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Abstract

We study m-transportability, a generalization of transporta-
bility, which offers a license to use causal information elicited
from experiments and observations in m ≥ 1 source en-
vironments to estimate a causal effect in a given target
environment. We provide a novel characterization of m-
transportability that directly exploits the completeness of do-
calculus to obtain the necessary and sufficient conditions for
m-transportability. We provide an algorithm for deciding m-
transportability that determines whether a causal relation is
m-transportable; and if it is, produces a transport formula,
that is, a recipe for estimating the desired causal effect by
combining experimental information from m source environ-
ments with observational information from the target envi-
ronment.

1 Introduction
Eliciting causal effects from observations and experiments
is a hallmark of intelligence. Pearl (1995; 2000) introduced
causal diagrams, a formal representation for combining data
with causal information, and do-calculus (Pearl 1995; 2000;
2012), a set of three rules that constitutes a sound (Pearl
1995) and complete (Shpitser and Pearl 2006b; Huang and
Valtorta 2006) inferential machinery for causal inference.
The resulting framework has been used to decide the identi-
fiability of causal effects (Tian and Pearl 2002; Shpitser and
Pearl 2006a; Tian 2004), i.e., determine whether a given set
of causal assumptions is sufficient for determining causal ef-
fects from observations.

The practical need to transfer causal effects elicited in one
domain (setting, environment, population) e.g., a controlled
laboratory setting, to a different setting presents us with the
problem of transporting causal information from a source
environment to a possibly different target environment. For
example, one might want to know if causal relation between
teaching strategies and student learning obtained through a
randomized trial in a public school in Chicago can be trans-
ported to a public school in Minneapolis that has an admit-
tedly different population of students. Pearl and Bareinboim
(2011) introduced selection diagrams which provide a for-
mal representation for expressing knowledge about differ-
ences and commonalities between the source and target en-
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vironments. They used the selection diagrams to provide a
formal definition of transportability of causal effects elicited
from experimental studies in a source environment to a tar-
get environment in which only an observational study is
possible. Bareinboim and Pearl (2012b) described proce-
dures to (i) decide transportability between a given source
and a target environment, and (ii) when the answer is af-
firmative, determining the set of experimental and observa-
tional studies that must be carried out to license the desired
transport. Against this background, we consider a setting
where we have access to experiments and observations from
m ≥ 1 source environments and a target environment; and
causal information is not transportable between each indi-
vidual source environment and the target environment. In
such a setting, we examine the conditions under which it is
possible to transfer causal information learned collectively
from the m source environments to the target environment.

The main contributions of this paper are as follows: (i) We
study m-transportability, a generalization of transportability
(Pearl and Bareinboim 2011), which offers a license to trans-
fer causal information learned collectively from experiments
and observations fromm source environments to a given tar-
get environment where only observational information can
be obtained. (ii) We introduce a novel technique that di-
rectly exploits the completeness of do-calculus (Shpitser and
Pearl 2006b; Huang and Valtorta 2006) to obtain the nec-
essary and sufficient conditions for m-transportability. Our
results directly apply to transportability (m-transportability
where m = 1) as well as identifiability which is a special
case of transportability. (iii) We provide, based on a modifi-
cation from Bareinboim and Pearl’s algorithm for deciding
transportability (Bareinboim and Pearl 2012b), a sound and
complete algorithm for deciding m-transportability that de-
termines whether the causal effect is m-transportable; and
if it is, produces a transport formula, that is, a recipe for
estimating the causal effect by combining the experimental
information from the m source environments with observa-
tional information from the target environment.

This work was carried out independently of Barein-
boim and Pearl (2013)1 which introduces µ-transportability,
which, despite some differences in the formulation, upon

1Our work was completed during 2012 and submitted to AAAI
2013 on January 22, 2013. We became aware of the work of
Bareinboim and Pearl (2013) when it appeared as a Technical Re-
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closer examination, turns out to be essentially identical to
m-transportability. Not surprisingly, the algorithm for de-
ciding µ-transportability is essentially identical to our algo-
rithm for deciding m-transportability: Both algorithms are
simple extensions of sID, the algorithm for deciding trans-
portability (a special case of m-transportability where m=1)
introduced by Bareinboim and Pearl (2012b); and both algo-
rithms rely on the same graphical criterion to decide whether
a causal relation is µ-transportable (m-transportable). How-
ever, the work described in this paper differs from that
of Bareinboim and Pearl (2013) with respect to the tech-
nique used to derive the graphical criterion for lack of m-
transportability (µ-transportability): Bareinboim and Pearl
(2013) construct a certificate that serves as counter-example
that establishes lack of µ-transportability. In contrast, we
demonstrate the nonexistence of a transport formula (and
hence lack of m-transportability) by directly exploiting the
completeness of do-calculus (Shpitser and Pearl 2006b;
Huang and Valtorta 2006) and standard probability manipu-
lations.

