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Abstract

This paper presents a novel framework for online in-
cremental place recognition in an indoor environment.
The framework addresses the scenario in which scene
images are gradually obtained during long-term oper-
ation in the real-world indoor environment. Multiple
users may interact with the classification system and
confirm either current or past prediction results; the sys-
tem then immediately updates itself to improve the clas-
sification system. This framework is based on the pro-
posed n-value self-organizing and incremental neural
network (n-SOINN), which has been derived by mod-
ifying the original SOINN to be appropriate for use
in scene recognition. The evaluation was performed on
the standard MIT 67-category indoor scene dataset and
shows that the proposed framework achieves the same
accuracy as that of the state-of-the-art offline method,
while the computation time of the proposed framework
is significantly faster and fully incremental update is al-
lowed. Additionally, a small extra set of training sam-
ples is incrementally given to the system to simulate the
incremental learning situation. The result shows that the
proposed framework can leverage such additional sam-
ples and achieve the state-of-the-art result.

Indoor place recognition has been an important navigation
problem in both computer vision and robotics. One of the
challenges in indoor place recognition is the complexity
of the scenes, which is inevitable. Some places might be
well-structured in their spatial properties (e.g., concert hall),
while others are better characterized by the objects they con-
tain (e.g., video store). Also, because the characteristics of
an indoor scene are significantly different from those of out-
door scenes, a specifically designed approach is needed.

Many approaches had been proposed to solve this prob-
lem (Lazebnik, Schmid, and Ponce 2006; Torralba et al.
2003), but they were not designed for a wide range of indoor
place categories. This motivated the study by Quattoni and
Torralba (2009) which can deal with 67 categories of indoor
scenes. The dataset was reported as the largest indoor-scenes
dataset at the time. In this method, an individual scene cat-
egory is represented by a set of scene prototypes. Each pro-
totype is defined by a constellation model that consists of a
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single root and a set of regions of interest (ROIs). The root is
described by the GIST descriptor (Oliva and Torralba 2001).
This descriptor globally captures the holistic shape informa-
tion of the entire image and cannot be moved. However, the
ROIs can move slightly in accordance with the different po-
sitions of objects in different scene categories. Each ROI is
described by a spatial pyramid of visual words (Sivic and
Zisserman, 2003). The visual vocabulary must be created a
priori and the ROI positions must be annotated manually.
The learning model is based on gradient-based optimization.

Jia-Li et al. (2010) approached the problem differently.
The so-called ObjectBank method was proposed to recog-
nize indoor scenes by considering the objects found in the
scene. Unlike the method of Quattini and Torralba (2009),
the system is aware of the objects contained in the scene, as
it uses a set of pre-trained object detectors to process an im-
age and obtain a histogram of occurrences of objects in the
scene. This method relates the concept of transfer learning
(Lampert et al. 2009; Farhadi et al. 2009).

Recently, Pandey and Lazebnik (2011) used the de-
formable part-based model (DPM) with latent SVM
(LSVM) to solve the problem. Unlike the original part-based
model (Felzenszwalb et al. 2010), this method can find re-
gions of interest (ROI) in the scene automatically without
the need for annotation and has achieved state-of-the-art re-
sults on the MIT 67-category scene dataset.

All methods described above are based on an offline
framework where assumptions about the fixed set of train-
ing and class labels hold. Alternatively, we are interested
in the scenario where the system is required to be used
with a limited set of image samples of the places at the
beginning. More image samples will gradually be obtained
later. For example, consider a servant robot that is placed
in an unfamiliar large building. While some new image
samples of known categories might be obtained during its
operation, a new place category might need to be added.
This information is useful and should be used to update the
robot in an online incremental manner. Consequently, an
online incremental framework, that i) allows the robot to
add new place categories whenever needed and ii) updates
the classifier by a new input image obtained as feedback
from the actual classification result, is needed. In summary,
this paper proposes two contributions:
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Figure 1: Proposed incremental framework for indoor scene
recognition.

• A new online incremental framework for indoor scene
recognition, which allows the machine to add new classes
and update existing classes with new information at any
time.

• A new method of incremental indoor place recognition,
which fits the proposed framework well. The method is
based on the proposed n-value self-organizing and incre-
mental neural networks (n-SOINN) which has been mod-
ified from the original SOINN of Shen and Hasegawa
(2006). It runs sufficiently fast for real-time update while
retaining the same accuracy as those of offline state-of-
the-art (SOA) methods.

