
Joint Extraction and Labeling via Graph Propagation for Dictionary Construction

Doo Soon Kim, Kunal Verma, and Peter Z. Yeh
Accenture Technology Labs
50 West San Fernando Street

San Jose, CA, 95113

Abstract

In this paper, we present an approach that jointly in-
fers the boundaries of tokens and their labels to con-
struct dictionaries for Information Extraction. Our ap-
proach for joint-inference is based on graph propaga-
tion, and extends it in two novel ways. First, we ex-
tend the graph representation to capture ambiguities that
occur during the token extraction phase. Second, we
modify the labeling phase (i.e., label propagation) to
utilize this new representation, allowing evidence from
labeling to be used for token extraction. Our evaluation
shows these extensions (and hence our approach) sig-
nificantly improve the performance of the outcome dic-
tionaries over pipeline-based approaches by preventing
aggressive commitment. Our evaluation also shows that
our extensions over a base graph-propagation frame-
work improve the precision without hurting the recall.

Introduction
Text contains vast amounts of information, which if system-
atically and effectively extracted can provide numerous ben-
efits. For example, extracting information such as locality,
items to be procured, etc. from tenders can help compa-
nies identify new sales opportunities and increase revenue.
Similarly, extracting information such as products and their
attributes from online listing sites (e.g., EBay) can help en-
terprises discover and understand new market trends.

Many solutions – especially commercial ones such as
IBM Content Analytics and SAS Text Miner – have recently
become available to automate the extraction of information
from text, and have seen increased adoption. These solutions
all require dictionaries that define the surface forms of the
information to be extracted (e.g., Company Names : {Apple,
Samsung, ...}). However, the creation of these dictionaries
is a manual process, which is costly and error-prone.

Numerous approaches have been proposed to auto-
mate the creation of dictionaries (Kim, Verma, and Yeh
2012) (Whitney and Sarkar 2012) (Riloff and Jones
1999) (Collins and Singer 1999). These approaches typ-
ically employ a pipeline architecture of first extracting
candidate tokens from a given corpus, and then labeling

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these tokens with the appropriate type/category using semi-
supervised methods such as co-training (Riloff and Jones
1999) (Collins and Singer 1999) or self-training (Yarowsky
1995) (Whitney and Sarkar 2012).

This pipeline architecture, however, has a significant dis-
advantage. In this architecture, each step must commit to a
solution before proceeding to the next (even if there is insuf-
ficient information to do so). This aggressive commitment
can significantly hurt performance. For example, the extrac-
tion step must determine the boundaries of tokens based pri-
marily on syntactic information, which is often insufficient.
Once the decision is made, it cannot be reverted. Hence,
this architecture will perform poorly if the documents are
difficult to parse syntactically. Moreover, the labeling step
often provides useful information for token extraction. For
example, consider extracting tokens denoting a product type
from informal listings. An extraction pattern such as “sell
<x> for <number> dollars” learned during the labeling
step could benefit token extraction by indicating the exact
boundaries of the extracted tokens.

In this paper, we present a semi-supervised approach to
jointly perform extraction and labeling for dictionary con-
struction, based on a graph propagation framework (Whit-
ney and Sarkar 2012) (Subramanya, Petrov, and Pereira
2010) 1. Our approach extends this framework in two novel
ways. First, our approach extends the graph representation
to include mutually exclusive edges that indicate candidate
tokens which cannot be simultaneously valid. These edges
capture ambiguities that occur during token extraction. We
also provide an effective way of constructing this graph from
a given corpus. Next, we modified the labeling step (i.e., la-
bel propagation) to utilize this new representation, allowing
evidence from labeling to be used for token extraction and
preventing aggressive commitment.

We evaluate our approach in two domains – medical
tenders and informal advertisements. We chose these do-
mains because traditional syntactic analyses (e.g., off-the-
shelf parsers) often fail on these types of text. Our evalu-

1Informally, the nodes in a graph propagation framework are
the tokens to be labeled and the edges are the similarities between
the nodes. An initial subset of nodes are provided the correct labels
(i.e., seed nodes), and the goal is to determine the label distribution
for all nodes such that similar nodes have similar label distribu-
tions.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

510

ation shows that our approach outperforms pipeline-based
approaches, and significantly improves precision without
hurting recall compared to the “vanilla” graph propagation
framework. These results confirm the importance of jointly
performing extraction and labeling and the benefits of our
extensions (and hence our contribution).

