
Walking on Minimax Paths for k-NN Search

Kye-Hyeon Kim1 and Seungjin Choi1,2
1 Department of Computer Science and Engineering

2 Division of IT Convergence Engineering
Pohang University of Science and Technology

77 Cheongam-ro, Nam-gu, Pohang 790-784, Korea
{fenrir,seungjin}@postech.ac.kr

Abstract

Link-based dissimilarity measures, such as shortest path
or Euclidean commute time distance, base their distance
on paths between nodes of a weighted graph. These
measures are known to be better suited to data mani-
fold with nonconvex-shaped clusters, compared to Eu-
clidean distance, so that k-nearest neighbor (NN) search
is improved in such metric spaces. In this paper we
present a new link-based dissimilarity measure based
on minimax paths between nodes. Two main benefits of
minimax path-based dissimilarity measure are: (1) only
a subset of paths is considered to make it scalable, while
Euclidean commute time distance considers all possible
paths; (2) it better captures nonconvex-shaped cluster
structure, compared to shortest path distance. We de-
fine the total cost assigned to a path between nodes as
Lp norm of intermediate costs of edges involving the
path, showing that minimax path emerges from our Lp

norm over paths framework. We also define minimax
distance as the intermediate cost of the longest edge on
the minimax path, then present a greedy algorithm to
compute k smallest minimax distances between a query
and N data points in O(logN + k log k) time. Nu-
merical experiments demonstrate that our minimax k-
NN algorithm reduce the search time by several orders
of magnitude, compared to existing methods, while the
quality of k-NN search is significantly improved over
Euclidean distance.

Introduction
Given a set of N data points X = {x1, . . . ,xN}, k-nearest
neighbor (k-NN) search in metric spaces involves finding k
closest points in the dataset X to a query xq . Dissimilarity
measure defines distance duv between two data points (or
nodes of a weighted graph) xu and xv in the corresponding
metric space, and the performance of k-NN search depends
on distance metric.

Euclidean distance ‖xu − xv‖2 is the most popular mea-
sure for k-NN search but it does not work well when data
points X lie on a curved manifold with nonconvex-shaped
clusters (see Fig. 1(a)). Metric learning (Xing et al. 2003;
Goldberger et al. 2005; Weinberger and Saul 2009) opti-
mizes parameters involving the Mahalanobis distance using

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

labeled dataset, such that points in the same cluster become
close together and points in the different cluster become far
apart. Most of metric learning methods are limited to linear
embedding, so that the nonconvex-shaped cluster structure
is not well captured (see Fig. 1(b)).

Link-based (dis)similarity measures (Fouss et al. 2007;
Yen, Mantrach, and Shimbo 2008; Yen et al. 2009; Mantrach
et al. 2010; Chebotarev 2011) rely on paths between nodes
of a weighted graph, on which nodes are associated with data
points and intermediate costs (for instance Euclidean dis-
tance) are assigned to edge weights. Distance between nodes
depends on the total cost that is computed by aggregating
edge weights on a path connecting those nodes of interest.
Total cost associated with a path is often assumed to be addi-
tive (Yen, Mantrach, and Shimbo 2008), so the aggregation
reduces to summation. Dissimilarity between two nodes is
calculated by integrating the total costs assigned to all pos-
sible paths between them. Such integration is often deter-
mined by computing the pseudo-inverse of the graph Lapla-
cian, leading to Euclidean commute time distance (ECTD),
regularized Laplacian kernel, and Markov diffusion kernel
(see (Fouss et al. 2007; Yen, Mantrach, and Shimbo 2008;
Fouss et al. 2012) and references therein), which are known
to better capture the nonconvex-shaped cluster structure (see
Fig. 1(c)). However, all possible paths between nodes need
to be considered to compute the distances and the inversion
of N × N matrix requires O(N3) time and O(N2) space,
so it does not scale well to the problems of interest.

Shortest path distance (Dijkstra 1959) is also a popular
link-based dissimilarity measure (Tenenbaum, de Silva, and
Langford 2000), where only shortest paths are considered to
compute the distances between two nodes. Computational
cost is reduced, but the cluster structure is not well captured
when shortest path distance is used for k-NN search (see Fig.
1(d)). The distance between two nodes is computed along
the shortest path only, Randomized shortest path (RSP) dis-
similarity measures were proposed as a family of distance
measures depending on a single parameter, which has in-
teresting property of reducing, on one end, to the standard
shortest path distance when the parameter is large, on the
other hand, to the commute time distance when the parame-
ter is near zero (Yen, Mantrach, and Shimbo 2008).

In this paper we present a new link-based k-NN search
method with minimax paths (Pollack 1960; Gower and Ross

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

518

(a) Euclidean (b) LMNN (c) ECTD (d) Shortest path (e) Minimax distance

Figure 1: Real-world datasets usually contain nonconvex-shaped clusters. For example, two curved clusters (dots) and a query
point (star) are given. Heat map shows the closeness to the query at each point, in terms of the distance measure used (best
viewed in color; more reddish means closer to the query). (a) Euclidean distance cannot reflect the underlying cluster structure
at all. (b) Metric learning (Weinberger and Saul 2009) cannot capture the nonconvex shapes. (c) Link-based distance (Fouss
et al. 2007) captures the underlying cluster correctly, but requires a large amount of computation. (d) Shortest path distance
is efficient to compute, but it is not reliable near the boundary between different clusters. (e) Our method is as efficient as
computing the shortest path distance, while capturing the entire cluster structure correctly.

