through costly communica-
tion. Specifically, we assume that in order to communicate,
the agents need to lease communication services from an ex-
ternal operator. While there are numerous cost schemes that
can be used, our model assumes that the cost of unlimited
communication throughout the exploration between k′ ≤ k
agents is k′cm, where cm is the cost of subscribing an addi-
tional agent to the service.

4 Analysis
The analysis considers the case where the communication
cost is substantially high, thus the agents prefer to avoid it
completely, and the case where the communication is free
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(i.e., cm = 0), thus fully adopted. These facilitate the anal-
ysis of the general case where cm > 0, wherein not all the
agents necessarily employ coordination.

4.1 Non-Coordinated Exploration
If the agents cannot communicate whatsoever, then their ex-
ploration takes place separately and can be perceived as per-
formed in parallel, where the value of v∗ is revealed only
after all individual explorations have come to an end.

The optimal cooperative strategy in this case is based on
having each agent use a reservation value (i.e., a threshold)
for its individual exploration. Each agent will keep exploring
as long as the best value found is below the reservation value
it uses. The use of a reservation-value strategy results from
the fact that the agent’s state depends solely on the best value
found so far. More formally, the optimality (in terms of over-
all expected-benefit-maximization) of the reservation-value-
based strategy in this case derives from the fact that if the
agent finds it beneficial to explore when the best value ob-
tained so far is v, then it is inevitably beneficial to explore
if the best value found so far is v′ for any v′ < v (and vice
versa).

Theorem 1. The cooperative expected-benefit-maximizing
exploration strategy with no communication between the
agents is to have each agent Ai use a reservation value r
that satisfies:

c=k

∫ ∞
y=r

f(y)
(∫ ∞

x=−∞
(min(y, x)−min(r, x))f̄(x)dx

)
dy (1)

where f̄(x) is the probability distribution function of the
minimum among the best values obtained by all other
agents, i.e, min(x1, .., xi−1, xi+1, .., xk).

Proof. The overall expected benefit of the system from the
cooperative exploration is the expected value with which the
agents end up, denoted E[v∗], multiplied by k, minus the
accumulated costs along the exploration. Now consider the
effect of agent Ai’s exploration over E[v∗]. Given the distri-
bution of the minimum among the best values obtained by
all other agents, f̄(x), the value of E[v∗] when Ai uses a
reservation value r is given by:

E[v∗]=

∫ r

y=−∞
E[v∗]f(y)dy+

∫ ∞
y=r

f(y)

∫ ∞
x=−∞
min(y, x)f̄(x)dxdy (2)

The first term above relates to the case where a value
y < r is obtained through an additional exploration, in
which case agentAi resumes its exploration process accord-
ing to the reservation value rule. Since Ai is not limited by
the number of opportunities it can evaluate, it now faces
the exact same decision problem as before, resulting in an
expected value E[v∗]. The second term relates to the case
where the value obtained is above r, in which case the agent
terminates its exploration and the expected value E[v∗] is
the minimum value found among the value obtained by Ai

and the values obtained by the other agents (captured by the
distribution function f̄(x)). The expected cost accumulated
along the exploration ofAi when using r is given by c

1−F (r) ,

as this becomes a Bernoulli sampling process with a suc-
cess probability of the value obtained being greater than the
threshold used, 1 − F (r). Therefore, the overall expected
benefit of the system as a function of the reservation value r
used by Ai, denoted B(r), is given by (after isolating E[v∗]
in Equation 2):

B(r) =
k
∫∞
y=r

f(y)
∫∞
x=−∞min(y, x)f̄i(x)dxdy

1− F (r)
(3)

− c

1− F (r)
− C

where C denotes the expected cost accumulated along the
other agents’ exploration. In order to find the expected-
benefit-maximizing reservation value r, we take the first
derivative of Equation 3 and set to zero, resulting in:

c =k

∫ ∞
y=r

f(y)
( ∫ ∞

x=−∞
min(y, x)f̄(x)dx

)
dy (4)

− k(1− F (r))

∫ ∞
x=−∞

min(r, x)f̄(x)dx

which after some mathematical manipulations becomes
Equation 1.