Related Work
We present related works from three areas – dictionary con-
struction, non-pipeline architecture, and graph propagation.

Dictionary Construction. Automated approaches for
dictionary construction often use a pipeline architecture
where the tokens are extracted based on syntactic analysis,
without utilizing information from the labeling step. For
example, to identify named entities, (Whitney and Sarkar
2012) (Collins and Singer 1999) extract consecutive proper
nouns within a noun phrase where the last word is the head
of the noun phrase. (Riloff and Jones 1999) extracts the
noun phrases from the parsed documents. (Kim, Verma, and
Yeh 2012) uses co-occurrence statistic to identify multiword
tokens before passing them to the labeling phase. (Taluk-
dar et al. 2006) extracts the longest span of multiwords that
satisfy pre-defined regular expressions.

Approaches based on sequence-modelling (e.g., (Put-
thividhya and Hu 2011)) could naturally combine extraction
and labeling, but cannot exploit mutually exclusive relation-
ships among the conflicting tokens.

Non-Pipeline Architecture. Pipeline architectures can
hurt the accuracy of text interpretation due to its aggres-
sive commitment at each step. One approach to address this
problem is to maintain multiple candidate interpretations at
each step. This allows downstream steps to resolve the am-
biguities as more evidence becomes available. For example,
(Sutton and McCallum 2005) maintains multiple parse trees
to jointly perform parsing and semantic role labeling. (Kim,
Barker, and Porter 2010) maintains multiple candidate inter-
pretations compactly using a packed representation to jointly
resolve different ambiguities. Our method, which takes this
approach, generates all candidate tokens during the token
extraction step and uses label propagation to determine the
correct extractions during labeling. Another approach to the
aggressive commitment problem is to jointly model multi-
ple tasks in a unified framework (e.g., (Poon and Domingos
2007)).

Graph Propagation. Graph propagation can exploit rich
structures in the data (represented as graphs), and have been
shown to be effective in various applications such as recom-
mendation systems (Baluja et al. 2008), named entity recog-
nization (Whitney and Sarkar 2012) and part-of-speech tag-
ging (Subramanya, Petrov, and Pereira 2010). To our knowl-
edge, we are the first to use graph propagation to jointly
perform extraction and labeling for dictionary construction
to prevent aggressive commitment. In particular, we extend
the original framework in two novel ways: 1) we extend the
graph representation to capture ambiguities that occur dur-
ing token extraction, and 2) we modify the labeling step (i.e.,
label propagation) to utilize this new representation, allow-
ing evidence from labeling to be used for token extraction.

Figure 1: Example graph: the seed nodes are shaded.

Preliminary: Graph Propagation
We provide additional details on the graph propagation
method presented in (Whitney and Sarkar 2012) 2, which
extends (Subramanya, Petrov, and Pereira 2010), because it
is the basis for our approach.

A graph, G = (V,E), is defined in the following way. V
is a set of nodes, vi, that denotes a token to be labeled. E
is a set of undirected edges, eij = (vi, vj , wij), that con-
nects two nodes, vi and vj . wij is a positive real number,
indicating the strength of the similarity between vi and vj .
Given a set of labels, qu(y) denotes the score of assigning a
label, y, to the node, u. qu is normalized for each node (i.e.,∑
y qu(y) = 1). Seed nodes are assigned a correct label a

priori. For each seed node, a point distribution is defined:
ru(y) = 1 if the seed label is y and 0 otherwise. 3 Fig. 1
shows an example graph.

The goal of label propagation is to determine the label
distribution across all nodes (i.e., qu(y)) such that similar
nodes (i.e., nodes connected by an edge with a high weight)
have similar label distributions. To do this, (Subramanya,
Petrov, and Pereira 2010) iteratively updates the label dis-
tribution using Eq. 1, which propagates the labels from the
seed nodes to the non-seed ones.

q(m)
u (y) =

γu(y)

κu
where κu is a normalizing constant

γu(y) = ru(y)δ(u ∈ Vl)
+ µ

∑
v∈N(u)

wuvq
(m−1)
v (y) + νU(y) (1)

where µ and ν are parameters and m is the iteration index.
q
(m)
u (y) is the normalized score of y on the node, u, at the
m-th iteration. γu(y) is the unnormalized score of y and
consists of three terms. The first term considers the seed la-
bel. It returns 1 if u is a seed node for the label, y, and 0
otherwise. Vl is the set of the seed nodes and δ(x) is an in-
dicator function that returns 1 if x is true and 0 otherwise.