1969), which is well-known to capture the underlying clus-
ter structure of data (e.g., Fig. 1(e)) (Kim and Choi 2007;
Luo et al. 2008; Zadeh and Ben-David 2009). We develop
a fast k-NN search algorithm that computes the minimax
distance efficiently through the minimax paths between data
points. Our method is as efficient as the shortest-path dis-
tance computation. More specifically, the overall time for k-
NN search with N data points is onlyO(logN+k log k). In
image retrieval experiments on some public image datasets,
our method was several orders of magnitude faster, while
achieving the comparable search quality (in terms of preci-
sion).

The main contributions of this paper are summarized:

1. We develop a novel framework for link-based
(dis)similarity measures where we define the total
cost (corresponding to dissimilarity) assigned to a path
between nodes as Lp norm of intermediate costs of edges
involving the path, showing that minimax path emerges
from our Lp norm over paths framework. This frame-
work has two main benefits: (1) it can reduce the number
of paths considered for the link-based (dis)similarity
computation, which improves the scalability greatly; (2)
even using a small number of paths, it can capture any
nonconvex-shaped cluster structure successfully.

2. We define minimax distance as the intermediate cost of
the longest edge on the minimax path, then present a
greedy algorithm to compute k smallest minimax dis-
tances between a query and N data points in O(logN +
k log k) time, whereas the state of the arts, minimax mes-
sage passing (Kim and Choi 2007) requires O(N) time
for k-NN search.

Aggregation over Paths: Lp Norm
Link-based (dis)similarity is defined on a weighted graph,
denoted by G = (X , E):
• The set of nodes, X = {x1, . . . ,xN}, are associated with
N data points. E = {(i, j) | i 6= j ∈ {1, . . . , N}} is a set
of edges between the nodes, excluding self-loop edges.

• The graph is usually assumed to be sparse such that the
number of edges, |E|, is limited to O(N). A well-known
example is the K-NN graph, where an edge (i, j) exists
only if xi is one of the K nearest neighbors of xj or xj

is one of the K nearest neighbors of xi in the Euclidean
space. The value of K is set to a small constant (usually
5-20) for ensuring sparsity.

Then a link-based (dis)similarity depends on the total cost
associated with paths on the graph. In this section, we de-
scribe our Lp norm approach to the cost aggregation over
paths to compute the total cost along paths.

Let a = (a0, a1, . . . , am) be a path with m hops, connect-
ing the nodes xa0 ,xa1 , . . . ,xam ∈ X through the consec-
utive edges {(a0, a1), (a1, a2), . . . , (am−1, am)} ⊆ E . We
denote a set of paths with m hops between an initial node
xu and a destination node xv by

Am
uv =

{
a
∣∣ a0 = u, am = v, (a`, a`+1) ∈ E ,

a` 6= v, ∀` = 0, . . . ,m− 1
}
, (1)

and denote a set of all possible paths between xu and xv by

Auv = ∪∞m=1Am
uv. (2)

A weight c(i, j) is assigned to each edge (i, j), represent-
ing the intermediate cost of following edge (i, j), usually
defined as the Euclidean distance, i.e., c(i, j) = ‖xi − xj‖.
We define the total cost associated with a path a as

‖c(a)‖p =

[∑
`

c(a`, a`+1)
p

]1/p
, (3)

where the Lp norm (0 < p <∞) is applied. Then we define
our link-based similarity suv between xu and xv as

suv =
∑

a∈Auv

exp

{
− 1

T
‖c(a)‖p

}
, (4)

where T > 0 is temperature which controls how rapidly the
similarity falls off with distance.

519

x
1 x

3

x
2

Cluster 1

Cluster 2

Short link

Long link

Figure 2: An example to show the importance of long edges.
Two distinct clusters and three data points are given, where
x1 and x3 are in the same cluster and x2 belongs to the
opposite cluster.

(a) A loose path, a1 (b) A compact path, a2

Figure 3: An illustrative example that increasing p makes the
Lp norm of a “loose path” (a1) greater than the Lp norm of
a “compact path” (a2). The Lp norm of a path converges to
the longest edge, so that the L∞ norm of a path containing
a longer edge is always greater than that of any other path
containing shorter edges only.