2 Preliminaries
A causal diagram (Pearl 2000)G is a semi-Markovian graph
or an acyclic directed mixed graph, (i.e., a graph with di-
rected as well as bidirected edges that does not have directed
cycles) which encodes a set of causal assumptions. We de-
note by G [Y], a subgraph of G containing nodes in Y and
all arrows between the corresponding nodes in G. Follow-
ing (Pearl 2000), we denote by GX, the edge subgraph of
G where all incoming arrows into nodes in X are deleted;
by GY, the edge subgraph of G where all outgoing arrows
from nodes in Y are deleted; and by GXY, the edge sub-
graph of G where all incoming arrows into nodes in X and
all outgoing arrows from nodes in Y are deleted.

A causal model (Pearl 2000) is a tuple 〈U,V, F 〉 where
U is a set of background or hidden variables that can-
not be observed or experimented on but which can influ-
ence the rest of the model; V is a set of observed vari-
ables {V1, . . . Vn} that are determined by variables in the
model, i.e., variables in U∪V; F is a set of determinis-
tic functions {f1, . . . , fn} where each fi specifies the value
of the observed variable Vi given the values of observable
parents of Vi and the values of hidden causes of Vi. A
probabilistic causal model (Pearl 2000) (PCM) is a tuple
M = 〈U,V, F, P (U)〉 where P (U) is a joint distribution
over U.

Intervention (Pearl 2000) on a set of variables X ⊆ V of
PCM M =〈U,V, F, P (U)〉 involves setting to X = x and
is denoted by do-operation do (X = x) or simply do (x). A
causal effect of X on a disjoint set of variables Y ⊆ V is
written as P (y|do (x)) or simply Px (y). Intervention on a
set of variables X ⊆ V creates a submodel (Pearl 2000) Mx

of M defined as follows: Mx = 〈U,V, Fx, P (U)〉 where
Fx is obtained by taking a set of distinct copies of functions
in F and replacing the functions that determine the value of

port on February 20, 2013 after its acceptance for publication in
AISTATS 2013 while our AAAI 2013 submission was still under
review.

variables in X by constant functions setting the variables to
values x. It is easy to see that a causal diagram G that en-
codes the causal assumptions of modelM is modified toGX
by intervention on X. The causal effect of X on a disjoint
set of variables Y ⊆ V is said to be identifiable from P in
G if Px (y) can be computed uniquely from the joint dis-
tribution P (V) of the observed variables in any PCM that
induces G (Pearl 2000).

Do-calculus (Pearl 1995) offers a sound and complete
(Shpitser and Pearl 2006b; Huang and Valtorta 2006) infer-
ential machinery for deciding identifiability (Tian and Pearl
2002; Shpitser and Pearl 2006a; Tian 2004) in the sense that,
if a causal effect is identifiable, there exists a sequence of
applications of the rules of do-calculus that transforms the
causal effect formula into one that includes only observa-
tional quantities. Let G be a causal diagram and P be a
distribution on G. Let W, X, Y, and Z be disjoint sets
of variables in G. Then, the three rules of do-calculus are
(Pearl 1995):
• (Rule 1) Insertion/deletion of observations:
Px (y | z,w) = Px (y | w) if (Y ⊥⊥ Z | X,W)GX

• (Rule 2) Intervention/observation exchange:
Px,z (y | w) = Px (y | z,w) if (Y ⊥⊥ Z | X,W)GXZ

• (Rule 3) Insertion/deletion of interventions:
Px,z (y | w) = Px (y | w) if (Y ⊥⊥ Z | X,W)G

X,Z(W)

where Z (W) represents Z \An (W)GX
.2

3 m-Transportability
We proceed to formalize the notion of m-transportability,
which offers a license to transfer causal information learned
collectively from experiments and observations from m
source environments to a target environment where only ob-
servational information can be obtained. The definitions
of selection diagrams and m-transportability and the m-
transportability theorem are direct adaptations of their coun-
terparts introduced by Bareinboim and Pearl (2012b) for
transportability (1-transportability). Let J denote an index
set {1, . . . ,m} for m source environments:
Definition 1 (Selection Diagram (adapted from (Barein-
boim and Pearl 2012b))). Let M =

{
M j
}
j∈J and M∗ be

a set of causal models relative to domains Π =
{

Πj
}
j=J

and Π∗, sharing a causal diagram G. The set M ∪ {M∗} is
said to induce a selection diagram D if D is constructed as
follows:

1. Every edge in G is also an edge in D
2. D contains an extra edge Si → Vi if there might exist

a discrepancy f ji 6= f∗i or P j
(
U i
)
6= P ∗

(
U i
)

between
M∗ and some model M j ∈M.
We denote by S, the set of selection variables. We as-

sociate with each domain Πj , a set of domain-specific se-
lection variables Sj ⊆ S where: Sj = {Si | f ji 6=