2They present two types of label propagation – based on co-
training (Collins and Singer 1999) and self-training (Yarowsky
1995). Our method is based on the self-training version but the
general idea can be applied to the co- training version.

3We distinguish qu from ru. The label distribution, qu, may be
inconsistent with the initial seed labeling, ru.

511

ru(y) is a point distribution that returns 1 if y is the seed
label of u and 0 otherwise. The second term ensures that the
label distribution becomes close to the distributions of simi-
lar neighboring nodes. If wuv is high, γu becomes similar to
q
(m−1)
v . N(x) is the set of the neighboring nodes of x and
wuv is the weight of the edge connecting u and v. The final
term is a regularizer based on the uniform distribution, U –
that is, U(y) is 1 over the number of labels.

The iteration stops when one of two conditions are met
– either the change in q(m)

u is minimal or m exceeds a pre-
defined number. Once the iteration is finished, nodes with
the highest-scored labels (over a given threshold) are se-
lected as new instances of those labels.

Our Approach
Our approach extends graph propagation to jointly infer the
boundaries of tokens and their labels for dictionary construc-
tion. We first describe how the base graph representation
(see previous section) is extended to capture ambiguities that
occur during token extraction. We then present an effective
way to construct this extended representation from a given
corpus. Finally, we describe how the label propagation step
is modified to utilize this new representation, allowing evi-
dence from labeling to be used for token extraction.

Extended Graph Representation
The graph representation in existing graph propagation
frameworks cannot capture ambiguities that occur during
token extraction (i.e., tokens whose boundaries cannot be
determined with high confidence). Hence, existing frame-
works require an aggressive commitment to the boundaries
of tokens (even if the syntactic evidence is insufficient) be-
fore label propagation can be performed. This aggressive
commitment hurts the accuracy of the outcome dictionaries.

To capture this ambiguity, our approach introduces a new
edge type, Mutually Exclusive(ME) edge, that captures mu-
tually exclusive relationships among ambiguous candidate
tokens. This ME edge allows alternative candidates to be
generated when the boundaries of a token cannot be deter-
mined with high confidence (see example in Fig. 2). These
edges (and hence the alternative candidates) are later re-
solved during label propagation, which jointly infers the
correctly-segmented tokens and their labels.

Formally, a ME edge, e′ij = (vi, vj , w
′
ij), indicates that

if either vi or vj is a correctly segmented token, then the
other one cannot be 4. w′ij , a positive real number, indicates
how strongly the mutually exclusive relationship should be
enforced. 5 We also extend the label set to include a new

4Notice that the other direction does not hold. Even if vi turns
out to be incorrectly segmented, vj is not necessarily correct, be-
cause both could be incorrectly segmented.

5The weightw′
ij allows a ME relationship to be a soft constraint

rather than a hard constraint. If w′
ij for a ME edge is low, then our

approach may not enfore the constraint, and hence allow competing
candidate tokens to be extracted. For example, if a ME edge con-
nects "blanket" and "teething blanket" (as in Fig 2), but the weight
of the edge is low, then both "blanket" and "teething blanket" may
be extracted.

Figure 2: Extended graph: In this example, teething blanket
(correct segmentation) is connected to teething and blanket
(alternative segmentations) via ME edges (indicated by dou-
ble edges) with weights 0.8 and 0.1 respectively.

label, φ, which indicates that a node should not be assigned
any other labels because it is incorrectly segmented.

Graph Construction
Our approach constructs the extended graph representation
(described above) from a corpus via the following steps.
Step 1: Generate Candidate Tokens. Our approach gen-
erates candidate tokens (i.e., the nodes) from a given cor-
pus using pre-defined rules like those shown in Table 1.
Multiple rules can be applied to the same span of text
to extract alternative candidate tokens. For example, the
rule, <J|VBG>*<N|POS>*<N>, can be applied multi-
ple times to the sentence, "I am selling a teething blan-
ket", to extract teething(<N>), blanket(<N>), and teething
blanket(<N><N>). The resulting token, teething blanket,
is mutually exclusive with teething and blanket because they
overlap in the same span of text.

