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Abstract

We introduce a general declarative framework for incorpo-
rating domain-specific heuristics into ASP solving. We ac-
complish this by extending the first-order modeling language
of ASP by a distinguished heuristic predicate. The resulting
heuristic information is processed as an equitable part of the
logic program and subsequently exploited by the solver when
it comes to non-deterministically assigning a truth value to an
atom. We implemented our approach as a dedicated heuris-
tic in the ASP solver clasp and show its great prospect by an
empirical evaluation.

Introduction
The success of modern Boolean constraint technology was
greatly boosted by Satisfiability Testing (SAT; (Biere et al.
2009)). Meanwhile, this technology has been taken up in
many related areas, like Answer Set Programming (ASP;
(Baral 2003)). This is because it provides highly performant
yet general-purpose solving techniques for addressing de-
manding combinatorial search problems. Sometimes, it is
however advantageous to take a more application-oriented
approach by including domain-specific information. On
the one hand, domain-specific knowledge can be added for
improving deterministic assignments through propagation.
And on the other hand, domain-specific heuristics can be
used for making better non-deterministic assignments.

In what follows, we introduce a general declarative frame-
work for incorporating domain-specific heuristics into ASP
solving. The choice of ASP is motivated by its first-order
modeling language offering an easy way to express and pro-
cess heuristic information. To this end, we use a dedicated
predicate h whose arguments allow us to express various
modifications to the solver’s heuristic treatment of atoms.
The respective heuristic rules are seamlessly processed as
an equitable part of the logic program and subsequently ex-
ploited by the solver when it comes to choosing an atom for
a non-deterministic truth assignment. For instance, the rule
_h(occ(A,T),factor,T) :- action(A), time(T).

favors later action occurrences over earlier ones (via mul-
tiplication by T). That is, when making a choice between
two unassigned atoms occ(a,2) and occ(b,3), the
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solver’s heuristic value of occ(a,2) is doubled while that
of occ(b,3) is tripled. This results in a bias on the system
heuristic that may or may not take effect. Besides factor,
our heuristic language extension offers the primitive heuris-
tic modifiers init, level, and sign, from which even
further modifiers can be defined. Our approach provides an
easy and flexible access to the solver’s heuristic, aiming at its
modification rather than its replacement. Note that the effect
of the modifications is generally dynamic, unless the truth
of a heuristic atom is determined during grounding (as with
the rule above). As a result, our approach offers a declar-
ative framework for expressing domain-specific heuristics.
As such, it appears to be the first of its kind.

Background
We assume some basic familiarity with ASP, its semantics as
well as its basic language constructs, like normal rules, car-
dinality constraints, and optimization statements. Although
our examples are self-explanatory, we refer the reader for
details to (Gebser et al. 2012). For illustrating our approach,
we consider selected rules of a simple planning encoding,
following (Lifschitz 2002). We use predicates action
and fluent to distinguish the corresponding entities. The
length of the plan is given by the constant l, which is used
to fix all time points via the statement time(1..l). More-
over, suppose our ASP encoding contains the rule
1 { occ(A,T) : action(A) } 1 :- time(T).

stating that exactly one action occurs at each time step. Also,
it includes a frame axiom of the following form.1

holds(F,T) :- holds(F,T-1), not -holds(F,T).

In such a setting, actions and fluents are prime subjects to
planning-specific heuristics. As we show below, these can
be elegantly expressed by heuristic statements about atoms
formed from predicates occ and holds, respectively.

For computing the stable models of a logic program, we
use a Boolean assignment, that is, a (partial) function map-
ping propositional variables in A to truth values T and F .
We represent such an assignment A as a set of signed liter-
als of form T a or F a, standing for a 7→ T and a 7→ F ,
respectively. We access the true and false variables in A via
AT = {a ∈ A | T a ∈ A} and AF = {a ∈ A | F a ∈ A},