2Given a DAG G, an (W )G denotes the set of ancestors of a
node W . Moreover, An(W )G = an(W )G ∪ {W}, an (W)G =⋃

W∈W an (W )G, and An (W)G =
⋃

W∈W An (W )G.
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Figure 1: A selection diagram for three populations built on
a causal diagram of T , B, and D. The selection variables on
observable nodes T , B, and D are due to the differences on
two unmeasured variables, gender and ethnicity.

f∗i or P j
(
U i
)
6= P ∗

(
U i
)
}. We denote by S, the collec-

tion of sets {Sj}j∈J . Given W ⊆ V a subset of observed
variables, SW is given by {Si ∈ S | ∃Vi∈WSi → Vi}. A set
of possible values of a selection variable Si is {∗} ∪ {j ∈
J | Si ∈ Sj}. Given a selection diagram, P with selection
variables setting to sj = j and s \ Sj = ∗ represents P j for
j ∈ J and P with s = ∗ stands for P ∗.3

Definition 2 (Causal Effects m-Transportability (adapted
from (Bareinboim and Pearl 2012b))). Let D be a selec-
tion diagram and S a collection of sets of domain-specific
selection variables relative to a set of domains Π∗ ∪Π. Let
I be the information set

{
I
(
Πj
)}

j∈J ∪ {I (Π∗)} where
I
(
Πj
)

=
{
P j (V \V′ | do (v′))

}
V′(V

, a set of interven-
tional distributions from Πj for every j ∈ J , and I (Π∗) =
{P ∗ (V)}, an observational distribution from the target do-
main Π∗. The causal effect R = Px (y) is said to be m-
transportable from Π to Π∗ inD if P ∗x (y) is uniquely com-
putable from I in any model that induces D and S.

The following example illustrates the power of m-
transportability.

The Power of m-Transportability Consider the selection
diagram (adapted from Figure 2(c) in (Pearl and Bareinboim
2011)) shown in Figure 1 which includes three observed
variables corresponding to treatment T , disease D, and a
biological marker B; two confounders, gender (between T
and B) and ethnicity (between T and D). Suppose we are
interested in estimating a causal effect of treatment on dis-
ease P ∗t (d) in a population Π∗ given observational study
from Π∗ and experimental studies on two different popu-
lations Π1 and Π2. Suppose Π∗ differs from Π1 and Π2 in
terms of their gender and ethnicity distributions respectively.
These differences are denoted by a set of selection variables
S = {ST , SB , SD} and domain-specific selection variables
S1 = {ST , SB} and S2 = {ST , SD}. It follows from Theo-
rems 4 and 5 of (Bareinboim and Pearl 2012b) that the causal
effect P ∗t (d) in the population Π∗ is not transportable from
Π1 or Π2 alone. However, it is easy to see that P ∗t (d) can be
computed by combining the observational and experimen-

3Unlike Bareinboim and Pearl (2013), the selection diagram D
is constructed from a target domain and all source domains.

tal data from Π1 and Π2 and applying the standard rules of
probability and rule 1 of do-calculus:

P ∗t (d) =
∑

b P
∗
t (d | b)P ∗t (b)

=
∑

bPt (d | b, sD = ∗)Pt (b | sB = ∗)
=

∑
bP

1
t (d | b)P 2

t (b) .

The necessary and sufficient conditions for m-
transportability follow immediately from the completeness
(Shpitser and Pearl 2006b; Huang and Valtorta 2006;
Pearl and Bareinboim 2011) of do-calculus.
Theorem 1 (m-Transportability Theorem (adapted from
Theorem 1 in (Pearl and Bareinboim 2011))). Let D be
the selection diagram characterizing Π and Π∗, and S be
a collection of sets of domain-specific selection variables in
D. The effect Px (y | z) is m-transportable from Π to Π∗

if and only if the expression Px (y | z, s) is reducible, using
the rules of do-calculus, to an expression where terms are
either do-free or Sj-free (selection variables that appear as
conditioning variable in do-terms are a subset of S \ Sj for
some Πj ∈ Π.)

Proof. The proof follows immediately from the complete-
ness of do-calculus (Shpitser and Pearl 2006b; Huang and
Valtorta 2006) and the do-calculus characterization lemma
(Lemma 1 in (Pearl and Bareinboim 2011)) with the one
minor modification with respect to when terms with do-
operators are estimable from Π: Since Πj and Π∗ differ with
respect to selection variables Sj , every do-term that does not
contain Sj is estimable from Πj .

By applying rule 2 of do-calculus and marginalization
(Shpitser and Pearl 2006a), we can reduce estimation of a
conditional causal effect to the estimation of an uncondi-
tional causal effect. Hence, without loss of generality, we
focus on m-transportability of unconditional causal effects.
Corollary 1. If no finite sequence of rewritings of a causal
effect using standard rules of probability and the rules of
do-calculus yields a transport formula, then the effect is not
m-transportable from source domains to the target domain.

