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Abstract
Motivated by the problem of building a basic reasoner
for general game playing with imperfect information,
we address the problem of filtering with logic pro-
grams, whereby an agent updates its incomplete knowl-
edge of a program by observations. We develop a filter-
ing method by adapting an existing backward-chaining
and abduction method for so-called open logic pro-
grams. Experimental results show that this provides a
basic effective and efficient “legal” player for general
imperfect-information games.

Introduction
A general game-playing (GGP) system is one that can under-
stand the rules of arbitrary games and use these rules to play
effectively. The annual GGP competition at AAAI has been
established in 2005 to foster research in this area (Gene-
sereth, Love, and Pell 2005). While the competition in the
past has focused on games in which players always know the
complete game state, a recent extension (Thielscher 2011) of
the formal game description language GDL also allows the
description of general randomized games with imperfect and
asymmetric information (Quenault and Cazenave 2007).

GDL uses normal logic program clauses to describe
the rules of a game (Genesereth, Love, and Pell 2005).
For games with perfect information, standard resolution
techniques can be used to build a basic, so-called legal
player that throughout a game always knows its allowed
moves (Love et al. 2006). Efficient variations exist that
use tailored data structures and algorithms for comput-
ing moves in classic GDL (Schkufza, Love, and Gene-
sereth 2008; Waugh 2009; Kissmann and Edelkamp 2010;
Saffidine and Cazenave 2011). But the generalization to
imperfect-information games raises a fundamentally new
reasoning challenge even for such a basic player. Comput-
ing with all possible states is practically infeasible except for
very simple games (Parker, Nau, and Subrahmanian 2005).
This is why the only two existing GGP systems described
in the literature for imperfect-information GDL (Edelkamp,
Federholzner, and Kissmann 2012; Schofield, Cerexhe, and
Thielscher 2012) use the more practical alternative of ran-
domly sampling states (Richards and Amir 2009; Silver and
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Veness 2010). But in so doing these players reason with a
mere subset of all models, which is logically incorrect.

In this paper we address the problem of building a logi-
cally sound and efficient basic reasoning system for general
imperfect-information games by first isolating and address-
ing the problem of filtering with logic programs: Suppose
given a logic program with some hidden facts of which we
have only partial knowledge. Suppose further that some con-
sequences of this incomplete program can be observed. The
question then is, what other conclusions can we derive from
our limited knowledge plus the observations? This can be
seen as an instance of the general notion of filtering as any
process by which an agent updates its belief according to
observations (Amir and Russell 2003).

We develop a method for filtering with logic programs
under the assumption that incomplete knowledge is repre-
sented by two sets containing, respectively, known and un-
known atoms, in the sense of 3-valued logic (Kleene 1952).
Adapting an inference method for abduction in so-called
open logic programs (Bonatti 2001a; 2001b), we show how
a method for filtering can be obtained by augmenting stan-
dard backward-chaining with the computation of support.

We apply this method for filtering with logic programs to
build a legal player for general game playing with imper-
fect information that, just like its counterpart for perfect-
information games, is based on backward-chaining. We
prove that the reasoner thus obtained is sound. We also show
it to be complete if, as in perfect-information games, the
player can observe all other players’ moves. Experimental
results with all imperfect-information games used at past
GGP competitions demonstrate the effectiveness and effi-
ciency of our method for a legal player to always know its
allowed moves in almost all games. This in fact supports
an argument that can be made for requiring that all games
for competitions such as at AAAI be written so that basic
backward-chaining is all that is needed to derive a player’s
legal moves. Interestingly, the experiments also revealed that
in many existing game descriptions players are not given
enough information to know the outcome after termination.

After the following brief summary of GDL, we define the
problem of filtering with logic programs. We then develop a
filtering method based on backward-chaining and abduction
of support. We apply this to build a basic and logically sound
legal player, present our experimental results, and conclude.
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1 role(monty). role(candidate).

2

3 init(closed(1)). init(closed(2)). init(closed(3)).

4 init(step(1)).

5

6 legal(monty,hide_car(D)) :- true(step(1)),

7 true(closed(D)).

8 legal(monty,open_door(D)) :- true(step(2)),

9 true(closed(D)),

10 not true(car(D)),

11 not true(chosen(D)).

12 legal(monty,noop) :- true(step(3)).

13 legal(candidate,choose(D)) :- true(step(1)),

14 true(closed(D)).