1We use ‘-/1’ to stand for classical negation.
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loop
propagate // compute deterministic consequences
if no conflict then

if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

Figure 1: Basic decision algorithm: CDCL

respectively. A is conflicting, if AT ∩AF 6= ∅; A is total, if
it is non-conflicting and AT ∪ AF = A. For generality, we
represent Boolean constraints by nogoods (Dechter 2003).
A nogood is a set {σ1, . . . , σm} of signed literals, expressing
that any assignment containing σ1, . . . , σm is inadmissible.
Accordingly, a total assignment A is a solution for a set ∆
of nogoods if δ 6⊆ A for all δ ∈ ∆. While clauses can be
directly mapped into nogoods, logic programs are subject to
a more involved translation. For instance, an atom a defined
by two rules a:- b, not c and a:- d gives rise to three no-
goods: {T a,Fx{b,not c},Fx{d}}, {F a,Tx{b,not c}}, and
{F a,Tx{d}}, where x{b,not c} and x{d} are auxiliary vari-
ables for the bodies of the two previous rules. Similarly,
the body {b, not c} leads to nogoods {Fx{b,not c},T b,F c},
{Tx{b,not c},F b}, and {Tx{b,not c},T c}. See (Gebser et al.
2012) for full details. Note that translating logic programs
into nogoods adds auxiliary variables. For simplicity, we re-
strict our formal elaboration to atoms inA (also because our
approach leaves such internal variables unaffected anyway).

Conflict-driven constraint learning
Given that we are primarily interested in the heuristic ma-
chinery of a solver, we only provide a high-level descrip-
tion of the basic decision algorithm for conflict-driven con-
straint learning (CDCL; (Marques-Silva and Sakallah 1999;
Zhang et al. 2001)) in Figure 1. CDCL starts by extending
a (partial) assignment by deterministic (unit) propagation.
Although propagation aims at forgoing nogood violations,
assigning a literal implied by one nogood may lead to the
violation of another nogood; this situation is called conflict.
If the conflict can be resolved, it is analyzed to identify a
conflict constraint. The latter represents a “hidden” conflict
reason that is recorded and guides backjumping to an earlier
stage such that the complement of some formerly assigned
literal is implied by the conflict constraint, thus triggering
propagation. Only when propagation finishes without con-
flict, a (heuristically chosen) literal can be assigned provided
that the assignment at hand is partial, while a solution has
been found otherwise. See (Biere et al. 2009) for details.

A characteristic feature of CDCL is its look-back based
approach. Central to this are conflict-driven mechanisms
scoring variables according to their prior conflict involve-
ment. These scores guide heuristic choices regarding literal
selection as well as constraint learning and deletion.

A decision heuristic is used to implement the non-
deterministic assignment done via decide in the CDCL al-
gorithm in Figure 1. In fact, the selection of an atom along
with its sign relies on two such functions:

h : A → [0,+∞) and s : A → {T ,F } .

Both functions vary over time. To capture this, we use hi
and si to denote the specific mappings in the ith iteration of
CDCL’s main loop. Analogously, we use Ai to represent the
ith assignment (after propagation). We use i = 0 to refer to
the initialization of both functions via h0 and s0; similarly,
A0 gives the initial assignment (after propagation).

The following lines give a more detailed yet still high-
level account of the non-deterministic assignment done by
decide in the CDCL algorithm for i ≥ 1 (and a given h0):2

1. hi(a) := αi × hi−1(a) + βi(a) for each a ∈ A
2. U := A \ (Ai−1

T ∪Ai−1
F )

3. C := argmaxa∈Uhi(a)

4. a := τ(C)

5. Ai := Ai−1 ∪ {si(a)a}
The first line describes the development of the heuristic de-
pending on a global decay parameter αi and a variable-
specific scoring function βi. The set U contains all atoms
unassigned at step i. Among them, the ones with the high-
est heuristic value are collected in C. Whenever C contains
several (equally scored) variables, the solver must break the
tie by selecting one atom τ(C) from C.