4 Characterizing m-Transportability
We proceed to characterize m-transportability in terms of
properties of selection diagrams. We first extend the defini-
tions of s*-tree and s-hedge (Bareinboim and Pearl 2012b) to
the setting with m source domains instead of a single source
domain. We say that a selection diagram is an ms*-tree if
it is an s*-tree for every source domain. We define an ms-
hedge by replacing s*-trees by ms*-trees in the definition of
an s-hedge (Bareinboim and Pearl 2012b).

4.1 Analysis of Hedges
A hedge (Shpitser and Pearl 2006b) is an essential struc-
ture which hinders identification of a causal effect. Hedge
structures were used to generate counter-examples (Shpitser
and Pearl 2006b) to establish non-identifiability of causal ef-
fects in specific settings. Unlike (Shpitser and Pearl 2006b;
Bareinboim and Pearl 2012b), we exploit the completeness
of do-calculus to show the non-m-transportability of a causal
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effect. Here, we examine hedge, s-hedge, and ms-hedge
more closely to reveal some formulae that are not uniquely
computable on them.
Definition 3 (Bare-Hedge). Let D be a selection diagram
and X, Y be nonempty disjoint sets of V. Then a triple
〈D,X,Y〉 is called a bare-hedge if D and D \ X are Y-
rooted ms*-trees forming an ms-hedge for Px (y) in D.

It follows from Corollary 1 that if Px (y) is not m-
transportable, then any sequence of rewritings of Px (y | s)
must yield a formula with at least one do-term which is not
Sj-free. This implies that non-m-transportable causal ef-
fects must contain a term that cannot be eliminated to yield a
transport formula. When such a term is rewritten using other
terms, at least one of them must contain such a term as well.
We say that the probability terms that satisfy this condition
are of the definite form (defined below):
Definition 4 (Definite Form). Given a bare-hedge
〈D,X,Y〉, a probability term is said to be of the definite
form if and only if it is of the form Px̂ (v′ | v′′, s′′) where
V′,V′′ ⊂ V and (i) X̂ ⊆ X and X̂ 6= ∅, (ii) V′ ∪V′′ ⊇ Y,
(iii) V′ \ X 6= ∅, and (iv) SV\X ⊆ S′′ ⊆ S. We will use
ΨD

X,Y to denote the set of all probability terms of the definite
form and {ΨD

X,Y to denote its complement.
A set of probabilities defined on a selection diagram is of

the form Pv1 (v2 | v3, s
′) where V1, V2, and V3 are dis-

joint subsets of observed variables, V2 is nonempty, and
a subset S′ of selection variables satisfies either S′ = S
or ((S \ S′) ⊥⊥ V2 | V3,V1)DV1

. We choose s′ = ∗ or

s′ \ Sj = ∗ and s′ ∩ Sj = j to select a population from
among Π∗ and Πj ∈ Π.

Hedges and Do-calculus Because hedges play an impor-
tant role in the identifiability of causal effects, it is instruc-
tive to examine the interplay between a hedge and the rules
of do-calculus. We will show a closure property of ΨD

X,Y
with respect to do-calculus. Towards this end, we define
mutually exclusive ancestors of a DAG G with respect to a
set of nodes.
Definition 5 (Mutually Exclusive Ancestors). The mutu-
ally exclusive ancestors of a DAG G with respect to a subset
W of its nodes is defined as

ΥG (W) =
{
An (W )G \An (W ∩ an (W )G)G

}
W∈W

We use FW to denote a family of sets ΥG (W) indexed
by W. Given W′ ⊆W, we say that FW′ is a subfamily of
FW. GivenW ∈W, we use FW to denote the correspond-
ing element of the family FW. Followings are its properties
which are tightly related to the d-separation criterion (Pearl
1988).
Proposition 1. Let F be a family ΥG[A] (B) given a bare-
hedge 〈G,X,Y〉 where B ⊆ A and A ⊆ V. Let A ∈ A
and B ∈ B. Following properties hold:

(a) The union of the family is An (B)G[A].
(b) The only common descendant of all elements in FB is B.
(c) The family is pairwise disjoint.

(d) Each vertex in FB is d-connected to B in G [FB ].
(e) Each pair of vertices in FB is d-connected in G [FB ]

conditioned on B.

Suppose, further that C (A) = {G [A]}, An (B)G[A] = A,
and B is the union of two disjoint nonempty sets C and D.
Then we have:

(f) Each set in FD is d-connected to some set in FC through
a bidirected path in G [A] conditioned on D.

(g) Let C be the union of two disjoint nonempty sets C′ and
C′′. Then

⋃
FC′ and

⋃
FC′′ are d-connected via bidi-

rected edges in G [A] conditioned on D.