15 legal(candidate,noop) :- true(step(2)).

16 legal(candidate,noop) :- true(step(3)).

17 legal(candidate,switch) :- true(step(3)).

18

19 sees(candidate,D) :- does(monty,open_door(D)).

20 sees(candidate,D) :- true(step(3)), true(car(D)).

21 sees(monty,move(R,M)) :- does(R,M).

22 next(car(D)) :- does(monty,hide_car(D)).

23 next(car(D)) :- true(car(D)).

24 next(closed(D)) :- true(closed(D)),

25 not does(monty,open_door(D)).

26 next(chosen(D)) :- does(candidate,choose(D)).

27 next(chosen(D)) :- true(chosen(D)),

28 not does(candidate,switch).

29 next(chosen(D)) :- does(candidate,switch),

30 true(closed(D)),

31 not true(chosen(D)).

32

33 next(step(2)) :- true(step(1)).

34 next(step(3)) :- true(step(2)).

35 next(step(4)) :- true(step(3)).

36

37 terminal :- true(step(4)).

38

39 goal(candidate,100) :- true(chosen(D)), true(car(D)).

40 goal(candidate, 0) :- true(chosen(D)), not true(car(D)).

41 goal(monty, 100) :- true(chosen(D)), not true(car(D)).

42 goal(monty, 0) :- true(chosen(D)), true(card(D)).

Figure 1: A description of the Monty Hall game (Rosenhouse 2009) adapted from (Schofield, Cerexhe, and Thielscher 2012).

Background: GDL-II
The science of general game playing requires a formal lan-
guage for specifying arbitrary games by a complete set of
rules. The declarative Game Description Language (GDL)
serves this purpose (Genesereth, Love, and Pell 2005). It
uses the syntax of normal logic programs (Lloyd 1987) and
is characterized by these special keywords:

role(R) R is a player
init(F) feature F holds in the initial position
true(F) feature F holds in the current position
legal(R,M) R has move M in the current position
does(R,M) player R does move M
next(F) feature F holds in the next position
terminal the current position is terminal
goal(R,V) player R gets payoff V
distinct(X,Y) terms X,Y are syntactically different

sees(R,P) player R is told P in the next position
random the random player (aka. Nature)

Originally designed for games with complete informa-
tion (Genesereth, Love, and Pell 2005), GDL has recently
been extended to GDL-II (for: GDL with incomplete/imper-
fect information) by the last two keywords (sees, random)
to describe arbitrary (finite) games with randomized moves
and imperfect information (Thielscher 2010).
Example 1 (Monty Hall) The GDL-II rules in Fig. 1 for-
malize a game based on a popular problem where a car prize
is hidden behind one of three doors, a goat behind the oth-
ers, and where a candidate is given two chances to pick a
door. The intuition behind the rules is as follows.1 Line 1
introduces the players’ names. Lines 3–4 define the features
of the initial game state. The allowed moves are specified by
the rules for legal: In step 1, Monty Hall decides where to

1For the sake of readability, we write GDL in standard Prolog
syntax instead of the prefix notation used at competitions.

place the car (lines 6–7) and, simultaneously, the candidate
chooses a door (lines 13–14); in step 2, Monty Hall opens
one of the other doors (lines 8–11) but not the one with a car
behind it; finally, the candidate can either stick to the ear-
lier choice (noop) or switch (lines 16–17). The candidate’s
only percepts are: the door opened by the host (line 19) and
the location of the car at the end of the game (line 20).
Monty Hall, on the other hand, sees all moves by the candi-
date (line 21). The remaining rules specify the state update
(next), the conditions for the game to end (terminal), and
the payoff for the players depending on whether the candi-
date picked the right door (goal).

Formal Syntax and Semantics In order to admit an un-
ambiguous interpretation, GDL-II game descriptions must
obey certain general syntactic restrictions. Specifically, a
valid game description must be stratified (Apt, Blair, and
Walker 1987) and allowed (Lloyd and Topor 1986). Strat-
ified logic programs are known to admit a specific stan-
dard model (Apt, Blair, and Walker 1987), which equals its
unique stable model (Gelfond and Lifschitz 1988). A further
syntactic restriction ensures that only finitely many positive
instances are true in this model; for details we must refer
to (Love et al. 2006) for space reasons. Under these restric-
tions, any valid GDL-II game description determines a state
transition system as follows.