Look-back based heuristics rely on information gathered
during conflict analysis in CDCL. Starting from some initial
heuristic values in h0, the heuristic function is continued as
in Item 1 above, where αi ∈ [0, 1] is a global parameter de-
caying the influence of past values and βi(a) gives the con-
flict score attributed to variable a within conflict analysis.
The value of βi(a) can be thought of being 0 unless a was
scored by analyze in CDCL. Similarly, αi usually equals 1
unless it was lowered at some system-specific point, such as
after a restart. Occurrence-based heuristics like moms (Pre-
tolani 1996) furnish initial heuristics. Prominent look-back
heuristics are berkmin (Goldberg and Novikov 2002) and
vsids (Moskewicz et al. 2001).

For illustration, let us look at a rough trace of atoms a, b,
and c in a fictive run of the CDCL algorithm.

i operation A h s α β
a b c ... a b c ... a b c ...

0 0 1 1 T 1 0 0 0
1 propagate F 0 1 1 T 1 0 0 0

decide F T 0 1 1 T 1 0 0 0

The initial heuristic h0 prefers b, c over a; the sign heuristic
s constantly assigns T . Initial propagation assigns F to a.
This leaves all heuristics unaffected. When invoking decide,
we find b and c among the unassigned variables in U (in
Item 2 above). Assuming the maximum value of h1 to be 1,

2For clarity, we keep using indexes in this algorithmic setting
although this is unnecessary in view of assignment operator ‘:=’.
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both are added to C. This tie is broken by selecting τ(C) =
b in C. Given that the (constant) sign heuristic yields T ,
Item 5 adds signed literal T b to the current assignment.

Next suppose we encounter a conflict involving c at step 8.
This leads to an incrementation of β8(c).

a b c ... a b c ... a b c ...

8 propagate F T F 0 2 2 T 1 0 0 0
analyze F T F 0 2 2 T 1 0 0 1
backjump F 0 2 3 T 1 0 0 0

9 propagate F 0 2 3 T 1 0 0 0
decide F T 0 2 3 T 1 0 0 0

As at step 1, b and c are unassigned after backjumping. Un-
like above, c is now heuristically preferred to b since it oc-
curred more frequently within conflicts.

Without going into detail, we mention that at certain steps
i, parameter αi is decreased for decaying the values of hi
and the conflict scores in βi are re-set (eg. after analyze).

Also, look-back based sign heuristics take advantage of
previous information. The common approach is to choose
the polarity of a literal according to the higher number of
occurrences in recorded nogoods (Moskewicz et al. 2001).
Another effective approach is progress saving (Pipatsrisawat
and Darwiche 2007), caching truth values of (certain) re-
tracted variables and reusing them for sign selection.

Although we focus on look-back heuristics, we mention
that look-ahead heuristics aim at shrinking the search space
by selecting the (signed) variable offering most implications.
This approach relies on failed-literal detection (Freeman
1995) for counting the number of propagations obtained by
(temporarily) adding in turn the variable and its negation to
the current assignment. This count can be used in Item 1
above for computing the values βi(a), while all αi are set to
0 (because no past information is taken into account).

Heuristic language elements
We express heuristic modifications via a set H of heuris-
tic atoms disjoint from A. Such a heuristic atom is formed
from a dedicated predicate h along with four arguments: a
(reified) atom a ∈ A, a heuristic modifier m, and two in-
tegers v, p ∈ Z. A heuristic modifier is used to manipulate
the heuristic treatment of an atom a via the modifier’s value
given by v. The role of this value varies for each modifier.
We distinguish four primitive heuristic modifiers:
init for initializing the heuristic value of a with v,
factor for amplifying the heuristic value of a by factor v,
level for ranking all atoms; the rank of a is v,
sign for attributing the sign of v as truth value to a.
While v allows for changing an atom’s heuristic behavior
relative to other atoms, the second integer p allows us to
express a priority for disambiguating similar heuristic mod-
ifications to the same atom. This is particularly important
in our dynamic setting, where varying heuristic atoms may
be obtained in view of the current assignment. For instance,
the heuristic atoms h(b, sign, 1, 3) and h(b, sign,−1, 5)
aim at assigning opposite truth values to atom b. This con-
flict can be resolved by preferring the heuristic modification

with the higher priority, viz. 5 in h(b, sign,−1, 5). Ob-
viously such priorities can only support disambiguation but
not resolve conflicting values sharing the same priority.