The parameter 0 < p <∞ in Eq. (4) controls the impor-
tance of longer edges in a path. As p increases, the contribu-
tions of longer edges in a path a to the Lp norm ‖c(a)‖p be-
come more dominant than the contributions of shorter edges.
Fig. 2 shows an example why we introduce this parameter.
x1 and x3 are in the same cluster, but they lie farther apart
than x2 and x3 in the Euclidean space. We want to make the
similarity s1,3 larger than s2,3, but it looks difficult because
the path between x1 and x3 is quite long compared to the
direct edge between x2 and x3. One can solve this problem
by focusing only on the longest edge in each path. Connect-
ing data points in the same cluster can be done through short
edges only (e.g., the path between x1 and x3 in Fig. 2) be-
cause they are surrounded with a dense region. By contrast,
connecting data points in distinct clusters should involve one
or more long edges in order to cross sparse regions between
the clusters (e.g., any possible path between x2 and x3 in
Fig. 2). That is, the existence of a path that consists solely of
short edges can be a strong clue whether two data points are
in the same cluster or not. In Eq. (4), increasing p makes the
Lp norm of a path containing long edges (say “loose path”)
greater than the Lp norm of a path containing short edges
only (say “compact path”) (e.g., Fig. 3). That is, the expo-
nential terms of loose paths become smaller than the terms
of compact paths, making the similarity suv within the same
cluster larger than the similarity between different clusters.

The parameter 0 < T < ∞ in Eq. (4), so-called temper-
ature, determines a favor toward a path having a small Lp

norm. A larger value of T makes the exponential terms in
Eq. (4) closer to 1, leading all paths to have more uniform
weights for computing suv , regardless of their Lp norms.

s

s
1q

2q

T = 1/30, p = 1

s

s
1q

2q

T = 1/30, p = 2

s

s
1q

2q

T = 1/30, p = 20

s

s
1q

2q

T = 1/300, p = 1

s

s
1q

2q

T = 1/300, p = 2

s

s
1q

2q

T = 1/300, p = 20

s

s
1q

2q

T = 1/1000, p = 1

s

s
1q

2q

T = 1/1000, p = 2

s

s
1q

2q

T = 1/1000, p = 20

Figure 4: In the example, a query point xq (star) is given
near the boundary of the circle-shaped cluster. x1 (red cir-
cle) lies in the same cluster, but far from the query. x2 (blue
triangle) lies are in a distinct, crescent-shaped cluster, but
close to the query. There are four paths between x1 and xq

and seven paths between x2 and xq , where the line width
of each path a represents its weight exp(− 1

T ‖c(a)‖p) for
computing the similarity as in Eq. (4) (thicker lines are paths
having larger weights; no line means negligible). Then the
link-based similarities s1q (red horizontal bar) and s2q (blue
horizontal bar) are computed by summing weights over the
paths between x1 and xq and between x2 and xq , respec-
tively.

By contrast, A smaller value of T increases the gap be-
tween the exponential terms of smaller Lp norms and the
terms of larger Lp norms, so that makes paths having smaller
Lp norms become more dominant for computing suv while
paths having larger Lp norms become less significant. Thus,
a smaller value of T reduces the number of “effective paths”
in Auv , where the effective paths have sufficiently small Lp

norms (so that have significant weights for computing suv)
compared to the remaining paths.

Consequently, two parameters in our similarity measure,
T and p, play a key role:

1. A larger value of p makes the weights assigned to paths
lying within the same cluster larger than the weights as-
signed to paths lying between different clusters, so that
the similarities between data points within the same clus-
ter can be kept to be large regardless of their Euclidean
distances (e.g., Fig. 2).

2. T reduces the number of paths considered for computing
the link-based similarity. A small value of T allows only
a small number of “effective paths” to have meaningful
contributions to the similarity, and all the other paths be-
come relatively negligible. We introduce this parameter
in order to improve the efficiency of computing link-based
similarities.

520

Fig. 4 illustrates the changes of the similarities between
data points within the same cluster (xq and x1) and be-
tween different clusters (xq and x2) as T decreases and p
increases. When p is small (the leftmost column in Fig.
4), some paths lying between different clusters have small
Lp norms (due to their small total edge costs), so they have
larger weights and more and more dominant effects on the
similarities as T increases (from top to bottom rows in Fig
4). As p increases (from left to right columns in Fig 4), how-
ever, the Lp norms of those paths become larger (due to the
long edges between two clusters) than the Lp norms of the
paths lying in the same cluster, resulting that the paths lying
in the same cluster become dominant.

Note that Eq. (1) allows the repetition of the nodes in
a path (except for the destination node, xv , which is also
called an absorbing node). The repetition makes Am

uv and
Auv infinite, but in the remaining of this paper, we will show
that the aggregation over paths, Eq. (4), is still finite in some
cases of interest (specifically, Eq. (5) and (14)).

Minimax Distance
In the previous section, we show that setting large p and
small T obtains a desirable link-based similarity. Now we
consider the extreme case, i.e., T → 0 and p→∞.