To begin with, the derivable instances of role(R) define
the players, and the initial state consists in the derivable in-
stances of init(F). In order to determine the legal moves
of a player in any given state, this state has to be encoded
first, using the keyword true: Let S = {f1, . . . , fn} be a
state (i.e., a finite set of ground terms over the signature of
G), then G is extended by the n facts

Strue
def
= { true(f1). . . . true(fn).} (1)

Those instances of legal(R,M) that follow fromG∪Strue
define all legal moves M for player R in position S.
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In the same way, the clauses with terminal and
goal(R,N) in the head define, respectively, termination and
goal values relative to the encoding of a given position.

Determining a position update and the percepts of the
players requires the encoding of both the current position
and a joint move. Specifically, let M denote that play-
ers r1, . . . , rk take moves m1, . . . ,mk, then

Mdoes def
= { does(r1,m1). . . . does(rk,mk). } (2)

All instances of next(F) that follow from G ∪Mdoes ∪
Strue compose the updated position; likewise, the derivable
instances of sees(R,P) describe what a player perceives
when the given joint move is done in the given position.
All this is summarized below, where “|=” denotes entailment
wrt. the unique stable model of a stratified set of clauses.

Definition 1 The semantics of a valid GDL-II game de-
scription G is the state transition system given by
• R = {r : G |= role(r)} (player names);
• s1 = {f : G |= init(f)} (initial state);

• t = {S : G ∪ Strue |= terminal} (terminal states);

• l = {(r,m, S) : G ∪ Strue |= legal(r,m)} (legal moves);

• u(M,S) = {f : G ∪Mdoes ∪ Strue |= next(f)} (update);

• I = {(r,M, S, p) : G ∪ Mdoes ∪ Strue |= sees(r, p)}
(players’ percepts);

• g = {(r, v, S) : G ∪ Strue |= goal(r, v)} (goal values).

GDL-II games are played using the following protocol.

1. All players receive the complete game description G.

2. Starting with s1, in each state S each player r ∈ R selects
a legal move from {m : l(r,m, S)}. (The predefined role
random, if present, chooses a legal move with uniform
probability.)

3. The update function (synchronously) applies the joint
moveM to the current position, resulting in the new posi-
tion S′ = u(M,S). Furthermore, the roles r receive their
individual percepts {p : I(r,M, S, p)}.

4. This continues until a terminal state is reached, and then
the goal relation determines the result for all players.

Filtering with Logic Programs
The original game protocol for GDL (Love et al. 2006) dif-
fers from the above in that players are automatically in-
formed about each other’s moves in every round. Since
they start off with complete knowledge of the initial state,
knowing all moves implies that players have complete state
knowledge throughout a game because there never is uncer-
tainty about the facts Strue ∪Mdoes (c.f. (1), (2)) that to-
gether with the game rules determine everything a player
needs to know about the current state (such as the allowed
moves as the derivable instances of legal(R,M)) and the
next one (as the set of derivable instances of next(F)). The
syntactic restrictions for valid game descriptions ensure that
all necessary derivations are finite, so that a basic reasoner
for GDL can be built based on standard backward chain-
ing (Genesereth, Love, and Pell 2005).

In case of GDL-II, however, the situation is very differ-
ent. Although players also start off with complete knowl-
edge of the initial state, they are not automatically informed
about each other’s moves. But with only partial knowledge
of the set of facts Mdoes, players can no longer fully deter-
mine the derivable instances of next(F) through standard
backward chaining. This in turn means that players also lack
complete knowledge of the facts Strue in later states, which
are needed to determine the legal moves and other crucial
properties such as termination and goal values.

Rather than getting to see each other’s moves, after ev-
ery round players receive percepts according to the rules for
sees(R,P). In other words, they are informed about cer-
tain consequences that follow from the game rules and the
incompletely known facts Strue ∪ Mdoes. Building a ba-
sic player for GDL-II that is logically sound therefore re-
quires a method for reasoning about the consequences of
a partially known logic program and for updating this in-
complete knowledge according to observations being made.
Hence, we first isolate and address the more general problem
of filtering with logic programs.
Definition 2 Consider a normal logic program P and two
sets, B and O, of ground atoms called base relations and
observation relations, respectively. A filter is a function
that maps any given Φ ⊆ 2B and O ⊆ O into a set
Filter[O](Φ) ⊆ Φ. A correct filter is one that satisfies 2

Filter[O](Φ) ⊇ {B ∈ Φ : P ∪B |= o for all o ∈ O and
P ∪B 6|= o for all o ∈ O \O}

A filter is complete if these two sets are equal.
In this definition, incomplete knowledge about the base rela-
tions is represented by a set of possible models Φ. A correct
filter retains all models in Φ that entail all observations.
Example 2 Consider the logic program below, with base re-
lations B = {b(1), b(2)} and O = {obs}.

a :- b(X).
obs :- not a.
p :- not a.
q :- a.