Proof. Omitted.

We denote the syntactic symmetric difference between
two probability terms R1 = Pv1 (v2 | v3) and R2 =
Pw1 (w2 | w3) byR1	R2 which is given by

⋃
i Vi	Wi.4

If two probability terms are equal according to do-calculus,
then v2 = w2.

Lemma 1. Let 〈D,X,Y〉 be a bare-hedge, ψ be a proba-
bility term in ΨD

X,Y, and ψ′ be a probability term defined on
D. If ψ 	 ψ′ is a nonempty subset of SV\X ∪V \X, then
conditions of three rules of do-calculus to impose equality
between ψ and ψ′ are not satisfied.

Proof. Since ψ does not contain interventions on SV\X ∪
V \ X, we do not consider deletion or change of interven-
tions. In the case of the selection variables, since they ap-
pear only as observations and SV\X ⊆ S′′, it suffices to
consider only removal of selection variables. Suppose that
ψ is Px̂ (v′ | v′′, s′′) and let W be ψ 	 ψ′. In the follow-
ing, we prove conditional dependencies related to rules of
do-calculus by showing the existence of a d-connection path
in a subgraph of D.

(a) Since (V′ 6⊥⊥ W | V′′, X̂,S′′)D
X̂

, insertion of
W as observations on ψ is impossible. Let F be
ΥD[V\X] (V′ ∪V′′ \X). From Proposition 1(a), it fol-
lows that either W ∈

⋃
FV′\X or W ∈

⋃
FV′′\X.

WhenW ∈
⋃

FV′\X, there exists a variable V ′ such that
W ∈ FV ′ ∈ FV′\X. From Proposition 1(d), it follows
that there must be a d-connection path betweenW and V ′.
When W ∈

⋃
FV′′\X, there exists a variable V ′′ such

that W ∈ FV ′′ ∈ FV′′\X. Because C (D [V \X]) =
{D [V \X]} and An (V′ ∪V′′ \X)D[V\X] = V \ X

from Proposition 1(f),A ∈ FV ′′ andB ∈ FV ′ ∈ FV′\X
are d-connected for some variable A, B, and V ′. Proposi-
tion 1(e) and Proposition 1(d) respectively imply the exis-
tence of d-connection paths between A and W given V ′′
in FV ′′ and between B and V ′ in FV ′ . Hence, W and
V ′ must be d-connected in D [V \X].

(b) Since (V′ 6⊥⊥ W | V′′ \W, X̂,S′′ \W)D
X̂

, deletion
of W in observation of ψ is impossible. Let W1 =
W ∩ V′′ and W2 = W ∩ S′′. When W1 6= ∅,
4The symmetric difference between two sets C and D is de-

noted by C	D which is given by (C ∪D) \ (C ∩D).
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let F be ΥD[V\X] (W1 ∪V′ ∪V′′ \X), then
⋃

FW1 ,⋃
FV′\X, and

⋃
FV′′\X partitions V \ X. Since the

three sets are confounded, A ∈ FV ′ ∈ FV′\X and
B ∈ FW ∈ FW1

are d-connected via bidirected edges
given V′′ \ X for some variables A, B, V ′ and W by
Proposition 1(g). From Proposition 1(d), there are d-
connection paths between V ′ and A and between B and
W . Hence, V ′ and W are d-connected through A and
B. When W1 = ∅ and W2 6= ∅, for a selection vari-
able Si ∈W2 let Vi be a variable Si points to. From (a),
Vi and V′ are d-connected. Hence, W2 and V′ must be
d-connected in D [W2 ∪V \X].

(c) Since (V′ 6⊥⊥ W | V′′ \ W, X̂,S′′)D
X̂W

, change
of W in observation to interventions of ψ is impos-
sible. Since ΥD[V\X]W (W ∪V′ ∪V′′ \X) is identi-
cal to ΥD[V\X] (W1 ∪V′ ∪V′′ \X) defined in (b) with
W2 = ∅, this is a special case of (b).

(d) Since (V′ 6⊥⊥ W | V′′, X̂,S′′)D
X̂,W(V′′∪S′′)

, inser-

tion of W as interventions on ψ is impossible. Let
W1 be W \ An (V′′)D, then D [V \X]

X̂,W(V′′∪S′′)
=

D [V \X]W1
. When W1 = ∅, we follow the proof of

(a) since D [V \X]W1
= D [V \X]. When W1 6=

∅, W1 is a subset of An (V′ ∩Y)D[V\X] since Y is
a maximal root set of D and V′ ∪ V′′ ⊇ Y. A
set of maximal elements5 of W1 is a nonempty subset
of An (V′ ∩Y)D[V\X]W1

. Hence, W and V′ are d-

connected in D [V \X]W1
.

It follows that it is not possible to transform ψ into ψ′

using do-calculus rules.