When T → 0, all exponential terms in Eq. (4) become
relatively negligible compared to the exponential term of the
smallest Lp norm, i.e., Eq. (4) converges to

suv → max
a∈Auv

exp

{
− 1

T
‖c(a)‖p

}
. (5)

Essentially, using Eq. (5) as a link-based similarity is equiv-
alent to using the smallest Lp norm as the dissimilarity, i.e.,

d(p)uv = min
a∈Auv

‖c(a)‖p , (6)

which is computed along only one path between xu and xv

that has the smallest Lp norm.
When p → ∞, the Lp norm of a path converges to the

intermediate cost of the longest edge, regardless of any other
edges in the path:

‖c(a)‖∞ = max
`

c(a`, a`+1). (7)

Plugging the infinity norm into Eq. (6), we derive the mini-
max distance, denoted by duv:

duv = min
a∈Auv

‖c(a)‖∞ = min
a∈Auv

(
max

`
c(a`, a`+1)

)
, (8)

and the path between xu and xv having the smallest infinity
norm is called the minimax path. In other words, minimax
distance is the longest edge cost on the minimax path:

duv = max
`

c(a∗` , a
∗
`+1), (9)

where a∗ denotes the minimax path between xu and xv .
Needless to say, if u = v then duu = 0.

Dynamic Programming
Minimax distance is computed along only one path, the min-
imax path between nodes. Using this property, minimax
distance can be computed more efficiently than the exist-
ing link-based (dis)similarities. Now we derive an efficient
computation method for the minimax distance.

First, we reformulate Eq. (8) as a dynamic programming
model. Given Auv = {(a0 = u, . . . , am = v) for m ≥ 1},
suppose that we already know the minimax path and its
longest edge (i.e., minimax distance) between xa1

and xv ,
for all a1 = r such that (u, r) ∈ E . Then, for comput-
ing duv , we only need to (1) compute the longest edge cost,
max(c(u, r), drv), for each path adding the edge (u, r) to
the minimax path (r, . . . , v), and then (2) choose the small-
est one among them. Hence, Eq. (8) can be rewritten as the
following recursive form:

duv = min
xr∈Nu

(
max(c(u, r), drv)

)
, (10)

where Nu = {xr | (u, r) ∈ E}.
Now we derive some useful propositions for computing

Eq. (10) efficiently:

Proposition 1 Let a∗ be the minimax path from xu to xv ,
i.e., a∗ = (a∗0 = u, . . . , a∗m = v) for some m. Then, drv ≤
duv for all subsequent nodes r ∈ {a∗1, . . . , a∗m}.
Proof Suppose that drv > duv for some a∗` = r. From Eq.
(8), we have max` c(a`, a`+1) ≥ drv > duv for all paths
a ∈ Arv. Since the subsequence (a∗` = r, . . . , a∗m = v)
of a∗ is also in Arv, the longest edge in the subsequence
should be greater than duv . However, this is contradictory to
the definition of the minimax distance (Eq. (9)).

Proposition 2 For xr ∈ Nu, the term max(c(u, r), drv) in
Eq. (10) is negligible for computing duv if drv > duv .

Proof From Proposition 1, xr is not involved in the mini-
max path from xu to xv , so the term is negligible. Also, if
drv > duv , then max(c(u, r), drv) > duv , meaning that the
term has definitely no effect on duv .

Proposition 3 For computing duv using Eq. (10), we need
to know only drv such that drv ≤ duv and (u, r) ∈ E .

Proof From Proposition 2, duv is independent of any drv
such that drv > duv , i.e., only the case drv ≤ duv among
xr ∈ Nu is possible to affect duv .

Greedy Algorithm
For k-NN search, we compute the minimax distance duq be-
tween each data point xu ∈ X and a given query point xq .
Using Eq. (10) and the propositions, now we develop an ef-
ficient algorithm for computing the minimax distances to xq

in k-NN search.
Before deriving the algorithm, we need to consider the

case when the query is a new, unseen data point (i.e., xq /∈
X , called out-of-sample), which is usual in k-NN search.
Since xq /∈ X , there is no predefined edge from/to xq in the
graph G = (X , E), nor path between xq and any xu ∈ X .
Thus, we should first connect xq to the graph by adding new
edges (q, j) for some xj ∈ X . For a K-NN graph (described

521

in the beginning of the previous section), xq is connected
with its K-NNs among X = {x1, . . . ,xN} in terms of the
Euclidean distance, which can be done in O(logN) time by
space partitioning (Beis and Lowe 1997; Samet 2005).

Now we derive the following theorem that implies “for
computing the (t + 1)-th smallest minimax distance to xq ,
we need to know only t smallest minimax distances to xq”:

Theorem 1 Let xu be the (t + 1)-th NN of xq in terms of
the minimax distance. Then computing duq using Eq. (10)
needs only the terms max(c(u, r), drq) such that (u, r) ∈ E
and xr ∈ {xq,x

(1), . . . ,x(t)}, where x(t) denotes the t-th
NN of xq in terms of the minimax distance.

Proof From Proposition 3, computing duq requires drq such
that drq ≤ duq and (u, r) ∈ E . Since duq is the (t + 1)-
th smallest minimax distance to xq , such xr should be the
query xq (dqq = 0) or one of the 1st, ..., t-th NNs of xq .