The evaluation was performed on the MIT 67-category
indoor scene datasets (Quattoni and Torralba 2009). The re-
sults are compared with the state-of-the-art results in many
aspects including time and accuracy.

Incremental Place Recognition Framework
The proposed framework for incremental indoor place
recognition is shown in Fig. 1. It focuses on the scenario
where the results of the recognition are finally corrected by
human experts and sent back to the system. Suppose a robot
wanders in an unfamiliar environment and tries to classify
a scene into an existing known category. After a prediction,
it can question some people present in the scene about the
category of the recent scene, or it can capture the scene and
preserve the predicted label for confirmation with a human
later. The policy of determination of predictions to be con-
firmed by a human can be created in various ways, randomly
or starting with the most unreliable prediction. However, this
study retrieves the prediction in a FIFO manner. The frame-
work also supports the connection between the module and
Google for additional data queries over the internet. For ex-
ample, the predicted scene may be used in a query by the

image search engine to obtain a set of similar images. This
set can be shown to the user for selection of some more sam-
ples to update the category model. By the answer from hu-
man experts, the confirmed scene is fed back to the correct
category as a new additional positive sample.

It should be clarified that the framework is especially ap-
propriate for use in an environment with human presence. In
particular, the robot lives with humans and can interact with
them on any topic. The framework is not suitable for use in
automated operation, where incremental human interaction
is rare. Although the framework is appropriate for an envi-
ronment with abundant human interactions, it also supports
solo operation. The correction of the scenes predicted class
is optional.

The framework runs in two main phases: initial learning
and life-long learning. The former consists of learning on a
dataset given in advance. In other words, the system learns
the offline dataset in an incremental manner. This allows the
system to learn sufficient information before progressing to
real scene recognition. As shown in Fig. 1, the initial dataset
D =

{
(x1, y1) , ...,

(
xn(D), yn(D)

)}
is provided for initial

learning. Our system learns these samples in an incremental
manner.

In the second phase, the system continues the same pro-
cess, but the input data is the test scene observed from the
real environment (input comes from environment as shown
in Fig. 1). This phase is supposed to be long-term. The sys-
tem continues to classify input scenes into the classes with
the highest probability score. For some (or all) classifica-
tions, the sample generator module tracks the scene and its
predicted label. These tracks can be confirmed with a human
and used to update the classifier. Note that human correc-
tion might be performed immediately by the user standing
near the robot or later (sample generators pick up some past
recognition and ask a human for the label). In either case,
the feedback is useful and should be utilized efficiently.

The learning mechanism consists of two parts: i) cate-
gory modeling and ii) classifier updating. The former aims
to efficiently represent the category by using a limited set
of training sample. The latter keeps updating the classifier
(e.g., generating the new hyperplane) of the category by
the representative samples obtained from the former part.
The key success of this framework thus lies in the question;
how to compress the input samples incrementally, keep them
bounded for long-term running and use it to achieve good
accuracy.

Proposed n-SOINN
The key to the framework is the clustering approach which
compresses a large set of image feature vectors (i.e., 10,000
vectors) to a small set of vectors without causing a drop
in accuracy. This clearly requires an incremental clustering
mechanism.

Out of many existing methods of incremental cluster-
ing, we selected the SOINN (Shen and Hasegawa 2006)
mainly because of its high computation speed. Conceptu-
ally, the clustering ability of incremental spectral clustering
(ISC) is supposed to be better than that of SOINN, since
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ISC minimizes intra-class distance and maximizes inter-
class distance (Valgren and Lilienthal 2008). Nevertheless,
this comes with high cost of computation as suggested by
Tangruamsub et al. (2009). A self-organizing map (SOM)
is similar to SOINN, but the former requires the number
of nodes to be defined a priori (Kohonen 1990). MB-VDP
(Gomes et al. 2008) is also an online clustering method, in
which the number of clusters is determined by the data itself
and the computing memory can be bounded. We have tested
MB-VDP on the MIT 67-category indoor scene dataset and
found that the computation time is far greater than that of
SOINN. This could be because MB-VDP has an additional
phase of data compression that needs to be iterated incre-
mentally. Nevertheless, our future study includes an effort
to update the MB-VDP to increase the computation speed
so that it becomes applicable to our framework. We have
also tried to use the standard SGD-SVM (Buttou and LeCun
2004) in our framework but the result was not good (∼10%
for testing set of Quattoni and Torralba (2009)). This could
be because SGD-SVM is generally suitable for the prob-
lem of linear SVM whereas the most of SVMs used for in-
door scene recognition are based on Radial-Based Function
(RBF) kernel.