Our approach records fme(w1, w2), the number of in-
stances (i.e., same span of text) within a given corpus where
two candidate tokens w1 and w2 overlap. Our approach uses
fme later in Step 4 to construct ME edges.
Step 2: Filter Candidates. The previous step can generate
many wrong candidate tokens, making the graph unneces-
sarily large. To reduce the graph size, we filter these can-
didates using the rank-ratio measure presented in (Deane
2005), which measures the likelihood of a multiword token
being correctly segmented. We chose this measure because
it is widely applicable across multiple domains due to its
non-parametric nature.

Specifically, the likelihood that a multiword token,
c1c2...cn, is correctly segmented is defined as:

n
√
RR(c1, [c2, ..., cn]) ∗ ... ∗RR(cn, [c1, ..., cn−1]) (2)

RR(word, context) =
ER(word, context)

AR(word, context)
.

ER(word, context) is the expected rank – i.e., the rank of
context (based on the corpus frequency of context) among
all contexts associated with word. AR(word, context) is
the actual rank – i.e., the rank of context based on the fre-
quency with which word appears in the context.

512

Tenders

1. <w>+ where <w> is a capitalized word or a preposition e.g., Sodium Chloride, Department for Labor

2. <w>+ ("certificate"|"license") e.g., drug manufacturing license

3. ("certificate"|"license") "of" <w>+ e.g., Certificate of a Chamber of Commerce

4. <w>+ ("vaccine"|"kit") e.g., pregnancy test kit, hepatitis B vaccine

5. ("office"|"department") "of" <w>+ e.g., office of the postmaster general

Ads

1. <NP><NP|CC|POS>* (for named entities) e.g., Fisher Price, Children’s Place, Mellissa and Doug

2. <J|VBG>*<N|POS>*<N> (for noun phrases) e.g., soccer cleats, boxing gloves, teething blanket

3. <RB><VBN> (for adverb phrases) e.g., rarely used, hardly worn

4. (<N>|<J>)<J> (for adjective phrases) e.g., brand new, perfect working, good used

Table 1: The regular expressions used in our experiments to extract tokens, along with example extractions. <w> indicates a
word. Except for rule 1 in Tenders,<w> is case-insensitive. <NP>,<N>, and<J> indicate proper noun, noun, and adjective
respectively. Other POS notations follow Penn Treebank Tags. In our experiment, + and * are restricted to four repetitions.
Hence, the maximum length of any token is four.

After all candidate tokens are scored, our approach takes
the top p% of candidates.

Step 3: Construct Similarity Edges. Our approach mea-
sures the similarity between two candidate tokens (i.e.,
nodes) based on their distributional similarity. For each can-
didate token, our approach builds a feature vector where
each feature captures the frequency of a contextual word of
the token (within a window size of two in both directions).
For example, given the sentence "I am selling a teething
blanket", the contextual words for teething are l2-selling, l1-
a, r1-blanket. 6 Our approach then weighs each feature (i.e.,
the frequency of each contextual word) by the PMI (point-
wise mutual information) between the contextual word and
candidate token. To mitigate PMI’s bias toward infrequent
elements, our approach uses a modified formula suggested
in (Turney and Pantel 2010). Finally, our approach calcu-
lates the edge weights for all node pairs by measuring the co-
sine similarity between their feature vectors. Our approach
keeps only the top 5 edges for each node because most edges
have a negligible weight.

Step 4: Construct Mutually Exclusive Edges. For each
pair of candidate tokens (i.e., nodes), v1 and v2, our ap-
proach determines whether they should be connected by a
ME edge, based on the conditional probability of v1 and v2
occurring overlapped when v1 or v2 occurs – i.e., wme =

fme(v1,v2)
max(freq(v1),freq(v2))

(see Step 1 for definition of fme). If
wme exceeds a pre-defined threshold, then a ME edge is es-
tablished between v1 and v2 with a weight of wme.

We use a conditional probability instead of fme directly
to prevent connecting nodes that do not have a strong asso-
ciation (and hence are not alternative, competing candidate
tokens). For example, if freq(blanket) is much larger than
fme(blanket, teething blanket), then they are not connected
by a ME edge because both are valid candidate tokens.

6l2, l1 and r1 indicates the position. For example, l2 denotes
the second to the left.