Theorem 1 leads us to develop an incremental algorithm
for k-NN search, as shown in Algorithm 1. The source code,
programmed in C and MATLAB, is publicly available at
http://home.postech.ac.kr/∼fenrir/mm knn.html. Below we
list some notes for easier understanding of the algorithm:
• When a given query is out-of-sample, the algorithm first

connects xq with some nodes xr ∈ X (line 2, assuming
that G is a K-NN graph).

• We introduce a set of candidates, xu ∈ Q, which are con-
nected with one or more of {xq,x

(1), . . . ,x(t)} so that
can only be expected to be the (t + 1)-th NN. The al-
gorithm searches Q instead of the whole set X , thereby
reducing the computational cost of k-NN search greatly.
• For each candidate xu ∈ Q, the algorithm maintains and

updates the estimate of duq , denoted by d̂uq . At each it-
eration t, the term max(c(u, r), drq) of the t-th NN xr is
applied to every d̂uq such that (u, r) ∈ E (line 5-9).

• The update procedure (line 5-9) monotonically reduces
d̂uq . At iteration t, each d̂uq becomes the minimum
among max(c(u, r), drq) such that (u, r) ∈ E and xr ∈
{xq,x

(1), . . . ,x(t)}. From Theorem 1, d̂uq becomes the
exact (t + 1)-th smallest minimax distance if xu is the
(t+ 1)-th NN. Otherwise, d̂uq ≥ duq and will monotoni-
cally decrease until d̂uq = duq .
• After the update procedure, we have (1) the exact estimate

of the (t + 1)-th smallest minimax distance and (2) the
estimates of the (t+2)-th, (t+3)-th, ... smallest minimax
distances that are clearly never smaller than the (t + 1)-
th smallest minimax distance. Thus, the algorithm can
obtain the (t+1)-th NN by greedily choosing the smallest
estimate d̂uq among xu ∈ Q (line 10-11).

Time Complexity
Now we show that the time complexity of our algorithm for
k-NN search is O(logN + k log k) when the graph G =

(X , E) is sparse such that |E| = O(N) or 1
N

∑N
i=1 |Ni| =

O(1) (e.g., a K-NN graph with a small constant K).
First, we summarize the computation time for each step:

Algorithm 1 Minimax k-NN search (MM-kNN)
Input: a query point xq , the number of NNs k, and a graph
G = (X , E) where X = {x1, . . . ,xN}

Output: k-NNs of xq in terms of the minimax distance, de-
noted by {x(1), . . . ,x(k)} ⊂ X

1: if xq /∈ X (“out-of-sample”) then compute
2: | Nq = {K-NNs of xq w.r.t. Euclidean distance}
3: Initialize Q ← {}, dqq ← 0, and r ← q

4: for t = 0 to k do /* xr denotes x(t) */
5: | for each xu ∈ Nr where xu 6= xq,x

(1), . . . ,x(t) do
6: | | if xu /∈ Q then
7: | | | d̂uq ← max(c(u, r), drq); INSERT xu into Q
8: | | else
9: | | | UPDATE: d̂uq ← min

(
d̂uq, max(c(u, r), drq)

)
10: | EXTRACT-MIN xr from Q: r = argminu:xu∈Q d̂uq
11: | Set x(t+1) ← xr and drq ← d̂rq

• Line 2: O(logN) time in order to find the K-NNs by
space partitioning (Beis and Lowe 1997; Samet 2005).

• Line 3: a constant time.

• Line 4-11 repeats k + 1 times, where

– Line 5-9 repeats at most |Nr| time, where UPDATE and
INSERT take a constant amortized time in a Fibonacci
heap (Fredman and Tarjan 1987) of {d̂uq | xu ∈ Q};

– Line 10: O(log |Q|) time using the Fibonacci heap.

Since |Nr| is bounded by a constant in average, line 5-9 re-
quires a constant time. Since the size ofQ increases at most
|Nr|−1 (i.e., bounded by a constant;−1 is due to EXTRACT-
MIN) in each iteration, the size |Q| can be at mostO(k) until
the k-th iteration. Hence, line 10 requires at most O(log k)
time. Finally, line 11 takes a constant time.

Consequently, the computation time for line 4-11 is
O(k log k). Adding O(logN) time taken at line 2, finally
we have the overall time complexity of O(logN + k log k).

Related Work
In our Lp norm framework, we can also derive two existing
link-based (dis)similarities, (1) a link-based similarity (Yen,
Mantrach, and Shimbo 2008) that is computed along all pos-
sible paths and (2) the shortest path distance.

From the theory of absorbing Markov chains, the aggre-
gation of all possible paths between nodes can be formulated
as the (pseudo-)inverse of the graph Laplacian matrix or sim-
ilar variants, and many existing link-based (dis)similarities
come from the theory (e.g., the (Euclidean) commute time
distance, regularized Laplacian kernel, Markov diffusion
kernel, and so on; see (Fouss et al. 2007; Yen, Mantrach, and
Shimbo 2008; Fouss et al. 2012) and references therein). In
Appendix, we derive one of the (dis)similarities, proposed
in (Yen, Mantrach, and Shimbo 2008), from our Lp norm
framework with p = 1. The derivation clearly shows the
reason why the existing link-based (dis)similarities, which
are computed along all possible paths, require high compu-
tational cost.