SOINN is an unsupervised clustering method, which can
automatically determine the number of nodes and represent
the topology of a multiclass dataset. Recently, some stud-
ies used it to cluster data in a labeled class in supervised
learning (Kankuekul et al. 2012). Particularly, given a se-
quence of input vectors (x1, ...,xt) obtained incrementally
up to time t, where x ∈ Rd, starting from an empty set of
nodes A = Ø, first two input vectors are chosen as the two
initial nodes of SOINN. Then, for every input vector x, the
first- and the second- nearest nodes are retrieved by the fol-
lowing equations:

s1 = argminc∈Adist (x,wc) (1)

s2 = argminc∈A−{s1}dist (x,wc) (2)

where wc is the d-dimensional weight vector of node c.
Given d1 and d2 as the distances between x and the weight
vectors of the nodes s1 and s2, respectively, if d1 is greater
than the threshold τs1 of the node s1 or d2 is greater than
the threshold τs2 of the node s2, a new node will be cre-
ated and added to the set A. The weight vector of the new
node is x. The threshold τc is the threshold value for each
node c ∈ A. Its value is initially set to infinity and gradually
adapts according to all input vectors that are beaten by it in
the comparison. On the other hand, if d1 < τs1 , then x is
assigned to s1. If the edge between s1 and s2 does not exist,
it is created. The weight vector of the node ws1 is updated
by the learning rate ε(t)

ws1 = ws1 + ε(t)(x−ws1) (3)

where t represents the number of input vectors over which
the node s1 has been a winner. The age of the new edge is
set to zero. If an edge between s1 and s2 already exists, the
age of this edge is incremented by one. Any edge whose age
is greater than a predefined threshold agedead is removed.
This guarantees that any connection between nodes lasting

longer than agedead is cut. For every λ inputs, SOINN per-
forms two actions: 1) checks for the node with the greatest
number of accumulated wins (popular node) and separate it
into two nodes, and 2) eliminates all isolated nodes. The first
action expands the SOINN size at the popular nodes, while
the second reduces the size by eliminating all non-popular
nodes.

Within the context of the framework, we mention two dis-
advantages of the original SOINN. First the parameter λ
is originally set for an unsupervised single SOINN. It is a
global parameter that forces SOINN to perform garbage col-
lection on non-popular nodes and extend the popular node
for every constant period. This sometimes prevents the pop-
ular node from being separated into two nodes, even though
the winning time is relatively high. The parameter models
node popularity by considering the total number of inputs to
SOINN rather than the winning time of each node. There-
fore, to control the topology of SOINN, we introduce a new
parameter n that forces any first winner node that wins more
than n times to assign the win to the second winner node.
If the second winner also has a winning time of more than
n, a new node is generated. This parameter directly controls
the output nodes of SOINN. In particular, setting n = 0 al-
lows SOINN to preserve all features in their original values.
In contrast, setting a high value of n makes the SOINN out-
put only a small number of representative nodes while most
input features are discarded. The latter case resembles the
original SOINN. This SOINN having its topology controlled
by the parameter n is referred to as n-SOINN.

Second, the basic Euclidean distance used in the origi-
nal SOINN is for a single SOINN used for learning the
topology of the entire multiclass dataset in an unsupervised
manner. To use n-SOINN for supervised clustering, i.e. k
SOINNs required for clustering k classes, the variance of
data in each class could be different, which is considered by
the Euclidean distance. In other words, it is tricky to com-
pare the distance between nodes in different SOINNs. As a
result, the distance function dist between the input and the
weight vector of n-SOINN is calculated by the standardized
Euclidean distance (sEuclidean) instead of the normal Eu-
clidean distance. The variance vector is calculated on the
basis of all weight vectors of recent nodes existing in n-
SOINN. This helps in balancing the priority of dimension
which is from a different property of the scene. Note that n-
SOINN is slightly different from other clustering methods
such as k-means in the sense that raw data are not preserved
by the system and a representative can be eliminated when-
ever it becomes non-popular.