Modified Label Propagation
Our approach extends the label propagation step to utilize
the new graph representation, allowing evidence from label-
ing to be used for token extraction. Our extension is based
on the semantics of the ME edges. If a node, vi, is assigned
a label, l (l 6= φ), with high confidence, then vi is a correctly
segmented token. Therefore, any other nodes, vj , connected
to vi via a ME edge is incorrectly segmented (and hence
should be assigned the label φ).

Our approach captures this notion formally by extending
the original propagation equation, Eq. 1, as follows:

γu(y) = ru(y)δ(u ∈ Vl) (3)

+ µ
∑

v∈N(u)

wuvq
(m−1)
v (y) + νU(y)

+ λδ(y = φ)
∑

v∈Nme(u)

w′uvme_score(v)

Eq. 3 is the same as Eq. 1 except for the additional fourth
term. This term increases the score of φ if neighboring nodes
(connected by ME edges) are likely to be assigned a label,
l (l 6= φ). Specifically, δ(y = φ) returns 1 only if y is φ.
Nme(u) is the set of nodes connected to u by ME edges. w′uv
is the weight of a ME edge. me_score(v) measures the like-
lihood of a node, v, being labeled. We observe that a node is
likely to be labeled if the node has a label, l (l 6= φ), whose
score is significantly higher than all other labels. Based on
this observation, our approach calculates me_score(v) by
taking the difference between the top two labels, l1 and l2
s.t. l1 6= φ, from the label distribution of v. If this difference
exceeds a pre-defined threshold, me_score(v) is set to the
difference. Otherwise, me_score(v) is 0. 7

Following (Subramanya, Petrov, and Pereira 2010), we
set µ and ν to 0.5 and 0.01 respectively. For λ, we use a
decay function, λ = αeβ∗x, (where x is the difference be-
tween the average score of φ at the current iteration step and

7Entropy has been used to detect a spiky distribution. However,
φmakes the application of entropy difficult because entropy would
prefer any spiky distribution even with the peak at φ.

513

the initial step), instead of a constant because as more nodes
are assigned labels, φ starts to proliferate (and eventually
swamps the graph) due to ME edges. We set α and β to 0.3
and -100 respectively.8 As φ increases overall, λ decreases,
preventing over-proliferation of φ.

Evaluation
We compared our approach to multiple baseline solutions,
including several pipeline-based approaches and a joint-
inference approach without our extensions. Our evaluation
was conducted over two domains, medical tenders and in-
formal advertisements, with various settings. Our evalua-
tion showed that our approach significantly outperformed
pipeline-based solutions, confirming the advantage of joint
inference. Our evaluation also showed that our approach
improved precision without hurting recall when compared
against a base graph propagation approach, confirming the
benefits of our extensions (and hence our approach).

Baseline Approaches We constructed several baseline so-
lutions for our evaluation. First, we constructed three
pipeline solutions – i.e., PIPELINE1, PIPELINE2, and
PIPELINE_KEYWORD. These approaches must commit to
the boundaries of tokens (using a set of extraction rules)
before labeling can be performed. All three pipeline so-
lutions used the extraction rules in Table 1. The Stan-
ford POS tagger (Toutanova et al. 2003) was used for the
rules requiring part-of-speech tagging. PIPELINE1 prefers
the shortest token (if multiple extraction rules apply to the
same span of text) – e.g., teething is preferred over teething
blanket. PIPELINE2 prefers the longest token, which is
a commonly used scheme for tokenization in many infor-
mation extraction systems such as (Whitney and Sarkar
2012) (Collins and Singer 1999) (Talukdar et al. 2006).
PIPELINE_KEYWORD, which is based on a state-of-the-art
tokenization method (Deane 2005), uses Eq. 2 to score can-
didate tokens and selects the one with the highest score.
Once these pipeline solutions commit to the tokens, they
then use the label propagation scheme with the update func-
tion, Eq. 1, to perform labeling.

We also constructed a baseline joint inference system –
i.e., BASEJOINT_<P>. Like our approach – we’ll call
OURJOINT_<P> – BASEJOINT_<P> does not commit to
the boundaries of token before labeling. Instead, it gener-
ates all possible candidate tokens (using a set of extraction
rules), and uses additional information from label propaga-
tion to determine the best candidates. However, unlike our
solution, BASEJOINT_<P> does not capture mutually ex-
clusive relationships between candidates and hence uses the
update equation, Eq. 1, instead of our modified one, Eq. 3.
<p> indicates the percentage of the extracted to-

kens retained by the filtering step (see p in subsection
Step 2: Filter Candidates). In our evaluation, <p>
varies in {25, 50, 75, 100}, and both BASEJOINT_<P> and
OURJOINT_<P> use the same extraction rules in Table 1 to
generate candidate tokens.