522

Our Lp norm framework also derives the shortest path dis-
tance. When p = 1 and T → 0 in Eq. (4), we have the
smallest L1 norm as the dissimilarity (i.e., p = 1 in Eq. (6)):

d(1)uv = min
a∈Auv

∑
`

c(a`, a`+1), (11)

which is the shortest path distance, and the path having the
smallest L1 norm is the shortest path between xu and xv .
Similar to our algorithm for the minimax distance, Eq. (11)
can be computed efficiently along the shortest path only.
However, the shortest path distance cannot capture the un-
derlying cluster structure of data well. When a query point
is given near a boundary of a cluster, k-NN search using the
shortest path distance prefers data points in different clus-
ters. Some examples are shown in Fig. 1(d) and the bottom-
left plot in Fig. 4 (when p = 1 and T ≈ 0).

Our Lp norm framework provides a solution to overcome
the limitations of the existing link-based (dis)similarities.
First, we introduce the temperature parameter, T , where a
smaller value of T reduces the number of effective paths for
the link-based (dis)similarity computation, improving the
scalability. Second, we define the total cost of each path
as the Lp norm, where a larger value of p makes paths lying
within the same cluster more effective. Finally, we obtain
the minimax distance, which is computed very efficiently
along only one path (by setting T → 0), while capturing
the underlying cluster structure better than the shortest path
distance (by setting p→∞).

Experiments
We compared our minimax k-NN search method (MM-
kNN) to the following (dis)similarity measures:

• Euclidean distance (Euclidean).

• The shortest path distance (Shortest) with Dijkstra’s algo-
rithm (Dijkstra 1959).

• The pseudo-inverse of the Laplacian matrix (L+), which
is a fundamental link-based similarity for many other ex-
isting link-based (dis)similarities (Fouss et al. 2007).

The comparison to the first two measures aims to show that
MM-kNN obtains significantly better k-NN search qual-
ity (in terms of precision). The comparison to L+ aims
to show that our MM-kNN is much faster (O(N) versus
O(logN + k log k)), while obtaining comparable k-NN
search quality. All methods were implemented in MAT-
LAB, and run on an Intel Core2 Duo 2.4GHz CPU with
4GB memory. For L+, we used a recent method of par-
tial computation (Yen, Mantrach, and Shimbo 2008). For all
link-based (dis)similarities, we constructed the K-NN graph
G = (X , E) with K = 20 for each dataset.

First, we compared the methods on the Two-moon toy
datasets (Fig. 5). Under the varying size of the dataset as
N = 103, . . . , 106, Fig. 6 clearly shows that the k-NN
search time of MM-kNN and Shortest grows very slowly,
compared to the time of L+. For varying k, the time of MM-
kNN and Shortest grows slightly faster than O(k), which is
consistent with the time complexity w.r.t. k, O(k log k).

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Figure 5: Two-moon dataset.

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

The number of NNs (k)
R

u
n
n
in

g
 t
im

e
 (

m
s
e
c
.)

L

+
, N = 10

6

L
+
, N = 10

5

L
+
, N = 10

4

L
+
, N = 10

3

Shortest, N = 10
6

Shortest, N = 10
5

Shortest, N = 10
4

Shortest, N = 10
3

Minimax, N = 10
6

Minimax, N = 10
5

Minimax, N = 10
4

Minimax, N = 10
3

Figure 6: The k-NN search time of each method on Two-
moon datasets with varying N and k.

We also considered the content-based image retrieval
task, performing k-NN search (using MM-kNN, L+, Short-
est, and Euclidean) on the following image databases:

• Yale-B database (Yale-B, http://vision.ucsd.edu/∼leekc/
ExtYaleDatabase/Yale Face Database.htm) (Georghiades,
Belhumeur, and Kriegman 2001; Lee, Ho, and Kriegman
2005) contains images of 10 people with various poses
and illumination conditions. We chose the images of all
64 different illumination conditions of the frontal faces
(i.e. N = 640).

• Columbia University Image Library database (COIL-100,
http://www.cs.columbia.edu/CAVE/software/softlib/coil-
100.php) (Nene, Nayar, and Murase 1996) consists of
color images of 100 objects, given 72 different views for
each object (i.e. N = 7200).

• Animal data (Animal, http://ml.nec-labs.com/download/
data/videoembed/) (Mobahi, Collobert, and Weston 2009)
is a database of N = 4371 color images of 60 toy animals
(such as horse and several kinds of birds). There are about
72 images of different views per animal.

• USPS database (USPS) contains N = 7291 handwritten
digit images. It is popularly used for pattern recognition
and content-based image retrieval.