Modeling Place Categories
In the initial phase of the framework, a dataset of ms place
categories is given as D = {(x1, y1) , ..., (xns

, yns
)} where

x ∈ Rd is a d-dimensional image feature vector of the scene
and y is a place category label, y ∈ P = {p1, ..., pms

}. A
place category pk is modeled by two n-SOINNs, one with a
high (h) n-value Shk and another with a low (`) n-value S`k.
Starting from an empty set of nodes, both n-SOINNs obtain
pairs of an input vector and its label incrementally one by
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Figure 2: Connection between n-SOINNs and binary classi-
fier of each individual place category.

one. If the input vector xi is labeled as yi = pk, it is input to
high value n-SOINN Shk .

The n-values of the n-SOINNs are set differently in order
to represent the category model in two different ways. As
portrayed in Fig. 2, the place category is modeled by a set
of representative nodes of the n-SOINNs. Since our frame-
work needs a binary classifier for each category, positive and
negative samples are needed. The positive samples are rep-
resented by a set of nodes in the n-SOINNs where n is low,
whereas the negative samples are represented by a set of n-
SOINNs with a high n-value. This is because the positive
part is believed to capture accurate information about the
category (low n-value, high density nodes), while the nega-
tive is believed to capture a more general non-accurate sam-
ple of all other disjoint classes (high n-value, low density
nodes).

Modeling of place in this manner efficiently compresses
the size of the nodes representing samples of each category.
The output from this phase is used to obtain the classifier of
each category as shown in Fig 2.

Learning and Recognition
An online incremental system must switch back and forth
between learning and recognition all the time. The predicted
result from recognition is sent to update the model and the
classifier on user confirmation. The classifier used in this
study is support vector machine (SVM) as its classification
time is sufficiently fast. Note that although we use the SVM
as the classifier, other methods should also be applicable to
our framework since positive and negative data are all still
available.

Learning the Classifier
Since n-SOINN can compress the number of nodes, imme-
diate learning of the classifier becomes possible. We learn
the SVM on the output nodes of n-SOINN to obtain the clas-
sifier as shown in Fig. 2.

For the category k, the positive samples are taken from
the set of nodes A`

k belonging to the n-SOINN S`k. The neg-

ative samples are collected from the set Ah
j belonging to the

n-SOINN Shj for all j where 0 < j < ms, j 6= k. To learn a
new category, a given set of samples are input in S`m+1 and
Shm+1 . The next time recognition is requested, m + 1 clas-
sifiers are created. Note that we select to perform the multi-
class classification by using multiple binary SVMs scheme
since it has been shown to be better than that of a single
multiclass SVM (Duan and Keerthi 2005).

Recognizing the Scene
The recognition process in this framework consists of two
steps. First, an input scene is given to all ms classifiers ac-
cording to ms categories. This results in a set of pairs of el-
ements formed from the predicted category zj and the score
θj from the jth classifier.

Z = {(zj , θj)|θj ≥ θj+1, 0 < j < ms}ms

j=1 (4)

The set is sorted by the score value. The first element is the
predicted label with the highest score. However, this predic-
tion is the binary classification. The discriminant function is
based on the negative samples which have been compressed
from the original set. It is possible that the first- and the
second-best predictions might be unclear. As a result, we
perform another multiclass classification among the q best-
predicted labels. For the classification in this second step,
the classifier is a single multiclass SVM trained by using the
nodes from the n-SOINNs of each of the q best-predicted
categories. The best-predicated label is the final answer of
the recognition system. In particular, the input scene x is
classified to the category p∗

p∗ = arg max
pi∈{z1,...,zq}

P (y = pi|x) (5)

where P (y = pi|x) is the estimated probability of the pre-
dicted label from SVM. The probability is estimated by us-
ing the default method in LIBSVM (Chang and Lin 2011)
which is implemented by the Platt scaling (Platt 2000) based
on method of Lin et al. (2007).

Experimental Results
The evaluation of the proposed approach was performed on
the MIT 67-category scene dataset. This dataset is consid-
ered as one of the most challenging sets for indoor scene
recognition owing to its large number of categories.