Suppose Φ=2{b(1),b(2)}, that is, nothing is known about the
base relations. If complete, Filter[{obs}](Φ) equals {∅}. It
follows that if obs is observed then, under the only model left
after filtering, p is derivable and q is not.
Example 3 Consider the GDL in Fig. 1 with the instances
of true(F) and does(R,M) as base relations. Let Φ be
such that all of true(closed(1)), true(closed(2)),
true(closed(3)), true(chosen(1)), true(step(1)),
does(candidate,noop) are true in all models in Φ, and
let O = {sees(candidate,2),sees(candidate,3)}.

Suppose that we observe O = {sees(candidate,3)},
then does(monty,open(3)) is true in all models result-
ing from a complete filter (cf. line 19 in Fig. 1), while
does(monty,open(2)) is false in each of them. It fol-
lows, for instance, that in all models remaining after filter-
ing, next(closed(1)) and next(closed(2)) are deriv-
able but not next(closed(3)) (cf. line 24–25).

2The definition applies to any chosen entailment relation “|=.”
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A Basic Legal Player for GDL-II
In this section we present a method for constructing a rea-
soner for GDL-II based on a method for filtering that oper-
ates on a compact representation of incomplete information.

Representing Incomplete Information About Facts
Since explicitly maintaining the set of possible states is prac-
tically infeasible in most games, we base our approach to
filtering on a coarser but practically feasible encoding using
two sets of ground atoms, B+ ⊆ B and B0 ⊆ B, which
respectively contain the base relations that are known to be
true and those that may be true. Any such pair that satisfies
B+ ∩ B0 = ∅ implicitly represents the set of models

ΦB+,B0
def
= {B+ ∪B : B ⊆ B0} (3)

This representation allows us to base our filtering method
on a derivation mechanism that has been developed in the
context of so-called open logic programs (Bonatti 2001a).

Reasoning with Open Logic Programs
In the following we adapt some basic definitions and results
from (Bonatti 2001a; 2001b) to our setting. Our open logic
programs are triples Ω = 〈P,B+,B0〉 where P is a normal
logic program and B+,B0 are as above. A program P ′ is
called an extension3 of Ω if P ′ = P ∪ B+ ∪ B for some
B ⊆ B0. This gives rise to two modes of reasoning:

1. Skeptical inference: Ω |=s ϕ iff all stable models of all
extensions P ′ of Ω entail ϕ.

2. Credulous inference: Ω |=c ϕ iff some stable model of
some extension P ′ of Ω entails ϕ.

We also make use of the following concepts (Bonatti 2001b):
1. A support for a ground atom A is a query Q obtained by

unfolding A in P ∪ B+ until all the literals in Q either
occur in B0 or are negative.

2. A countersupport for a ground atom A is a set of ground
literals S such that eachL ∈ S is the complement of some
literal belonging to a support of A; and conversely, each
support of A contains a literal whose complement is in S.

In the following, for a set S of literals we denote by S+ the
set of positive atoms in S and by S− the set of atoms that
occur negated in S. A support is consistent iff S+∩S− = ∅.

A Backward-Chaining Proof Method
The definitions from above form the basis of a backward-
chaining derivation procedure for computing answer substi-
tutions θ along with supports for literals L wrt. an open pro-
gram Ω = 〈P,B+,B0〉 using the following derivation rules.

1. If Lθ ∈ B+ return θ along with support ∅.
2. If Lθ ∈ B0 return θ along with support {Lθ}.
3. If L = ¬A is a negative ground literal and S the set of

computed supports for A, return the empty substitution
along with a consistent set containing the complement of
some literal from each element in S.
3This is called a completion in (Bonatti 2001a), which however

clashes with another concept so named earlier (Shepherdson 1984).

4. IfL = A is positive and unifiable with the head of a clause
from P , unfold A and return the union, if consistent, of
supports for all literals in the resulting query along with
the combined answer substitutions.