We performed N experiments of k-NN search (k = 63
on Yale-B; k = 71 on COIL-100 and Animal; k = 100
on USPS) where the i-th image in a database was used as a

523

Table 1: Average computation time per query (msec.), with
1 standard deviation

MM-kNN Shortest L+

Yale-B 0.23±0.06 0.20±0.11 5.10±2.37
COIL-100 0.17±0.12 0.20±0.17 131.1±8.91
Animal 0.56±0.35 0.85±0.48 151.6±25.2
USPS 0.73±0.47 0.80±0.59 376.5±39.1

10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of NNs (k)

P
re

c
is

io
n

 (
%

)

Minimax

L+

Shortest

Euclidean

(a) Yale-B

20 40 60
0.5

0.6

0.7

0.8

0.9

1

Number of NNs (k)

P
re

c
is

io
n

 (
%

)

Minimax

L+

Shortest

Euclidean

(b) COIL-100

20 40 60
0.2

0.4

0.6

0.8

1

Number of NNs (k)

P
re

c
is

io
n

 (
%

)

Minimax

L+

Shortest

Euclidean

(c) Animal

20 40 60 80 100
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Number of NNs (k)

P
re

c
is

io
n

 (
%

)

Minimax

L+

Shortest

Euclidean

(d) USPS

Figure 7: Average precision of k-NN search using some
(dis)similarity measures.

query for the i-th experiment. Then we averaged the preci-
sions (the proportion of retrieved images in the same class
with the query image) and the computation times for k-NN
search over all N experiments.

Table 1 summarizes the average running time of k-NN
search using each method on each dataset. MM-kNN and
Shortest clearly outperformed L+ up to several orders of
magnitude, since they consider only one path (minimax path
and shortest path, respectively) from each data point to a
query point. Fig. 7 shows the average precision of k-
NN search with each (dis)similarity measure. MM-kNN
achieved significantly better precision than the shortest path
distance and Euclidean distance. It means that the mini-
max path can capture the underlying cluster structure of data
better than the shortest path. While MM-kNN was some-
what poorer than L+ in precision, MM-kNN can be a scal-
able alternative to L+ and other similar existing link-based
(dis)similarities.

Conclusions
We have addressed k-NN search with the minimax distance.
We showed that the minimax distance is more efficient to
compute than the existing link-based measures, since it ig-

nores any other paths between nodes except for the minimax
path. We also showed that the minimax path better captures
the latent cluster structure of data than the shortest path. We
proposed a novel efficient algorithm for k-NN search that
greedily computes the 1st, 2nd, ..., and the k-th smallest
minimax distances to a given query point. We proved that
the time complexity of our method is O(logN + k log k),
which is far faster than computing the existing link-based
(dis)similarities. We applied our method to image retrieval
tasks, and showed that our method can be a scalable alterna-
tive to the existing link-based (dis)similarity measures.

Acknowledgments
This work was supported by National Research Founda-
tion (NRF) of Korea (2012-0005032), NIPA ITRC Support
Program (NIPA-2013-H0301-13-3002), the Converging Re-
search Center Program funded by MEST (2012K001343),
NIPA and Microsoft Research Asia Joint Support Program,
POSTECH Rising Star Program, and NRF World Class Uni-
versity Program (R31-10100).

Appendix: Lp Norm Aggregation with p = 1
When p = 1 in Eq. (4), each exponential term of the Lp

norm can be decomposed into the product of the exponential
factors:

suv =
∑

a∈Auv

exp

{
− 1

T

∑
`

c(a`, a`+1)

}

=
∑

a∈Auv

∏
`

exp

{
− 1

T
c(a`, a`+1)

}
. (12)

Eq. (12) can be represented as a matrix form. Consider an
N×N matrix W (or (N+1)×(N+1) when a given query
xq is out-of-sample and is included as xq = xN+1) whose
(i, j)-th entry is [W]ij = exp

{
− 1

T c(i, j)
}

, except that the
v-th row [W]v1, . . . , [W]vN = 0 in order to make xv an
absorbing node. Then, it is well known that the (u, v)-th
entry of Wm (W to the power m) is the sum of the products
in Eq. (12) over all m-hop paths between xu and xv , i.e.,

[Wm]uv =
∑

a∈Am
uv

∏
`

exp

{
1

T
c(a`, a`+1)

}
, (13)

e.g., [W 2]uv =
∑

r exp(−
1
T c(u, r)) exp(−

1
T c(r, v)) sum-

ming over all 2-hop paths a = (u, r, v) ∈ A2
uv .

Since Auv = ∪∞m=1Am
uv , Eq. (12) can be rewritten as

suv =
∑∞

m=1[W
m]uv . When the largest absolute eigen-

value of W is less than 1, the series of powers converges
as
∑∞

m=1 W
m = (I −W)−1 − I where I is the identity

matrix. Thus, we have

suv = [(I −W)−1 − I]uv, (14)

which is exactly the same form as a partition function pro-
posed in (Yen, Mantrach, and Shimbo 2008). Similar to the
pseudo-inverse of the graph Laplacian matrix (Fouss et al.
2007), aggregating all possible paths between nodes requires
the inversion of the N × N matrix, (I −W)−1, which is

524

infeasible when N is large because of the high computa-
tional cost ofO(N3) in time andO(N2) in space. For k-NN
search, however, we need only the q-th column in Eq. (14),
denoted by lq = [s1q, . . . , sNq]

>, which can be computed
by solving the following linear system:

(I −W)>lq = eq, (15)

where [eq]q = 1 and [eq]i = 0 for all i 6= q. The com-
putation time can be reduced up to O(N), but it is still not
sufficiently fast for real-time search in large-scale applica-
tions.