The n-SOINN-SVM was run by using radial-based-
function (RBF) with C = 8 and γ = 0.0092. These pa-
rameters were obtained by doing cross-validation on subset
of trainings. For n-SOINN, we use n-value = 2 for high den-
sity n-SOINN and n-value = 100 for low density n-SOINN.
The parameter q is set to 3. All testing was done on 1340
testing images of all 67 categories (same split with that of
Quattoni and Torralba (2009)).

Exp. I: Comparison with Offline Baselines
The baselines used in this experiment are the offline methods
using standard SVM with radial-biased function (RBF) with
C = 8 and γ = 0.001953 according to that of used in CEN-
TRIST (Wu and Rehg 2011). The image features used in this
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Table 1: Comparison of accuracy (Bin = Binary, Multi =
Multiclass)

Table 2: Comparison of accuracy with SOA methods

study are GistColor (Quattoni and Torralba 2009), S-PACT
(Wu and Rehg 2011), and the combination between Gist-
Color (GC) and S-PACT with slightly modifications. The
dimension of the Gist-Color has been changed from 312 to
512, which resulted in better accuracy. For the S-PACT, un-
like that of Wu and Rehg (2011), we used the same split as
done by other state-of-the-arts (Zhu et al. 2010; Li-Jia et al.
2010; Pandey et al. 2011; Quattoni and Torralba 2009) so
that the accuracy is slightly lower than that reported previ-
ously. These baselines were implemented by using two dif-
ferent schemes: set of 1-vs-all SVMs and K-class SVM. We
did not use the Spatial Pyramid (SP) and Deformable-Part-
based Model (DPM) because they are not appropriate for the
framework. The SP requires an offline vocabulary. The DPM
needs time for automatic part detection.

The result is shown in Table 1. n-SOINN-SVM achieves
slightly lower accuracy (1-2%) than that of baselines. How-
ever, its computation time is significantly faster than the
baselines. The SVM update time for any new incoming in-
put image is about 2 s while the baselines are > 100 s. The
second and the third columns show, respectively, the number
of positive and negative samples required for SVM training.
Data size has been markedly compressed by n-SOINN with
only a small drop in accuracy.

The accuracy was also compared to other SOA results
in Table 2. To compete with these methods, we combine
GC and S-PACT using Softmax transformation like that
of Pandey and Lazebnik (2011). The method still slightly
underperformed the method DPM+GistColor+SP (41.3%
against 43%). However, it outperforms all other SOA meth-
ods in term of both time and accuracy. Note that the com-
putation time for all SOA methods are supposed to be much
higher than n-SOINN-SVM since they are based on standard
SVM classification without any data compression.

Exp. II: Extended Learning
This experiment answers the question can the proposed
method really utilize the feedback given by human experts to

Figure 3: Increasing accuracy according to increasing num-
ber of feedbacks (CB: Combined Features)

outperform the SOA method?. Learning more images is not
guaranteed to always increase the accuracy especially for the
case of complex scenes. In this experiment, we ask two hu-
man experts to select image from Googles 20 images per
class (totally 1340 images for 67 categories) and gradually
give it to the system with correct label as if they are the feed-
back from real-world operation. These feedbacks are com-
pletely disjoint from the testing set. This experiment sim-
ulates the scenario where offline SOA methods cannot per-
form additional learning because their training consumes too
long time. They cannot learn these additional image sam-
ples. At this point, it becomes interesting for us to see if the
n-SOINN-SVM can leverage these feedbacks to outperform
the SOA result.

By the result, randomly adding 1340 image samples, one
by one, to the system, the proposed method gradually in-
creased its accuracy to 45% as shown by Fig. 3. We also
run the baseline using K-Class RBF-SVM on the full dataset
(MIT-67 + Additional 1340 images) to obtain the upper
boundary of how well these feedbacks can be utilized. In-
terestingly, n-SOINN-SVM obtained the same accuracy at
45%. This implies that the method can efficiently utilize the
feedback. This result is also shown in Table 2 for compar-
ison with other offline SOA. It should be emphasized that
this does not show that our method outperform the SOA. Al-
ternatively, it proves that the proposed framework is useful
as it can successfully use its fast learning to learn on addi-
tional feedbacks and obtain the state-of-the-art result. Fig. 4
shows the graph of time required by each method to learn
on feedbacks. By our framework, only one SVM is updated
whenever new input is obtained. This saves amount of time
for updating the whole ms classifiers. However, we set to
activate updating on all SVMs for every 100 input samples
which results in a spike in the graph. This graph shows that
n-SOINN-SVM is sufficiently fast for real-time update. The
offline method, even with the update of only single SVM per
one feedback, consumes too much time for use in an incre-
mental manner.