For accommodating priorities, we define for an assign-
ment A the preferred values for modifier m on atom a as

Va,m(A) = argmaxv∈Z{p | T h(a,m, v, p) ∈ A}.

Heuristic values are dynamic; they are extracted from the
current assignment and may thus vary during solving. Note
that Va,m(A) returns the singleton set {v}, if the cur-
rent assignment A contains a single true heuristic atom
h(a,m, v, p) involving a and m. Va,m(A) is empty when-

ever there are no such heuristic atoms. And whenever all
heuristic atoms regarding a and m have the same priority p,
Va,m(A) is equivalent to {v | T h(a,m, v, p) ∈ A}.

Here are a few examples. We obtain Vb,sign(A1) =
{−1} and Vc,init(A1) = ∅ from assignment A1 =
{F a,T h(b, sign, 1, 3),T h(b, sign,−1, 5)}, while as-
signment A2 = {T h(b, sign, 1, 3),T h(b, sign,−1, 3)}
results in Vb,sign(A2) = {1,−1}.

For ultimately resolving ambiguities among alternative
values for heuristic modifiers, we propose for a set V ⊆ Z
of integers the function ν(V ) as

max
(
{v ∈ V | v ≥ 0}∪{0}

)
+min

(
{v ∈ V | v ≤ 0}∪{0}

)
.

Note that ν(∅) = 0, attributing 0 the status of a neutral value.
Alternative options exist, like taking means or median of V
or even time specific criteria relating to the emergence of
values in the assignment. In the above examples, we get
ν(Vb,sign(A1)) = −1 and ν(Vb,sign(A2)) = 0.

Given this, we proceed by defining the domain-specific
extension d to the heuristic function h for a ∈ A as

d0(a) = ν(Va,init(A0)) + h0(a)

and for i ≥ 1

di(a) =

{
ν(Va,factor(Ai))× hi(a) if Va,factor(Ai) 6= ∅

hi(a) otherwise

First of all, it is important to note that d is merely a modi-
fication and not a replacement of the system heuristic h. In
fact, d extends the range of h to (−∞,+∞). Negative val-
ues serve as penalties. The values of the init modifiers are
added to h0 in d0. The use of addition rather than multipli-
cation allows us to override an initial value of 0. Also, the
higher the absolute value of the init modifier, the longer
lasts its effect (given the decay of heuristic values). Unlike
this, factor modifiers rely on multiplication because they
aim at de- or increasing conflict scores gathered during con-
flict analysis. In view of h’s range, a factor greater than 1
amplifies the score, a negative one penalizes the atom, and
0 resets the atom’s score. Enforcing a factor of 1 transfers
control back to the system heuristic h.

Heuristically modified logic programs are simply pro-
grams over A ∪ H, the original vocabulary extended by
heuristic atoms (without restrictions). As a first example, let
us extend our planning encoding by a rule favoring atoms
expressing action occurrences close to the goal situation.
_h(occ(A,T),factor,T,0) :- action(A),time(T).
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With factor, we impose a bias on the underlying heuristic
function h. Rather than comparing, for instance, the plain
values h(occ(a, 2)) and h(occ(a, 3)), a decision is made
by looking at 2 × h(occ(a, 2)) and 3 × h(occ(a, 3)), even
though it still depends on h. A further refined strategy may
suggest considering climbing actions as early as possible.
_h(occ(climb,T),factor,l-T,1) :- time(T).

Clearly, this rule conflicts with the more general rule above.
However, this conflict is resolved in favor of the more spe-
cific rule by attributing it a higher priority (viz. 1 versus 0).

For capturing a domain-specific extension t to the sign
heuristic s, we define for a ∈ A and i ≥ 0:

ti(a) =

{
T if ν(Va,sign(Ai)) > 0
F if ν(Va,sign(Ai)) < 0

si(a) otherwise

As with d above, the extension t to the sign heuristic is dy-
namic. The sign of the modifier’s preferred value determines
the truth value to assign to an atom at hand. No sign modi-
fier (or enforcing a value of 0) leaves sign selection with the
system’s sign heuristic s. For example, the heuristic rule
_h(holds(F,T),sign,-1,0) :- fluent(F),time(T).

tells the solver to assign false to non-deterministically cho-
sen fluents. The next pair of rules is a further refinement
of our strategy on climbing actions, favoring their effective
occurrence in the first half of the plan.
_h(occ(climb,T),sign, 1,0) :- T<l/2,time(T).
_h(occ(climb,T),sign,-1,0) :- T>l/2,time(T).