Lemma 2. Let 〈D,X,Y〉 be a bare-hedge, ψ a probability
term in ΨD

X,Y, and ψ′ a probability term defined on D. If ψ′

is derived from ψ using do-calculus and ψ 	 ψ′ is a subset
of SX ∪X, then ψ′ is in ΨD

X,Y.

Proof. Suppose ψ is Px̂ (v′ | v′′, s′′). It is easy to see that
ψ′ trivially satisfies the second, third, and fourth conditions
of the definite form (see Definition 4). Hence, we focus our
attention on the first condition and prove that the interven-
tions X̂ in ψ can neither be (a)changed to observations nor
(b) deleted.

(a) Since (V′ 6⊥⊥ X̂ | V′′,S′′)DX̂
, X̂ cannot be rewritten as

observations from ψ. Let F = ΥD[V]X̂(V′ ∪ V′′ ∪ X̂).
Then the three sets,

⋃
FX̂,

⋃
FV′ , and

⋃
FV′′ , are con-

founded since C(D [V]X̂) = {D [V]X̂} which implies
that FX̂ ∈ FX̂ and FV ′ ∈ FV′ are d-connected through
nodes in

⋃
FV′′ by Proposition 1(g). It is easy to see that

extending the resulting path to the roots of FX̂ and FV ′ ,
yields a d-connection path between X̂ and V ′.

5In order theory, an element X is a maximal element of a set
X if there is no Y ∈ X such that X < Y . In a graph G, X ∈
an (Y )G implies X < Y .

(b) Since (V′ 6⊥⊥ X̂ | V′′,S′′)D
X̂(V′′,S)

, X̂ cannot be

deleted from ψ. Let X̂1 = X̂ \ An (V′′)D, then
D [V]

X̂(V′′,S′′)
= D [V]

X̂1
. If X̂1 6= ∅, each maximal

element of X̂1 is d-connected to V′ ∩ Y as shown in
Lemma 1(d). If X̂1 = ∅, then D [V]

X̂1
= D [V]. The

d-connection path between X̂ and V′ in D [V]X̂ from (a)
is also in D [V].

A proper subset of X̂ or a subset of SX might be altered
by do-calculus but X̂ cannot be changed nor deleted from ψ
using do-calculus. Therefore, ψ′ is in ΨD

X,Y.

Lemma 3. Let 〈D,X,Y〉 be a bare-hedge, ψ a probability
term in ΨD

X,Y, and ψ′ a probability term defined on D. If
ψ	ψ′ intersects H1 = SV\X ∪V \X and H2 = SX ∪X,
ψ cannot be rewritten as ψ′ using do-calculus.

Proof. Let W be ψ 	 ψ′, W1 = W ∩ H1, and W2 =

W∩H2. Since W 6⊆ X̂, the do-calculus rules for changing
interventions to observations or deleting interventions are
not applicable. To show that none of the other do-calculus
rules are applicable, due to the decomposition property of
the conditional independence test, it suffices to show con-
ditional dependence between V′ and W1. From Lemma 1,
we know that V′ and W1 are d-connected through paths
that lie in a subgraph of D [H1]. It follows that V′ and W1

are not conditionally independent regardless of the choice of
W2.

The preceding results lead to the following lemma:

Lemma 4. Given a bare-hedge 〈D,X,Y〉, a set ΨD
X,Y is

closed under do-calculus.

Proof. By Lemma 1–3, if a probability ψ in ΨD
X,Y is equal

to a probability ψ′ by do-calculus, then the syntactic sym-
metric difference between ψ and ψ′ is a subset of X ∪ SX

and ψ′ is also in ΨD
X,Y.

This directly leads to the following corollary.

Corollary 2. Given a bare-hedge 〈D,X,Y〉, the comple-
ment of ΨD

X,Y is closed under do-calculus.

Hedges and Standard Probability Manipulations We
examine the behavior of definite form probability associated
with a bare-hedge under the standard probability manipula-
tions.

Lemma 5. Let 〈D,X,Y〉 be a bare-hedge. If a formula is
derived from a probability term in ΨD

X,Y by standard prob-
ability manipulations, then the formula contains at least one
probability term in ΨD

X,Y.

Proof. Let ψ ∈ ΨD
X,Y be expressed as Px̂ (v′ | v′′, s′′).

By the definition of conditional probability, ψ =
Px̂ (v′,v′′ | s′′) /Px̂ (v′′ | s′′) if Px̂ (v′′ | s′′) 6= 0 and the
dividend is of the definite form. From the definition of
marginal probability (or law of total probability), we have:
ψ =

∑
w Px̂ (v′,w | v′′, s′′).
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The sum and product rules are sufficient for probabilistic
inference (Jaynes and Bretthorst 2003, pg. 35). From the
sum rule, we have: ψ = 1−

∑
w∈{v′ Px̂ (w | v′′, s′′) where

{v′ is the complement of event v′. It is easy to see that this
does not yield a transport formula for ψ. From the product
rule, we have: ψ = Px̂ (v′ \w | w,v′′, s′′)Px̂ (w | v′′, s′′)
where W ⊂ V′. If V′ \W \X 6= ∅, then the first term of ψ
is in ΨD

X,Y. Otherwise, the second term of ψ is in ΨD
X,Y. We

can show similar results for other probability manipulations
e.g., Bayes’ theorem.