Exp. III: Comparison with Incremental Baselines
This experiment was conducted to see if n-SOINN outper-
forms other clustering methods. For example, RBF-SVM-
Bin in Table 1 can be used with k-means to reduce the
size of positives and negatives. Thus, three different clus-
tering methods were used to compare with n-SOINN. Each
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Figure 4: Computation time for incrementally update of ev-
ery input feedback. The graph is obtained by using S-PACT
feature.

Table 3: Comparison of performance among different clus-
tering methods

of them was used with the same classification scheme (1-vs-
all SVM) and same parameters as that used in Exp. I. The
first method is to use k-means++ of Arthur et al. (2007) with
k = k1, k2 on positive and negatives respectively before us-
ing them to create SVM. The second method is to randomly
select k1 samples out of all positive samples and select k2
samples out of all negative samples. The third method is the
use of original SOINN to incrementally obtain positives over
time and the representative nodes are used to create SVM as
shown in Fig. 2. The number k1 and k2 were set equal to the
number of resulting nodes in n-SOINN, which is different
for each category. For original SOINN, we let the number of
nodes grow automatically.

Table 3 shows the comparison between n-SOINN-SVM
and the 1-vs-all scheme RBF-SVM by using different data
compression methods. By the result, it is clear that n-SOINN
can compress the training samples of both positive and nega-
tive samples more efficiently than that of k-means or random
selection. Especially for the negative samples, n-SOINN se-
lects nodes from the low density nodes of low n-value n-
SOINN. This significantly reduces the size of negative sam-
ples that is usually the main factor for high cost of SVM
update. For SOINN, the performance was not very different
but the computation time of SOINN was much higher.

It is noteworthy that this experiment was tested on differ-
ent dataset from that of the previous experiment so that the
result of n-SOINN-SVM-GC and n-SOINN-SVM-PACT
are different from those of Table 1. The dataset used hereby
is the original MIT-67 Category dataset plus an extra set of

Figure 5: Effect of changes of n-value for low (`) n-SOINN

images from internet (same as Exp. II). This is because all of
the baselines in this experiment possess the ability of incre-
mental learning. They can learn the extra dataset and lever-
age it to increase the accuracy. Therefore, we evaluated the
accuracy by using all dataset to see if the proposed n-SOINN
can efficiently utilize the feedbacks.

We also analyzed the effect of the change of n-value for
low n-SOINNs as shown in Fig. 5. The graph shows that
the increase of the n-value of low n-SOINN causes some
drop in accuracy but the computation time can be speeded
up. It should be noticed that the change of small n-value
(i.e., n < 6) does not significantly decrease the accuracy
while the learning time can be speeded up. For example, by
changing the n-value to n = 5 causes 0.15% drop in ac-
curacy but the update time of the classifier can be reduced
by 0.04 s. This is useful for the life-long learning in large
scale where the system must be updated frequently. That is,
the graph suggests that n-value of the low n-SOINN, which
represents the positive samples, can be changed between 0 to
5. For high value n-SOINN (used for representing negative
samples), we found that higher n-value offers better accu-
racy. This is favorable since the great n-value results in the
very compact size of network.

Conclusion
We have proposed an incremental framework for learning on
indoor scene categories. The framework supports the incre-
mental interactions with humans which provide feedbacks
to the system for extended learning at any time. The pro-
posed n-SOINN-SVM performs fast incremental learning
which make it fit to the framework. It offers the high ac-
curacy on par with that of SOA method while being capable
to learn additional feedback from human experts. By lever-
aging feedbacks, the method outperform all SOA results and
shows that incremental learning framework is essential since
learning on more feedback can yield the better accuracy than
that of well-trained offline system. Although the method has
been proposed for scene image, it can also be applied to
other computer vision applications using more appropriate
image features.
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