Thus, while the atom occ(climb, 1) is preferably made true,
false should rather be assigned to occ(climb, l).

Finally, for accommodating rankings induced by level
modifiers, we define for an assignment A and A′ ⊆ A:

`A(A′) = argmaxa∈A′ν(Va,level(A))

The set `A(A′) gives all atoms inA′ with the highest level
values relative to the current assignment A. Similar to d and
t above, this construction is also dynamic and the rank of
atoms may vary during solving. The function `A is then used
to modify the selection of unassigned atoms in the above
elaboration of decide. For this purpose, we replace Item 2
by U := `A(A \ (AT ∪AF )) in order to restrict U to unas-
signed atoms of (current) highest rank. Unassigned atoms at
lower levels are only considered once all atoms at higher lev-
els have been assigned. Atoms without an associated level
default to level 0 because ν(∅) = 0. Hence, negative lev-
els act as a penalty since the respective atoms are only taken
into account once all atoms with non-negative or no associ-
ated level have been assigned.

For a complementary example, consider a level-based
formulation of the previous (factor-based) heuristic rule.
_h(occ(A,T),level,T,0) :- action(A),time(T).

Unlike the above, occ(a, 2) and occ(a, 3) are now associ-
ated with different ranks, which leads to strictly preferring
occ(a, 3) over occ(a, 2) whenever both atoms are unas-
signed. Hence, level modifiers partition the set of atoms
and restrict h to unassigned atoms at the highest level.

The previous replacement along with the above amend-
ments of h and s through the domain-specific extensions d

and t yields the following elaboration of CDCL’s heuristic
choice operation decide for i ≥ 1 (and given d0).2

0. hi−1(a) := di−1(a) for each a ∈ A
1. hi(a) := αi × hi−1(a) + βi(a) for each a ∈ A
2. U := `Ai−1

(A \ (Ai−1
T ∪Ai−1

F ))

3. C := argmaxa∈Udi(a)

4. a := τ(C)

5. Ai := Ai−1 ∪ {ti(a)a}
Although we formally model both h and d (as well as s and
t) as functions, there is a substantial conceptual difference in
practice in that h is a system-specific data structure while d
is an associated method. This is also reflected above, where
h is subject to assignments. Item 0 makes sure that our
heuristic modifications take part in the look-back based evo-
lution in Item 1, and are thus also subject to decay. We added
this as a separate line rather than integrating it into Item 1 in
order to stress that our modifications are modular in leaving
the underlying heuristic machinery unaffected. Item 2 gath-
ers in U all unassigned atoms of highest rank. Among them,
Item 3 collects in C all atoms a with a maximum heuristic
value di(a). Since this is not guaranteed to yield a unique el-
ement, the system-specific tie-breaking function τ is evoked
to return a unique atom. Finally, the modified sign heuristic
ti determines a truth value for a, and the resulting signed
literal ti(a)a is added to the current assignment.

Note that so far all sample heuristic rules were static in the
sense that they are turned into facts by the grounder and thus
remain unchanged during solving. Examples of dynamic
heuristic rules are given at the end of next section.

Our simple heuristic language is easily extended by fur-
ther heuristic atoms. For instance, h(a, true, v, p) and
h(a, false, v, p) have turned out to be useful in practice.
_h(A,level,V,P) :- _h(A,true, V,P).
_h(A,sign, 1,P) :- _h(A,true, V,P).
_h(A,level,V,P) :- _h(A,false,V,P).
_h(A,sign,-1,P) :- _h(A,false,V,P).