Equation 1 has an intuitive interpretation that is com-
monly found in other exploration-based models (Chhabra,
Das, and Sarne 2011; McMillan and Rothschild 1994) —
the overall expected-benefit-maximizing reservation value,
r, is the value where the agent is precisely indifferent: the
expected marginal benefit from obtaining the value of the
opportunity (represented by the right-hand term of the equa-
tion) exactly equals the cost c of obtaining that additional
value.

Since all agents face a similar setting (characterized by
f(x) and c) they all use the same reservation value r. This
enables a simple formulation of the function f̄(x):

f̄(x) =
d(1− (1− F returned(x))k−1)

dx
, (5)

where:

F returned(x) =

{
0 x ≤ r

F (x)−F (r)
1−F (r) x > r

(6)

The function F returned(x) returns the probability that the
best value with which an agent that uses a reservation value
r ends up when terminating its exploration will be below x.
The term (1− (1− F returned(x))k−1) is thus the probabil-
ity that the minimum among the results of the other k − 1
agents’ explorations will turn out to be below x, and there-
fore its derivative is the probability distribution function of
the minimum among the best values obtained by all other
agents.

Using Equation 1 we can now calculate r, and since
all agents use the same reservation value, the probability
distribution function of the minimum among the best val-
ues found by all agents (unlike with f̄(x) which apply to
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all agents except one) is given by: d(1−(1−F returned(x))k)
dx .

Therefore:

E[v∗] =

∫ ∞
x=−∞

(
x · d(1− (1− F returned(x))k)

dx

)
dx (7)

The accumulated cost along the exploration process of each
of the agents is given by c

1−F (r) , as the success probability
is (1−F (r)), hence the system’s overall expected benefit is:

EB = k
(
E[v∗]− c

1− F (r)

)
(8)

4.2 Fully Coordinated Exploration
If the agents can communicate without incurring a cost, then
their exploration strategy should take into consideration, at
each step of the process, the values found by any of the other
agents. Furthermore, since the exploration is costly, it is ad-
vantageous for the agents to execute their exploration se-
quentially (having one agent explore at a time) rather than
in parallel. Since the state of the agents now depends on the
vector of best values found by the different agents, the over-
all expected-benefit-maximizing strategy is no longer based
on a single reservation-value. Instead, as we prove in this
section, it assigns a different reservation value for each state
and applies it to (i.e., compares it with) the minimum among
the set of best values found by the different agents.

We represent the system’s state as a vector V =
(v1, .., vk), in the k-dimensional space, where vi (1 ≤ i ≤
k) is the best value found so far by agent Ai.1 We use
S(V ) → {i, terminate} to denote the agents’ strategy,
where i (1 ≤ i ≤ k) suggests that agent Ai needs to execute
an exploration step next and terminate means the exploration
as a whole should be terminated. If the exploration is termi-
nated, then the value of v∗ is determined according to the
minimum value of V . For convenience we use Vmin to de-
note the minimum value in V (i.e., Vmin = min(v1, .., vk)).
Due to the nature of v∗ it is obvious that given a state V ,
if the optimal strategy is to resume the exploration, then the
agent who should be evaluating an additional opportunity is
the one whose highest value is Vmin.2 This is simply be-
cause any increase in the best value obtained by any other
agent Ai associated with the best value vi > Vmin can af-
fect v∗ only if it is accompanied by findings greater than
vi of agents currently associated with the best values lower
than vi. The agents’ strategy can therefore be expressed as:
S(V )→ {resume, terminate}.
Proposition 1. For any state V = (v1, .., vk), if S(V ) =
resume then inevitably S(V ′) = resume for any V ′ differ-
ing from V only in the value of its minimum, where V ′min <
Vmin (formally: V ′ = (v1, ..., vi−1, v

′
i < vi, vi+1, ..., vk)

where vi = Vmin).