References
Beis, J. S., and Lowe, D. G. 1997. Shape indexing using
approximate nearest-neighbour search in high-dimensional
spaces. In Proceedings of the IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
1000–1006. San Juan, Puerto Rico: IEEE Computer Soci-
ety.
Chebotarev, P. 2011. A class of graph-geodetic distances
generalizing the shortest-path and the resistance distances.
Discrete Applied Mathematics 159(5):295–302.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Fouss, F.; Pirotte, A.; Renders, J. M.; and Saerens, M. 2007.
Random-walk computation of similarities between nodes of
a graph with application to collaborative recommendation.
IEEE Trans. Knowledge and Data Engineering 19(3):355–
369.
Fouss, F.; Francoisse, K.; Yen, L.; Pirotte, A.; and Saerens,
M. 2012. An experimental investigation of kernels on graphs
for collaborative recommendation and semisupervised clas-
sification. Neural Networks 31:53–72.
Fredman, M. L., and Tarjan, R. E. 1987. Fibonacci heaps
and their uses in improved network optimization algorithms.
Journal of the ACM 34(3):596–615.
Georghiades, A. S.; Belhumeur, P. N.; and Kriegman, D. J.
2001. From few to many: Illumination cone models for face
recognition under variable lighting and pose. IEEE Trans.
Pattern Analysis and Machine Intelligence 23(6):643–660.
Goldberger, J.; Roweis, S.; Hinton, G.; and Salakhutdinov,
R. 2005. Neighbourhood components analysis. In Ad-
vances in Neural Information Processing Systems (NIPS),
volume 17, 513–520. Vancouver, Canada: MIT Press.
Gower, J. C., and Ross, G. J. S. 1969. Minimum spanning
tree and single-linkage cluster analysis. Applied Statistics
18:54–64.
Kim, K.-H., and Choi, S. 2007. Neighbor search with global
geometry: A minimax message passing algorithm. In Pro-
ceedings of the International Conference on Machine Learn-
ing (ICML), 401–408. Corvallis, Oregon, USA: ACM.
Lee, K.-C.; Ho, J.; and Kriegman, D. 2005. Acquiring linear
subspaces for face recognition under variable lighting. IEEE
Trans. Pattern Analysis and Machine Intelligence 27(5):1–
15.

Luo, H.; Niu, C.; Shen, R.; and Ullrich, C. 2008. A collabo-
rative filtering framework based on both local user similarity
and global user similarity. Machine Learning 72(3):231–
245.
Mantrach, A.; Yen, L.; Callut, J.; Francoisse, K.; Shimbo,
M.; and Saerens, M. 2010. The sum-over-paths covariance
kernel: A novel covariance measure between nodes of a di-
rected graph. IEEE Trans. Pattern Analysis and Machine
Intelligence 32(6):338–361.
Mobahi, H.; Collobert, R.; and Weston, J. 2009. Deep learn-
ing from temporal coherence in video. In Proceedings of
the International Conference on Machine Learning (ICML),
737–744. Montreal, Canada: ACM.
Nene, S. A.; Nayar, S. K.; and Murase, H. 1996. Columbia
object image library (COIL-100). Technical Report CUCS-
006-96, Department of Computer Science, Columbia Uni-
versity.
Pollack, M. 1960. The maximum capacity through a net-
work. Operation Research 8(5):733–736.
Samet, H. 2005. Foundations of Multidimensional and Met-
ric Data Structures. San Francisco, California, USA: Mor-
gan Kaufmann Publishers Inc.
Tenenbaum, J. B.; de Silva, V.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. Science 290:2319–2323.
Weinberger, K. Q., and Saul, L. K. 2009. Distance met-
ric learning for large margin nearest neighbor classification.
Journal of Machine Learning Research 10:207–244.
Xing, E. P.; Ng, A. Y.; Jordan, M. I.; and Russel, S. 2003.
Distance metric learning, with application to clustering with
side-information. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 15, 505–512. Vancouver,
Canada: MIT Press.
Yen, L.; Fouss, F.; Decaestecker, C.; Francq, P.; and
Saerens, M. 2009. Graph nodes clustering with the sig-
moid commute-time kernel: A comparative study. Data &
Knowledge Engineering 68(3):338–361.
Yen, L.; Mantrach, A.; and Shimbo, M. 2008. A family
of dissimilarity measures between nodes generalizing both
the shortest-path and the commute-time distances. In Pro-
ceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 785–793.
Las Vegas, Nevada, USA: ACM.
Zadeh, R. B., and Ben-David, S. 2009. A uniqueness theo-
rem for clustering. In Proceedings of the International Con-
ference on Uncertainty in Artificial Intelligence (UAI), 639–
646. Montreal, Canada: AUAI Press.

525