For instance, the heuristic atom h(a, true, 3, 3) expands to
h(a, level, 3, 3) and h(a, sign, 1, 3), expressing a pref-

erence for both making a decision on a and assigning it
to true. On the other hand, h(a, false,−3, 3) expands to
h(a, level,−3, 3) and h(a, sign,−1, 3), thus suggesting

not to make a decision on a but to assign it to false if there
is no “better” decision variable.

Another shortcut of pragmatic value is the abstraction
from specific priorities. For this, we use the following rule.
_h(A,M,V,#abs(V)) :- _h(A,M,V).

With it, we can directly describe the heuristic restriction
used in (Rintanen 2011) to simulate planning by iterated
deepening A∗ (Korf 1985) in SAT solving through limiting
choices to action variables, assigning those for time T before
those for time T+1, and always assigning truth value true
(where l is a constant indicating the planning horizon):
_h(occ(A,T),true,l-T) :- action(A), time(T).

Although we impose no restriction on the occurrence of
heuristic atoms within logic programs, it seems reasonable
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Setting Labyrinth Sokoban Hanoi Tower
base configuration 9,108s (14) 2,844s (3) 9,137s (11)

24,545,667 19,371,267 41,016,235
h(a,init,2) 95%(12) 94% 91%(1) 84% 85% (9) 89%

h(a,factor,4) 78% (8) 30%120%(1)107%109%(11)110%
h(a,factor,16) 78%(10) 23%120%(1)107%109%(11)110%

h(a,level,1) 90%(12) 5%119%(2) 91%126%(15)120%
h(f,init,2) 103%(14)123% 74%(2) 71% 97%(10)109%

h(f,factor,2) 98%(12) 49%116%(3)134% 55% (6) 70%
h(f,sign,-1) 94%(13) 89%105%(1)100% 92%(12) 92%

Table 1: Selection from evaluation of heuristic modifiers

to require that the addition of rules containing heuristic
atoms does not alter the stable models of the original pro-
gram. That is, given a logic program P over A and a set
of rules H over A ∪ H, we aim at a one-to-one correspon-
dence between the stable models of P and P ∪H and their
identity upon projection on A. This property is guaranteed
whenever heuristic atoms occur only in the head of rules and
thus only depend upon regular atoms. In fact, so far, this
class of rules turned out to be expressive enough to model
all heuristics of interest, including the ones presented in this
paper. It remains future work to see whether more sophisti-
cated schemes, eg., involving recursion, are useful.

Experiments
We implemented our approach as a dedicated heuristic mod-
ule within the ASP solver clasp (2.1; available at (hclasp)).
We consider moms (Pretolani 1996) as initial heuristic h0
and vsids (Moskewicz et al. 2001) as heuristic function hi.
Accordingly, the sign heuristic s is set to the one associated
with vsids. As base configuration, we use clasp with op-
tions --heu=vsids and --init-moms. To take effect,
the heuristic atoms as well as their contained atoms must be
made visible to the solver via #show directives. Once the
option --heu=domain is passed to clasp, it extracts the
necessary information from the symbol table and applies the
heuristic modifications when it comes to non-deterministic
assignments. Our experiments ran under Linux on dual
Xeon E5520 quad-core processors with 2.26GHz and 48GB
RAM. Each run was restricted to 600s CPU time. Timeouts
account for 600s and performed choices.

To begin with, we report on a systematic study compar-
ing single heuristic modifications. A selection of best re-
sults is given in Table 1; full results are available at (hclasp).
We focus on well-known ASP planning benchmarks in or-
der to contrast heuristic modifications on comparable prob-
lems: Labyrinth, Sokoban, and Hanoi Tower, each com-
prising 32 instances from the third ASP competition (Cal-
imeri et al. 2011).3 We contrast the aforementioned base
configuration with 38 heuristic modifications, (separately)
promoting the choice of actions (a) and fluents (f ) via the
heuristic modifiers factor (1,2,4,8,16), init (2,4,8,16),
level (1,-1), sign (1,-1), as well as attributing values to
factor, init, and level by ascending and descending
time points. The first line of Table 1 gives the sum of times,

3All instances are satisfiable except for one third in Sokoban.