Proof. Assume otherwise, i.e., S(V ′) = terminate. Since
S(V ) = resume, then once a state V is reached, the agent
associated with Vmin will resume exploring until a better

1If agent Ai has not yet engaged in an exploration then vi = 0.
2In the case where two or more agents hold a value equal to Vmin there is no

importance to the selection of which of them will explore next.

value is obtained. From the system’s point of view, this is
preferable over terminating the exploration, i.e., over ending
up with a value Vmin. Now consider the option to resume
exploration by the agent associated with value V ′min when
starting from a state V ′ until obtaining a value greater than
Vmin. The expected exploration cost and the distribution of
the value with which the agent will end up (i.e., above Vmin)
is equal in both cases. Therefore, since terminating the ex-
ploration process when in state V ′ yields V ′min < Vmin, the
strategy S(V ′) = terminate cannot be optimal (in terms of
expected-benefit-maximization).

The main implication from Proposition 1 is that for all
states that differ only in the value of their minimum element
there is a single reservation value for determining whether
to resume exploration. Whenever reaching a new state, each
agent needs to determine if the best value it had obtained so
far is Vmin. The agent associated with Vmin will calculate
the reservation value according to the current state V , de-
noted r(V ), and resume the exploration if its value is below
r(V ).

We use σ(V, y) → V ′ to denote the new state to which
the system transitions after the agent associated with Vmin

has obtained a value y in its exploration, if it was initially in
state V . If vi is the minimum value in V (i.e., vi = Vmin)
then:

σ(V, y) =

{
V y ≤ Vmin

(v1, ..., vi−1, y, vi+1, ..., vk) otherwise
(9)

The system’s expected benefit if acting according to the
expected-benefit-maximizing strategy S(V ) is thus given by
the following recursive equation:

EB(V )=


kVmin r(V )≤Vmin

−c+
∫ r(V )

y=−∞EB(V )f(y)dy+ otherwise∫∞
y=r(V )

EB(σ(V, y))f(y)dy

(10)

Theorem 2. The expected-benefit-maximizing exploration
strategy with full communication, when in state V , is to ter-
minate the exploration if Vmin≥r(V ) and otherwise resume
exploration, where r(V ) is the solution to:

c =

∫ ∞
y=r(V )

(EB(σ(V, y))− kr(V ))f(y)dy (11)

The value r(V ) is the same for all states differing only by
their minimum value (thus can be calculated only once for
these states).

Proof. In order to find the expected-benefit-maximizing
reservation value r(V ) we take the first derivative of Equa-
tion 10 and set to zero, resulting in:

c=

∫ ∞
y=r(V )

EB(σ(V, y))f(y)dy−(1−F (r(V )))kr(V ) (12)

which after some mathematical manipulations becomes
Equation 11.

The overall expected benefit of the system, denoted EB,
can be calculated using Equation 10 when starting from the
state where none of the agents has engaged in exploration
yet, i.e., EB = EB(0, .., 0).
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4.3 Coordination with Costly Communication
Finally, we analyze the general case where cm > 0, wherein
not all of the agents necessarily employ coordination. In this
case, it is possible that only a subset of agents will use coor-
dination or that the agents will divide into groups that coor-
dinate their exploration separately. Since the communication
cost is linear in the number of agents, the overall expected-
benefit-maximizing strategy is to have at most one group of
agents coordinate their exploration and to have the remain-
ing agents execute their exploration in isolation. This is be-
cause whenever two groups of agents merge and coordinate
their exploration, the same performance as with the two sep-
arate groups can be achieved simply by asking each agent
to follow the exploration strategy it would have used if op-
erating in its original group (hence the division into groups
cannot possibly improve the performance of a single unified
group).

Consider the case where k′ agents use costly coordination
and the remaining k − k′ agents explore with no coordina-
tion. The system’s expected value (i.e., the minimum value
with which the agents end up) when the agents exploring in-
dividually use reservation value r and the agents using the
coordination service use a reservation value function r(V ),
given that a state V = {v1, ..., vk′} was reached in the coor-
dinated exploration, denoted EV (V ), is given by:

EV (V )=


∫∞
x=−∞min(x, Vmin)f̄p(x)dx r(V )≤Vmin∫ r(V )

y=−∞EV (V )f(y)dy+ otherwise∫∞
y=r(V )

EV (σ(V, y))f(y)dy

(13)

where f̄p(x) = d(1−(1−F returned(x))k−k′ )
dx is the probability

distribution function of the minimum among the values ob-
tained by the agents exploring individually with no coordi-
nation service (i.e., the equivalent of f̄(x) for k−k′ agents).
The above calculation method of EV (V ) resembles the one
used in Equation 10, however it also takes into considera-
tion the results of the agents that manage their exploration
individually.