Recall, for instance, the short program from Example 2 and
suppose B+ = ∅ and B0 = {b(1), b(2)}. Query b(X) admits
two computed supports: S = {b(1)} with θ = {X \ 1},
and S = {b(2)} with θ = {X \ 2}. Hence, the computed
countersupport for query a is {¬b(1),¬b(2)}, which in turn
is the (only) support for obs under the given sets B+,B0.

The above derivation rules are a subset of the calculus
defined in (Bonatti 2001a; 2001b) but constitute a complete
and decidable derivation procedure if the underlying logic
program is syntactically restricted.

Proposition 1 Let Ω = 〈P,B+,B0〉 be an open logic pro-
gram with a finite Herbrand base and stratified program P .

1. Every computed support θ, S for a query Q satisfies
〈P,B+ ∪ S+,B0 \ S−〉 |=s Qθ.

2. If 〈P,B+,B0〉 |=c Qτ for some τ , then there exists a com-
puted support θ, S for Q with θ more general than τ .

In the following, by Ω `θ,S A we denote that substitution θ
together with some S is a computed support for atom A wrt.
open logic program Ω. In particular, Ω `θ,∅ Ameans thatAθ
follows without additional support, i.e., is necessarily true in
all extensions and hence skeptically entailed by Ω.

Filtering Based on Backward Chaining
Next, we use the backward chaining-based method for open
logic programs to define a basic method for filtering with
logic programs. In the following, by Supp(Q) we denote the
set of all computed supports for query Q. Consider a normal
logic program P ; sets B+,B0; and a set O ⊆ O of observa-
tions. We compute Filter[O](ΦB+,B0) as two sets B+new and
B0new as follows.

B+new = B+ ∪

⋃
o∈O

⋂
S∈Supp(o)

S+ ∪
⋃

o∈O\O

⋂
S∈Supp(¬o)

S+



B0new = (B0\B+new)\

⋃
o∈O

⋂
S∈Supp(o)

S− ∪
⋃

o∈O\O

⋂
S∈Supp(¬o)

S−


Put in words, for each observation o made (resp. not made)
we compute all supports (resp. all supports for ¬o) and then
“strengthen” B+,B0 by every literal that is contained in all
supports. More precisely, if a literal occurs positively in ev-
ery support for some o (resp. ¬o), then it is added to B+ and
removed from B0. Also removed from B0 are the literals that
occur negatively in every support for some o (resp. ¬o).

Example 4 Recall again the program from Example 2. As
we have seen, when B+ = ∅ and B0 = {b(1), b(2)} then
the query obs has one support, namely, {¬b(1),¬b(2)}. This
yields B+new = ∅ and B0new = ∅. On the other hand, consider
the query ¬obs. It has two supports, {b(1)} and {b(2)}.
Their intersection being empty implies B+new = B+ and
B0new = B0, i.e., nothing new is learned by not seeing obs.
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Proposition 2 Under the assumptions of Proposition 1, the
filter defined above is correct.

Proof: By Definition 2 we need to show thatB ∈ ΦB+
new,B0

new
if B ∈ ΦB+,B0 and P ∪B |= o for o ∈ O while P ∪B 6|= o
for o ∈ O \ O. So suppose the latter are all true, then for
each o ∈ O (and each o ∈ O \ O, resp.) there must be
a computed support S ∈ Supp(o) (resp., S ∈ Supp(¬o))
such that S+ ⊆ B and S− ∩ B = ∅. By construction of
B+new,B0new this implies B+new ⊆ B ⊆ B+new ∪ B0

new. Hence,
B ∈ ΦB+

new,B0
new

according to (3). �
Since the compact representation of incomplete knowl-

edge via (3) does not support reasoning by disjunction,
the filter is necessarily incomplete. Recall, for instance, the
second case in Example 4. Not observing obs means that
b(1) or b(2) must be true. Hence, model ∅ could be fil-
tered out but is not because no two sets B+,B0 can encode
Φ = {{b(1)}, {b(2)}, {b(1), b(2)}} via (3).

A Basic Update Method
The method for filtering with logic programs forms the core
of our approach to building a basic reasoner for GDL-II. The
syntactic restrictions for GDL-II ensure that the underlying
open logic program satisfies the conditions Propositions 1
and 2. This will guarantee that the knowledge the player
keeps in B+,B0 is always correct.

The procedure for maintaining the player’s incomplete
knowledge about a state is as follows, where G denotes the
GDL-II description of a game whose semantics is given as
per Definition 1; and where my role ∈ R is the role assigned
to the player.