Setting Diagnosis Expansion Repair (H) Repair (S)
base config. 111.1s(115) 161.5s(100) 101.3s(113) 33.3s(27)
s,-1 324.5s(407) 7.6s (3) 8.4s (5) 3.1s (0)
s,-1 f,2 310.1s(387) 7.4s (2) 3.5s (0) 3.2s (1)
s,-1 f,8 305.9s(376) 7.7s (2) 3.1s (0) 2.9s (0)
s,-1 l,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

l,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

Table 2: Abductive problems with optimization

timeouts, and choices obtained by the base configuration on
all 32 instances of each problem class. The results of the
two configurations using factor,1 differ from these fig-
ures in the low per mille range, demonstrating that the in-
frastructure supporting heuristic modifications does not lead
to a loss in performance. The seven configurations in Ta-
ble 1 yield best values in at least one category (indicated in
boldface). We express the accumulated times and choices
as percentage wrt the base configuration; timeouts are total.
We see that the base configuration can always be dominated
by a heuristic modification. However, the whole spectrum
of modifiers is needed to accomplish this. In other words,
there is no dominating heuristic modifier and each problem
class needs a customized heuristic. Looking at Labyrinth,
we observe that a preferred choice of action occurrences (a)
pays off. The stronger this is enforced, the fewer choices
are made. However, the extremely low number of choices
with level does not result in less time or timeouts (com-
pared to a “lighter” factor-based enforcement). While
with level all choices are made on heuristically modi-
fied atoms, both factor-based modifications result in only
43% such choices and thus leave much more room to the
solver’s heuristic. For a complement, a,init,2 as well
as the base configuration (with a,factor,1) make 14% of
their choices on heuristically modified atoms (though the
former produces in total 6% less choices than the latter).
Similar yet less extreme behaviors are observed on the two
other classes. With Hanoi Tower, a slight preference of flu-
ents yields a strictly dominating configuration, whereas no
dominating improvement was observed with Sokoban.

Next, we apply our heuristic approach to problems us-
ing abduction in combination with a #minimize statement
minimizing the number of abducibles. We consider Circuit
Diagnosis, Metabolic Network Expansion, and Transcrip-
tional Network Repair (including two distinct experiments,
H and S). The first uses the ISCAS-85 benchmark circuits
along with test cases generated as in (Siddiqi 2011); this re-
sults in 790 benchmark instances. The second one considers
the completion of the metabolic network of E.coli with reac-
tions from MetaCyc in view of generating target from seed
metabolites (Schaub and Thiele 2009). We selected the 450
most difficult benchmarks in the suite. Finally, we consider
repairing the transcriptional network of E.coli from Regu-
lonDB in view of two distinct experiment series (Gebser et
al. 2010). Selecting the most difficult triple repairs provided
us with 1000 instances. Our results are summarized in Ta-
ble 2. Each entry gives the average runtime and number of
timeouts. Here, heuristic modifiers apply only to abducibles
subject to minimization. For supporting minimization, we
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Problem base base+ h base (SAT) base+ h (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s(1225/1031) 158.9s(1652/657) 187.2s(430) 17.1s (3)

Table 3: Planning Competition Benchmarks ’00 and ’02

assign false to such abducibles (s,-1)4 and gradually in-
crease the bias of their choice by imposing factor 2 and 8
(f) or enforce it via a level modifier (l,1). The second
last setting5 in Table 2 is the winner, leading to speedups of
one to two orders of magnitude over the base configuration.
Interestingly, merely fixing the sign heuristics to F leads at
first to a deterioration of performance on Diagnosis prob-
lems. This is finally overcome by the constant improvement
observed by gradually strengthening the bias of choosing
abducibles. The stronger the preference for abducibles, the
faster the solver converges to an optimum solution. This lim-
ited experiment already illustrates that sometimes the right
combination of heuristic modifiers yields the best result.