8We set α and β based on the best result from multiple test runs.
We note, however, that our approach was not overly sensitive to the
choice of these parameters.

Evaluation Domains We evaluated all solutions over two
domains, medical tenders and infant product ads. We se-
lected these domains because they are difficult to parse,
and in the case of tenders, have not been widely studied
in Information Extraction research. For example, tenders
contain various forms of text such as tables and (semi or
un)structured text, and ads have an informal and idiosyn-
cratic style.

Medical tenders describe requests for bids on medical
products to be procured. These bids include information
such as drug type, agency, etc., and we assembled a cor-
pus of 2,200 tenders from a public website 9. Because most
tenders are in Microsoft Word or PDF, we used off-the-shelf
libraries 10 to convert them to plain text.

Product ads include information such as condition, pickup
location, etc., and we assembled 10,500 ads from a public
website 11. The information types extracted for each domain
are shown in Table 2.

Evaluation Setup First, we employed an external anno-
tator to construct a gold standard in the following manner.
This annotator began by identifying a set of information
types (i.e., labels) shown in Table. 2. Our annotator then
manually extracted relevant tokens for each information type
from the two corpora. The result was a dictionary for each
domain that contained the correct tokens and their labels.

For each domain, we applied all baseline approaches
(see previous subsection) along with our approach (i.e.,
OURJOINT_<P>) to the corresponding corpus to construct
a dictionary containing the tokens and their labels. We re-
peated this process ten times: each time using a different set
of seeds (the same set of seeds was used by all solutions for
the same run). We randomly selected k percentage of the
gold standard to serve as the seed, and the remainder of the
gold standard to serve as the test set. We varied k across
{.05, .1, .2, .3, .4, .5, .6, .7}. After each solution finished
labeling via propagation (10 iterations max), we included in
the output dictionary those token-label pairs where the label
with the highest score for that token (i.e., node) exceeded a
threshold s. Unless otherwise specified, we fixed k and s to
.4 and .5 respectively. We also measured the effect of vary-
ing s across {.1, .2, .3, .4, .5, .6, .7, .8} (see results below).

For each output dictionary, we compared the dictionary
(and hence the solution’s performance) against the corre-
sponding test set. We measured the performance using the
metrics of precision(P) and recall (R):

P =
correct extractions by our system
Total # extractions by our system

R =
correct extractions by our system

Total # extractions by gold standards

where a correct extraction is a token-label pair that match
exactly those provided by the gold standard. We also used
the F1-score, which is the harmonic mean of precision and
recall.

9http://www.tendertiger.com
10We used PDFMINER for PDF and PYWIN32 for MS Word.
11http://sfbay.craigslist.org

514

Tenders DrugName(Upper GIT Drugs), City(New Delhi), Ministry (Ministry of Railways), Department (Medical De-
partment), State (Andhra Pradesh), Institution(South Central Railway) , Office (District Development Office) ,
Purchaser (Chief Medical Director), Requirement (WHO Certification), Disease (Hepatitis B)

Ads Product Types (child rocking chair), Character (Hello Kitty) , Company (Fisher Price), Size (18"x36") , Picku-
pLocation (El Camino Real), Condition(barely worn), Color(espresso brown), SeriesName (Discovery Loops)

Table 2: Information types and their examples

Tenders Ads
of total docs 2,262 10,539
of docs used to generate nodes 80 100
of words per doc 1,627.9 63.3
of nodes 2,766 2,356

Table 3: Statistics of the datasets

Due to compute resource limitations 12 we could not con-
struct the graphs (required by all solutions evaluated) from
the entire dataset. These graphs could be extremely large.
Hence, we randomly selected a subset of documents for each
domain for graph construction and used the rest to construct
the feature vectors. Table. 3 shows the detailed settings.

Before presenting the results, we note that two experimen-
tal factors adversely affect the recall of all solutions evalu-
ated. First, our extraction rules are not complete. Second,
the conversion of tenders from PDF and MSWord to plain
text is error-prone. 13 These factors often prevented tokens
identified by the gold standard from being extracted across
all solutions evaluated. In one sample analysis, only 45%
(475/1,048) and 72% (268/373) of the gold standard could
be extracted for Tender and Ads respectively.