1. B+ :={true(F)θ : 〈G, ∅, ∅〉 `θ,∅ init(F)}; B0 := ∅
2. In every round,

2.1 Compute the possible legal moves of all other roles:

L :={(R,M)θ : 〈G,B+,B0〉`θ,Slegal(R,M), R 6=my role}

2.2 Let my move be the selected move of the basic player
and my percepts the player’s percepts.

– Let B+ := B+ ∪ {does(my role,my move)}
B0 := B0 ∪ {does(R,M) : (R,M)∈ L}

– Now, let

O := {sees(my role,P)θ :
〈G,B+,B0〉 `θ,S sees(my role,P)}

O := {sees(my role, p) : p ∈ my percepts}

and compute B+new,B0new as the result of filtering
B+,B0 by O wrt. G and O.

– The knowledge about the next state is obtained as

B+ := {true(F)θ : 〈G,B+new,B0new〉 `θ,∅ next(F)}
B0 := {true(F)θ : 〈G,B+new,B0new〉 `θ,S next(F)}\B+

3. The player knows that the game has terminated in case
〈G,B+,B0〉 `ε,∅ terminal.

Put in words, the player starts with complete information
about the initial state (step 1). In every round, the player’s
knowledge is characterized by the skeptical consequences

of the open logic program consisting of the game rules plus
the incomplete knowledge B+,B0; specifically, this allows
us to determine the player’s own known legal moves as

{Mθ : 〈G,B+,B0〉 `θ,∅ legal(my role,M)}4

The incomplete knowledge also allows us to compute cred-
ulous consequences, in particular the possible legal moves
of all other players (step 2.1). For the update of B+,B0
(step 2.2), we first add to B+ the knowledge of the player’s
own move and to B0 the possible moves by the opponents.
This allows us to determine the range of possible observa-
tions,O, in order then to filter the player’s knowledge by ac-
tual observations O. Finally, the player’s knowledge of the
updated state is determined as the skeptically (for B+) and
credulously (for B0) entailed instances of next(F).

The incompleteness of the filtering implies that the rea-
soner for GDL-II thus defined is incomplete in general. It is,
however, easy to show that it is complete in case the only
sees-rule for a player is

sees(player,move(R,M)) :- does(R,M).

This is so because under this rule the only support for an
instance sees(player,move(r,m)) is does(r,m), and
the only countersupport in case the observation is not made
is ¬does(r,m). Hence, the filter will add the former to B+
and remove all of the latter from B0. The update procedure
will then result in complete knowledge whenever the player
starts with complete knowledge.

Experimental Results
Because the representation of incomplete knowledge and the
backward chaining-based filtering are in themselves incom-
plete, we have run experiments to test both the effective-
ness and the efficiency of our method. We have used a sim-
ple implementation in the form of a vanilla meta-interpreter
in Prolog. We have run experiments with all games that
were played at past general game playing competitions with
imperfect-information track.5 We ran 1000 simulated ran-
dom matches each to test whether the legal player always
knew its legal moves, and also—in case it did—whether it
had sufficient knowledge to know at the end that the game
must have terminated and to derive its own goal value.

The results are summarized in Table 1. For games with
two or more non-random roles that are not symmetric, we
have run the basic player for each of them as shown. The
times given are the average time, in seconds (cpu time),
that the player took for 1000 rounds of updating its in-
complete state knowledge on a desktop computer with a
2.66 GHz CPU and 8GB memory running Eclipse Prolog.
Overall, the results demonstrate both the effectiveness and
the efficiency of our basic backward-chaining method.

4The player knows that it doesn’t know all its legal moves if
some instance legal(my role,M) can be derived only with non-
empty support, i.e., is credulously but not skeptically entailed.

5The 1st German Open 2011, see http://fai.cs.uni-
saarland.de/kissmann/ggp/go-ggp; and the 1st Aus-
tralian Open 2012, see https://wiki.cse.unsw.edu.au/
ai2012/GGP
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Game Legal Terminal Goal Time
Backgammon X X X 8.84
Banker/Thief (role 1) X X no 0.42
Banker/Thief (role 2) X X no 0.69
Battleships in Fog no – – –
Battleships in Fog∗ X no no 930.04
Blackjack no – – –
Hidden Connect X X no 4.08
Hold your Course II X X X 2.05
Krieg-Tictactoe 5x5 no – – –
Mastermind448 X X no 0.58
Minesweeper (role 1) X X X 1.56
Minesweeper (role 2) X no no 199.82
Numberguessing X X no 1.53
Monty Hall (role 1) X X X 0.21
Monty Hall (role 2) X X X 0.21
Small Dominion 2 X X X 12376.75
Transit (role 1) X no no 4.18
Transit (role 2) X no no 5.76
vis Pacman (role 1,2) X no no (706.45)
vis Pacman (role 3) X no X 32.12

Table 1: Experimental results testing the basic player’s abil-
ity to always know its legal moves, whether a game has ter-
minated, and what its own goal value is in the end.