Hedges and Transport Formula
Lemma 6. Given a bare-hedge 〈D,X,Y〉, none of proba-
bility terms in ΨD

X,Y can be expressed in terms of probability
terms only in {ΨD

X,Y.

Proof. This follows from the closure property of ΨD
X,Y un-

der do-calculus (Lemma 4) and the behavior of probabil-
ity terms in ΨD

X,Y under standard probability manipulations
(Lemma 5).

The preceding results lead to the following theorem which
establishes a crucial connection between bare hedge struc-
tures and (lack of) m-transportability.

Theorem 2. Let D, S, and I be as defined in the defini-
tion of causal effects m-transportability. Let 〈D,X,Y〉 be a
bare-hedge. Then, none of causal effect of the target domain
in ΨD

X,Y is uniquely computable from I and {ΨD
X,Y in any

model that induces D and S.

Proof. Let ∗ΨD
X,Y be a set of probability terms in ΨD

X,Y

with s = ∗. Then, the union of I and {ΨD
X,Y is all prob-

ability terms except ∗ΨD
X,Y. By Lemma 6, any expression

derived from a probability term ψ∗ in ∗ΨD
X,Y contains at

least one term in ∗ΨD
X,Y. Thus, there is no transport for-

mula for ψ∗ and it is not uniquely computable from given
information by the completeness of do-calculus.

5 Algorithm for m-Transportability
We present below, msID, a sound and complete algorithm
for deciding m-transportability that generalizes sID, an al-
gorithm for deciding transportability (or 1-transportability)
(Bareinboim and Pearl 2012b), which is a modification
of the causal effects identifiability algorithm (Shpitser
and Pearl 2006b).6 Instead of a single source domain
as in the case of sID, the arguments of msID include
m source domains; A second key difference between
sID and msID has to do with the substitution of line
“if (S ⊥⊥ Y | X)DX

, return Px (y)” (line 6 of sID) with
“if ∃j∈J

(
Sj ⊥⊥ Y | X

)
DX

, return P j
x (y)” (line 6 in Fig-

ure 2) to account for the use of experimental studies from
m source domains instead of a single source domain.

6As noted earlier, msID is, modulo some notational differences,
essentially equivalent to µsID (Bareinboim and Pearl 2013). We
include msID here to make the paper self-contained.

Function msID (y,x, P,D)

1: if x = ∅ , return P (y)

2: if V \An (Y)D 6= ∅ , return msID
(
y,x ∩An (Y)D ,

P (An (Y)D) , D [An (Y)D]
)

3: W← V \X \An (Y)DX

if W 6= ∅, return msID (y,x ∪w, P,D)
4: if C (D \X) = {C1, . . . , Ck} ,

return
∑

v\{y,x}
∏

i msID (ci,v \ ci, P,D)

5: if C (D \X) = {C} ,
6: if ∃j

(
Sj ⊥⊥ Y | X

)
DX

, return P j
x (y)

7: if C (D) = {D} , throws FAIL (D,C)

8: if C ∈ C (D) , return
∑

c\y
∏

Vi∈C P (vi | v(i−1)D )

9: if (∃C ′)C ⊂ C ′ ∈ C (D) , return msID(y,x ∩ C ′,∏
Vi∈C′ P (Vi | V (i−1)

D ∩ C ′, v(i−1)D \ C ′
)
, C ′)

Figure 2: An m-transportability algorithm msID to iden-
tify P ∗x (y) by calling msID(y,x, P ∗, D). A set of sC-
components in a graph D is denoted by C (D) (Bareinboim
and Pearl 2012b). We assume that I and S are globally de-
fined.

Theorem 3 (Soundness). Whenever msID(y,x, P ∗, D)
outputs an expression for P ∗x (y), the expression correctly
estimates P ∗x (y).

Proof. The correctness of steps except the line 6 of msID
are shown in (Shpitser and Pearl 2006b; Bareinboim and
Pearl 2012b). The line 6 of msID parallelizes the line 6 of
sID. Hence, the correctness follows from sID which is due
to S-admissibility of X along with Corollary 1 in (Pearl and
Bareinboim 2011).

We proceed to show that whenever msID returns FAIL
with an ms-hedge, the causal effect in question is indeed not
m-transportable.

Lemma 7 (adapted from Theorem 5 in (Bareinboim and
Pearl 2012b)). Let D be a selection diagram induced from
Π and Π∗. Assume that there exists F , F ′ that form an
ms-hedge for Px (y) in Π and Π∗. Then Px (y) is not m-
transportable from Π to Π∗.