Finally, let us consider true PDDL planning problems.
For this, we selected 20 instances from the STRIPS do-
mains of the 2000 and 2002 planning competition (ICAPS).6
In turn, we translated these PDDL instances into facts via
plasp (Gebser et al. 2011) and used a simple planning en-
coding with 15 different plan lengths (l=5,10,..,75) to
generate 3000 ASP instances. Inspired yet different from
(Rintanen 2012), we devised a dynamic heuristic that aims
at propagating fluents’ truth values backwards in time. At-
tributing levels via l-T+1 aims at proceeding depth-first
from the goal fluents.
_h(holds(F,T-1),true, l-T+1) :- holds(F,T).
_h(holds(F,T-1),false,l-T+1) :-

fluent(F), time(T), not holds(F,T).

Our results are given in Table 3. Each entry gives the av-
erage runtime along with the number of (solved satisfiable
instances and) timeouts (in columns two and three). Our
heuristic amendment (base+ h) greatly improves over the
base configuration in terms of runtime and timeouts. On
the overall set of benchmarks, it provides us with 427 more
plans and 374 less timeouts. As already observed by (Rin-
tanen 2012), the heuristic effect is stronger on satisfiable in-
stances. This is witnessed by the two last columns restricting
results to 1655 satisfiable instances solved by either system
setup. Our heuristic extension allows us to reduce the total
number of timeouts from 430 to 3; the reduction in solving
time would be even more drastic with a longer timeout.

Interestingly, the previous dynamic heuristic has no over-

4Assigning T instead leads to a deterioration of performance.
5This corresponds to using h(a,false, 1) for an abducible a.
6We discard Schedule’00 due to grounding issues.

whelming effect on our initial ASP planning problems. An
improvement was only observed on Hanoi Tower problems
(being susceptible to choices on fluents), viz. ‘54%(7) 57%’
in terms of the format used in Table 1. However, restricting
the heuristic to positive fluents by only using the first rule
gives a substantial improvement, namely ‘19%(2) 66%’, in
terms of runtime and timeouts. A direct comparison of both
heuristics shows that, although the latter performs 15% more
choices, it encounters 75% fewer conflicts than the former.

Discussion

Various ways of adding domain-specific information have
been explored in the literature. A prominent approach is
to implement forms of preferential reasoning by directing
choices through a given partial order on literals (Castell et al.
1996; Di Rosa, Giunchiglia, and Maratea 2010; Giunchiglia
and Maratea 2012). To some degree, this can be simulated
by heuristic modifiers like h(a,false, 1) that allow for
computing a (single) inclusion-minimal model. However,
as detailed in (Di Rosa, Giunchiglia, and Maratea 2010),
enumerating all such models needs additional constraints or
downstream tester programs. Similarly, (Balduccini 2011)
modifies the heuristic of the ASP solver smodels to accom-
modate learning from smaller instances. See also (Faber,
Leone, and Pfeifer 2001; Faber et al. 2007). Most notably,
(Rintanen 2012) achieves impressive results in planning by
equipping a SAT solver with planning-specific heuristics.
All aforementioned approaches need customized changes to
solver implementations. Hence, it will be interesting to in-
vestigate how these approaches can be expressed and com-
bined in our declarative framework. Declarative approaches
to incorporating control knowledge can be found in heuris-
tic planning. For instance, (Bacchus and Kabanza 2000)
harness temporal logic formulas, while (Sierra-Santibáñez
2004) also uses dedicated predicates for controlling back-
tracking in a forward planner. However, care must be taken
when it comes to modifying a solver’s heuristics. Although
it may lead to great improvements, it may just as well
lead to a degradation of search. In fact, the restriction of
choice variables may result in exponentially larger search
spaces (Järvisalo, Junttila, and Niemelä 2005). This is-
sue is reflected in our choice of heuristic modifiers, ranging
from an initial bias, over a continued yet scalable one by
factor, to a strict preference with level.

To sum up, we introduced a declarative framework for
incorporating domain-specific heuristics into ASP solving.
The seamless integration into ASP’s input language provides
us with a general and flexible tool for expressing domain-
specific heuristics. As such, we believe it to be the first of its
kind. Our heuristic framework offers completely new pos-
sibilities of applying, experimenting, and studying domain-
specific heuristics in a uniform setting. Our example heuris-
tics merely provide first indications on the prospect of our
approach, but much more systematic empirical studies are
needed to exploit its full power.
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