Similarly, the expected cost thereafter of those agents ex-
ploring through the coordination service when using a reser-
vation value function r(V ), given that a state V was reached
in the coordinated exploration, is given by:

EC(V )=


0 r(V )≤Vmin

−c+
∫ r(V )

y=−∞EC(V )f(y)dy+ otherwise∫∞
y=r(V )

EC(σ(V, y))f(y)dy

(14)

The overall expected benefit of the system onwards, given
state V of the coordinated exploration, denotedEB(V ), can
be calculated using Equations 13 and 14:

EB(V ) = kEV (V )− EC(V )− (k − k′)c
1− F (r)

− k′cm (15)

and, in particular, when starting from the state where none of
the agents has engaged in exploration yet:EB=EB(0,..,0).

Before introducing the optimal exploration strategy in
this case, we introduce two complementary notations. First,

fc(V, x) is the probability distribution function of the min-
imum among the best values obtained by the k′ agents ex-
ploring with coordination, given that they start from state V :

fc(V, x)=


0 x<Vmin∨(Vmin 6=x∧r(V )≤Vmin)

1 Vmin=x∧r(V )≤Vmin∫ r(V )

y=−∞fc(V, x)f(y)dy+ otherwise∫∞
y=r(V )

fc(σ(V, y), x)f(y)dy

The calculation method of fc(V, x) resembles the calcu-
lation of EV (V ) according to Equation 13. The proba-
bility of obtaining a value lesser than or equal to x by
the k′ agents, denoted Fc(x), is thus given by: Fc(x) =∫ x

y=−∞fc((0, .., 0), y)dy.
Second, we denote the probability distribution function of

the minimum among the best values obtained by all agents,
except for one agent that explores individually, by f̄l(x).
This latter term facilitates the analysis of the effect of r on
the system’s expected benefit and can be calculated as:

f̄l(x)=
d(1−(1−Fc(x))(1−F returned(x))k−k

′−1)

dx
(16)

The term (1 − (1 − Fc(x))(1 − F returned(x))k−k
′−1)

is in fact the probability that the minimum among the re-
sults of the other k − 1 agents’ explorations is below x, and
therefore its derivative is the probability distribution func-
tion of the minimum among the best values obtained by all
other agents. The function F returned(x) can be calculated
according to Equation 6.

At this point, we have everything needed to introduce
Theorem 3, which specifies the optimal exploration strategy
for the case where cm > 0.

Theorem 3. The optimal exploration strategy where k′

agents coordinate their exploration and k − k′ agents ex-
plore separately is to set a reservation value r for the agents
exploring separately and a reservation value function r(V )
for the k′ agents that use coordination, according to the so-
lution of the set of equations:

c = k

∫ ∞
y=r(V )

(EV (σ(V, y))− EV (r(V )))f(y)dy (17)

c=k

∫ ∞
y=r

f(y)
(∫ ∞

x=−∞
(min(y, x)−min(r, x))f̄l(x)dx

)
dy (18)

Proof. The proof relies in large on the proofs given for the
two previous cases (Theorems 1 and 2), therefore we only
detail the differences. Equation 17 augments Equation 11 in
a way that considers the effect of the minimum best value
found by any of the agents that explore separately in parallel
(i.e., without communication). It is obtained by taking the
first derivative of Equation 15 according to r(V ), equating it
to zero and applying some standard mathematical manipula-
tions. Equation 18 augments Equation 1 in a way that takes
into consideration in fc(x) the minimum value found by the
agents exploring in coordination in addition to the minimum
among those exploring individually in parallel.
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Figure 1: (a) Expected benefit of 3-agents’ exploration as a function of the explo-
ration cost. (b) Expected benefit (per agent) of k agents’ exploration as a function of
k (using c = 0.01). Both settings use cm = 0.