Proof. The assumptions of the lemma, together with the
definitions of bare-hedge and ms-hedge (Section 4) im-
ply that there exists a bare-hedge 〈D′,X,R〉 where R ⊂
An (Y)DX

and D′ is a subgraph of D. Then, from Lemma
6, Px (r) is not m-transportable from Π to Π∗. From Lemma
14 in (Bareinboim and Pearl 2012b) it follows that Px (y) is
not m-transportable from Π to Π∗.

Lemma 8 (adapted from Theorem 7 in (Bareinboim and
Pearl 2012b)). Whenever msID(y,x, P ∗, D) returns FAIL
(i.e., fails to transport Px (y) from Π to Π∗), there must exist
X′ ⊆ X, Y′ ⊆ Y, such that the graph pair D, C returned
by the FAIL condition of msID contains as edge subgraphs
ms*-trees F , F ′ that form an ms-hedge for Px′ (y′).
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Proof. Since msID generalizes sID, the proof follows from
arguments along the lines of those used to prove Theorem 7
in (Bareinboim and Pearl 2012b).

Theorem 4 (Completeness). Algorithm msID is complete.

Proof. This follows from Lemma 7 and 8 and the complete-
ness of sID (Bareinboim and Pearl 2012b).

It is easy to see that the msID terminates; and that its run-
time complexity is polynomial in the number of variables.
The number of recursion is O(|V|2) since (i) each recursion
in line 3 (adding interventions on X) and 4 (factorization)
is called at most once; (ii) line 2 and 9 only reduce the size
of X; and (iii) line 1, 6, 7, and 8 are terminal. In addition,
graphical tests (e.g., tests for conditional independence) can
be carried out in time that is polynomial in the number of
observed variables.

6 Conclusion
We introduced m-transportability which offers a license to
transfer causal information learned collectively from exper-
iments and observations from m source environments to a
given target environment where only observational informa-
tion can be obtained. Bareinboim and Pearl (2013) inde-
pendently introduced µ-transportability, which despite some
differences in the formulation, turns out to be essentially
identical to m-transportability. We established the neces-
sary and sufficient conditions for m-transportability by di-
rectly exploiting the completeness of do-calculus (Shpitser
and Pearl 2006b; Huang and Valtorta 2006). We intro-
duced msID, a sound and complete algorithm for decid-
ing m-transportability that outputs (a) evidence of non-m-
transportability if a causal effect is not m-transportable from
a given set of m source environments to a specified target
environment; and (b) a transport formula, that is, a recipe
for estimating the desired causal effect by combining exper-
imental information from m source environments with only
observational information from the target environment, oth-
erwise. We note that msID is essentially identical to µsID,
the algorithm for deciding µ-transportability that was inde-
pendently introduced by Bareinboim and Pearl (2013). This
is not surprising in light of the fact that m-transportability
and µ-transportability are equivalent notions; Both msID
and µsID are simple extensions of sID, the algorithm for de-
ciding transportability (a special case of m-transportability
where m=1) introduced by Bareinboim and Pearl (2012b);
Both msID and µsID rely on the same graphical criterion
to decide whether a causal relation is m-transportable (µ-
transportable). However, the work presented in this paper
differs from that of Bareinboim and Pearl (2013) with re-
spect to the technique used to derive the graphical criterion
for lack of m-transportability (µ-transportability): Barein-
boim and Pearl (2013) construct a certificate that serves as
counter-example that establishes lack of µ-transportability.
In contrast, we demonstrate the nonexistence of a trans-
port formula (and hence lack of m-transportability) by di-
rectly exploiting the completeness of do-calculus (Shpitser

and Pearl 2006b; Huang and Valtorta 2006) and standard
probability manipulations.

Causal effects identifiability (Galles and Pearl 1995;
Tian 2004; Tian and Pearl 2002; Shpitser and Pearl
2006a; 2006b), transportability (Pearl and Bareinboim 2011;
Bareinboim and Pearl 2012b), z-identifiability (Bareinboim
and Pearl 2012a) (the problem of estimating in a given do-
main, the causal effect of X on Y from surrogate exper-
iments on Z that are more amenable to experimental ma-
nipulation in the domain than X) are all special cases of
meta-identifiability (Pearl 2012) which has to do with non-
parametric identification of causal effects given multiple do-
mains and arbitrary information from each domain. The
results presented in this paper expand the subclass of meta-
identifiability problems with provably correct and complete
algorithmic solutions. There are several additional special
cases of meta-identifiability to consider, including in partic-
ular, generalizations of z-identifiability and transportability
to allow causal information from experiments, including sur-
rogate experiments, in multiple source domains to be com-
bined to facilitate the estimation of a causal effect in a target
domain.
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