Eval1: Comparison of Systems
Fig. 3 shows the F1-score for all systems evaluated. In both
domains, the joint learning systems – i.e., OUTJOINT_75
and BASEJOINT_75 – significantly outperform the pipeline-
based systems. This result confirms the advantage of delay-
ing the commitment in token extraction to utilize evidence
from label propagation.

Furthermore, our evaluation shows that OUTJOINT_75
was able to significantly improve precision over BASE-
JOINT_75 without hurting recall (see Fig. 4). This same
finding is confirmed across different threshold scores s (see
Fig. 5). These results demonstrate the benefits of our ex-
tensions – i.e., 1) extending the base graph representation to
include mutually exclusive edges that captures ambiguities
during token extraction, and 2) a modified method to utilize
this information during label propagation.

Eval2: Analysis of Filtering in Joint Learning
Our method extracts candidate tokens using the extraction
rules in Table 1, and then selects the top p% of the tokens
using Eq. 2 (See Step2. Filtering). We perform this filtering

12We only had access to 2.2 GHz dual CPU, 8G RAM node.
13All conversion tools we tried had poor performance. Given the

explosively growing amount of PDFs and MSWords, we believe it
is an important research to develop a reliable conversion method.

Figure 3: F1-scores of the systems

Figure 4: Precision and recall of OURJOINT_75 and BASE-
JOINT_75. The difference in precision was significant
(paired t-test, p < .01) for seed ratio >= .2 for Tender and
>= .4 for Ads.

step to make the algorithm scalable by discarding the tokens
that are likely to be wrong.

In this experiment, we investige the effect of this filtering
step on performance by varying the number of nodes kept
(i.e., filter threshold p). We vary p across {25,50,75,100}
– i.e., we compare the F1-scores of OURJOINT_25, OUR-
JOINT_50, OURJOINT_75 and OURJOINT_100.

Fig. 6 shows that filtering is helpful. A cut around 75%
in Tender and 50% in Ads reduces a significant number of
nodes without hurting the accuracy. However, the result also
shows that the performance degrades below the cut – espe-
cially for Tenders. This result shows that if filtering is con-
servatively performed, it can improve the scalability. This
result also reaffirms that syntactic analysis (such as Eq. 2)
alone for token extraction is not enough.

Eval3:Performance for Individual Labels
Table. 4 shows the performance of the top five labels in terms
of the size of the gold standard dictionary. In this table, two

515

Figure 5: Precision and recall of OURJOINT_75 and BASE-
JOINT_75 over different scoring thresholds, s. The differ-
ence in precision was significant (paired t-test, p < .01) for
s <= .8 for Tender and <= .6 for Ads.

Figure 6: F1-Score for different filtering thresholds. Each
curve represents a different filtering threshold p used by our
system.

information types have low performance – CITY and CON-
DITION. For CITY, we found contextual words are uninfor-
mative because frequently co-occurring street names often
differ for different cities. To address this problem, the latent
meaning – the semantic labels of the surrounding words –
should be captured.

CONDITION in the Ads also has a low F1-score. Our anal-
ysis shows CONDITION has a variety of surface forms (e.g.,
used for 2 months, used only couple of times) that could not
be captured by our extraction rules. Furthermore, the con-
text features are often uninformative. For example, the top
three features of barely used are l1-, l1-was and r2-in, failing
to include informative words.

Conclusion and Future Work
We proposed a dictionary construction method based on
graph propagation. Our method allows a system to delay
the decisions in token extraction to utilize the evidence from
label propagation. Our evaluation shows the joint-inference
approach improves the accuracy of the outcome dictionaries.
Furthermore, the mutually exclusive edges representing con-
flicting relationship among the candidate tokens improves
the precision without hurting the recall.

Based on the encouraging results, we plan to explore var-
ious features beyond distributional similarity, such as struc-
tural information (e.g., tables) which contains informative

P R F1

Tender

DrugName(621) 0.63 0.38 0.475
Requirement (101) 0.97 0.18 0.305

City (95) 0.79 0.13 0.214
Institution (48) 0.98 0.39 0.56
Purchaser (37) 0.85 0.28 0.422

Ads Product(181) 0.94 0.37 0.529
Condition (51) 0.97 0.24 0.376
Company (50) 0.95 0.42 0.582
Character (29) 1 0.36 0.53

PickupLoc (29) 0.69 0.52 0.579

Table 4: The performance of the top five labels. The paren-
theses indicate the number of tokens in the gold standard.

features. We plan to compare our approach against state-of-
the-art sequence modeling approaches such as Conditional
Random Fields. Finally, we plan to investigate the scalabil-
ity of our approach by parallelizing it on distributed frame-
works such as MapReduce.