Figure 2: Expected benefit (per agent) as a function of the exploration cost, for
k = 4, where the cost of coordination services is: (a) cm = 0.25; (b) cm = 0.1.

In order to find the optimal exploration strategy, we need
to extract the overall expected benefit for any number of
agents exploring with coordination (i.e., for k′ =0,2,3,..., k)
according to Theorem 3. The number of agents exploring in
coordination for which the highest expected benefit, EB, is
obtained is the one by which the agents should operate.

5 Numerical Illustration
In order to illustrate the performance achieved with the dif-
ferent methods, we use a tractable synthetic setting that sim-
plifies calculations yet enables demonstrating the main so-
lution characteristics. The setting uses a uniform distribu-
tion function defined over the interval (0, 1) (i.e., f(x) = 1,
∀0 ≤ x ≤ 1 and zero otherwise).

We first demonstrate the effect of the increase in the ex-
ploration cost c and the increase in the number of agents
exploring cooperatively over the individual expected benefit
using cm = 0 (see Figure 1). As expected, the fully coor-
dinated case dominates exploration with no coordination, as
far as expected benefit is concerned, and both the increase in
exploration costs and in the number of agents exploring co-
operatively result in a decrease in the expected benefit (per
agent). The correlation between the expected benefit and the
number of agents is explained by the fact that as the number
of agents increases, the expected minimum of the obtained
values decreases and more exploration is required.

Finally, Figure 2 depicts the expected benefit as a function
of the exploration cost for k = 4, when each curve depicts a
different number of agents using coordination services. The
fee for coordination services is cm = 0.25 (Figure 2(a)) and
cm = 0.1 (Figure 2(b)), and the agents can choose to have

0, 2, 3, 4 of them operate in coordination. As expected, when
the coordination cost is high, agents will explore in parallel
with no coordination (Figure 2(a)), and when low, coordina-
tion is preferred to different extents (Figure 2(b); the number
of agents using coordination is depicted at the bottom). From
Figure 2(b) it is notable that the choice of how many agents
will use coordination depends also on the exploration cost
— when the exploration cost is low, agents can compensate
over the lack of costly communication with cheap extended
exploration. As the exploration cost increases, the value of
coordination increases as the saving achieved in repeated ex-
ploration becomes substantial.

6 Discussion and Conclusions
The importance of coordination in cooperative exploration
is in enabling the agents to refine their exploration strategy
based on the findings of others. Yet, since coordination (and
in particular communication) is inherently costly, the agents
should carefully reason about its extent of use. In many set-
tings, the agents may find it more beneficial to have only
some of them (if at all) coordinate their exploration. The
analysis given in this paper facilitates the decision regarding
the amount of coordination they should apply.

The analysis proves that the optimal strategy that should
be used by the agents in cooperative exploration settings
with partial coordination where the value of each agent
from the process depends on the minimum value found is
reservation-value based. Agents exploring in isolation (i.e.,
with no communication with the others) will use a stationary
reservation value, whereas those that use the coordination
service will be using a state-based reservation value. The se-
quential nature of the exploration process used enables some
level of separation in the analysis. The resulting set of equa-
tions that needs to be solved is actually based on each agent’s
best-response strategy given the distribution of the minimum
value resulting from the exploration strategies of the other
agents. By proving that the optimal exploration scheme is
to have a sub-group of agents using the coordination ser-
vice and all other agents exploring with no communication
with the others, one only needs to solve for the expected-
benefit-maximizing exploration strategy, for a number of ex-
ploration schemes that is linear in the number of agents.

Finally, we propose several possible extensions of this
work for future work. The first considers the case where
the cost of communication is not linear in the number of
agents. In this case, it is possible that the expected-benefit-
maximizing strategy will be based on having the agents di-
vide themselves into several coordinated-groups, each using
the coordination service separately. The second considers
other charging schemes set by a self-interested communi-
cation provider, e.g., a charge per communication message.
In this case the exploration itself will be of a different struc-
ture, in comparison to the reservation-value based scheme
used in this paper.
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