Knowledge of Legal Moves The experiments showed that
the basic player always knows its legal moves in almost all
of the games. An exception is Krieg-Tictactoe, where the
uncertainty about the legal moves is due to this rule:

legal(P,mark(M,N)) :-
role(P), true(cell(M,N,C)), distinct(C,P).

While a player P knows all cells occupied with its own
symbol, that is, for which true(cell(M,N,P)) holds,
it does not know whether other cells are blank or have been
marked by the opponent. Lacking the ability to reason dis-
junctively means that in this case there is no ground in-
stance of true(cell(M,N,C)) that is known to satisfy
the body of the rule from above.

For a similar reason, the basic player fails to determine its
legal moves in Blackjack. In the original version of Battle-
ships in Fog, the reason why the player is uncertain about its
legal moves lies in these (slightly simplified) rules:

sees(admiral,position(admiral,A,B)) :-
does(random,setup(A,B,C,D)).

sees(commodore,position(commodore,C,D)) :-
does(random,setup(A,B,C,D)).

next(position(admiral,A,B)) :-
does(random,setup(A,B,C,D)).

next(position(commodore,C,D)) :-
does(random,setup(A,B,C,D)).

Here, in a single random move two ships get positioned, one
for each player. Despite the given information, however,
the legal player is unable to determine the location of
its own ship because the observation of some arguments
of setup(A,B,C,D) does not entail a fully known
instance of this move, and hence nothing can be learnt

from filtering through an observation like, for example,
sees(admiral,position(admiral,1,2)). For
the sake of experimentation, we have defined a variant
of the original game (marked by ∗ in Table 1) where the
random move is broken into two moves. With this simple
modification, the basic player is able to determine its legal
moves throughout that game.

Knowledge of Termination and Goal Values Somehow
surprisingly, in a number of games the legal player was not
able to derive that a game has terminated and what its goal
value was. An inspection of the game rules showed that this
is due to the fact that the game rules as such provide players
with insufficient information in this regard. Hence, there is
an argument to be made for requiring that games in compe-
titions should always be defined so that the percepts suffice
for every player to determine their outcome at the end.

Times The runtimes depicted in Table 1 show that basic
backward chaining in general is an efficient approach for
filtering observations and inferring the updated incomplete
state knowledge in a basic player for GDL-II. A notable ex-
ception was the 3-person, imperfect-information version of
the Pacman game when taking the role of either of the two
“ghosts.” In this game, the reasoner always slowed down sig-
nificantly after around move 50 (where the maximal length
of that game is 100 moves), and we had to interrupt the ex-
periments a few moves later. We re-ran the experiments with
a version of the basic player that only filters through the ob-
servations actually made instead of also filtering through all
non-percepts. The results given in Table 1 for “vis Pacman
(role 1,2)” were obtained for this simplified legal player.

Conclusion
We have developed a method for filtering with logic pro-
grams and applied it to build a basic legal player for GDL-II
based on backward-chaining. Our notion of filtering is sim-
ilar to (Amir and Russell 2003; Shirazi and Amir 2011); in
their case a dynamic system is not described by logic pro-
gram rules but in the Situation Calculus. For our backward-
chaining filtering method we have adapted results for open
logic program from (Bonatti 2001a; 2001b). Our experi-
ments showed that the method is sufficiently efficient in al-
most all games from previous GGP competitions. It is worth
stressing that even in games where the reasoner is not fast
enough to be used at every node of a search tree, it can and
in fact should be applied at least at the beginning in order to
guarantee that the player submits a legal move. Our method
also proved effective in almost all games, which supports an
argument that can be made for it to be generally desirable
that all GDL-II games for competitions are written so that
backward chaining augmented by support computation suf-
fices to always determine a player’s legal moves, as in our
reformulation of Battleships in Fog.
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