Acknowledgment
The authors would like to thank the anonymous reviewers
for their helpful feedback and suggestions for improving the
paper. The authors would also like to thank Anson Chu, Rey
Vasquez, and Bryan Walker for their help with the experi-
ments. Finally, the authors want to thank John Akred and
Mary Ohara for their support on this project.

References
Baluja, S.; Seth, R.; Sivakumar, D.; Jing, Y.; Yagnik, J.;
Kumar, S.; Ravichandran, D.; and Aly, M. 2008. Video
suggestion and discovery for youtube: taking random walks
through the view graph. In Proceedings of the 17th interna-
tional conference on World Wide Web, WWW ’08, 895–904.
New York, NY, USA: ACM.
Collins, M., and Singer, Y. 1999. Unsupervised models for
named entity classification. In In Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora, 100–110.
Deane, P. 2005. A nonparametric method for extraction
of candidate phrasal terms. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Linguistics,
ACL ’05, 605–613. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Kim, D. S.; Barker, K.; and Porter, B. 2010. Improving
the quality of text understanding by delaying ambiguity res-
olution. In Proceedings of the 23rd International Confer-
ence on Computational Linguistics, COLING ’10, 581–589.
Stroudsburg, PA, USA: Association for Computational Lin-
guistics.
Kim, D. S.; Verma, K.; and Yeh, P. Z. 2012. Build-
ing a lightweight semantic model for unsupervised infor-
mation extraction on short listings. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language

516

Learning, EMNLP-CoNLL ’12, 1081–1092. Stroudsburg,
PA, USA: Association for Computational Linguistics.
Poon, H., and Domingos, P. 2007. Joint inference in in-
formation extraction. In Proceedings of the 22nd national
conference on Artificial intelligence - Volume 1, AAAI’07,
913–918. AAAI Press.
Putthividhya, D. P., and Hu, J. 2011. Bootstrapped named
entity recognition for product attribute extraction. In Pro-
ceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’11, 1557–1567. Strouds-
burg, PA, USA: Association for Computational Linguistics.
Riloff, E., and Jones, R. 1999. Learning dictionaries for
information extraction by multi-level bootstrapping. In Pro-
ceedings of the sixteenth national conference on Artificial
intelligence and the eleventh Innovative applications of arti-
ficial intelligence conference innovative applications of ar-
tificial intelligence, AAAI ’99/IAAI ’99, 474–479. Menlo
Park, CA, USA: American Association for Artificial Intelli-
gence.
Subramanya, A.; Petrov, S.; and Pereira, F. 2010. Efficient
graph-based semi-supervised learning of structured tagging
models. In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP ’10,
167–176. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics.
Sutton, C., and McCallum, A. 2005. Joint parsing and se-
mantic role labeling. In Proceedings of the Ninth Conference
on Computational Natural Language Learning, CONLL
’05, 225–228. Stroudsburg, PA, USA: Association for Com-
putational Linguistics.
Talukdar, P. P.; Brants, T.; Liberman, M.; and Pereira, F.
2006. A context pattern induction method for named en-
tity extraction. In Proceedings of the Tenth Conference on
Computational Natural Language Learning, CoNLL-X ’06,
141–148. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics.
Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Com-
putational Linguistics on Human Language Technology -
Volume 1, NAACL ’03, 173–180. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Turney, P. D., and Pantel, P. 2010. From frequency to mean-
ing: vector space models of semantics. J. Artif. Int. Res.
37(1):141–188.
Whitney, M., and Sarkar, A. 2012. Bootstrapping via graph
propagation. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics, ACL ’12.
Stroudsburg, PA, USA: Association for Computational Lin-
guistics.
Yarowsky, D. 1995. Unsupervised word sense disambigua-
tion rivaling supervised methods. In Proceedings of the 33rd
annual meeting on Association for Computational Linguis-
tics, ACL ’95, 189–196. Stroudsburg, PA, USA: Association
for Computational Linguistics.

517

