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Abstract

Evolutionary game theory combines game theory and dynam-
ical systems and is customarily adopted to describe evolu-
tionary dynamics in multi–agent systems. In particular, it has
been proven to be a successful tool to describe multi–agent
learning dynamics. To the best of our knowledge, we pro-
vide in this paper the first replicator dynamics applicable to
the sequence form of an extensive–form game, allowing an
exponential reduction of time and space w.r.t. the currently
adopted replicator dynamics for normal form. Furthermore,
our replicator dynamics is realization equivalent to the stan-
dard replicator dynamics for normal form. We prove our re-
sults for both discrete–time and continuous–time cases. Fi-
nally, we extend standard tools to study the stability of a strat-
egy profile to our replicator dynamics.

Introduction
Game theory provides the most elegant tools to model strate-
gic interaction situations among rational agents. These situ-
ations are customarily modeled as games (Fudenberg and
Tirole 1991) in which the mechanism describes the rules
and strategies describe the behavior of the agents. Further-
more, game theory provides a number of solution concepts.
The central one is Nash equilibrium. Game theory assumes
agents to be rational and describes “static” equilibrium
states. Evolutionary game theory (Cressman 2003) drops the
assumption of rationality and assumes agents to be adaptive
in the attempt to describe dynamics of evolving populations.
Interestingly, there are strict relations between game the-
ory solution concepts and evolutionary game theory steady
states, e.g., Nash equilibria are steady states. Evolutionary
game theory is commonly adopted to study economic evolv-
ing populations (Cai, Niu, and Parsons 2007) and artificial
multi–agent systems, e.g., for describing multi–agent learn-
ing dynamics (Tuyls, Hoen, and Vanschoenwinkel 2006;
Tuyls and Parsons 2007; Panait, Tuyls, and Luke 2008)
and as heuristics in algorithms (Kiekintveld, Marecki, and
Tambe 2011). In this paper, we develop efficient techniques
for evolutionary dynamics with extensive–form games.

Extensive–form games are a very important class of
games. They provide a richer representation than strategic–
form games, the sequential structure of decision–making be-
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ing described explicitly and each agent being allowed to
be free to change her mind as events unfold. The study of
extensive–form games is carried out by translating the game
by means of tabular representations (Shoham and Leyton-
Brown 2008). The most common is the normal form. Its
advantage is that all the techniques applicable to strategic–
form games can be adopted also with this representation.
However, the size of normal form grows exponentially with
the size of the game tree, thus being impractical. The agent
form is an alternative representation whose size is linear
in the size of the game tree, but it makes, even with two
agents, each agent’s best–response problem highly non–
linear. To circumvent these issues, sequence form was pro-
posed (von Stengel 1996). This form is linear in the size of
the game tree and does not introduce non–linearities in the
best–response problem. On the other hand, standard tech-
niques for strategic–form games cannot be adopted with
such representation, e.g. (Lemke and Howson 1964), thus
requiring alternative ad hoc techniques, e.g. (Lemke 1978).
In addition, sequence form is more expressive than normal
form. For instance, working with sequence form it is pos-
sible to find Nash–equilibrium refinements for extensive–
form games—perfection based Nash equilibria and sequen-
tial equilibrium (Miltersen and Sørensen 2010; Gatti and Iu-
liano 2011)—while it is not possible with normal form.

To the best of our knowledge, there is no result dealing
with the adoption of evolutionary game theory tools with
sequence form for the study of extensive–form games, all
the known results working with the normal form (Cressman
2003). In this paper, we originally explore this topic, provid-
ing the following main contributions.

• We show that the standard replicator dynamics for nor-
mal form cannot be adopted with the sequence form, the
strategies produced by replication not being well–defined
sequence–form strategies.

• We design an ad hoc version of the discrete–time repli-
cator dynamics for sequence form and we show that it is
sound, the strategies produced by replication being well–
defined sequence–form strategies.

• We show that our replicator dynamics is realization equiv-
alent to the standard discrete–time replicator dynamics for
normal form and therefore that the two replicator dynam-
ics evolve in the same way.

• We extend our discrete–time replicator dynamics to the
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continuous–time case, showing that the same properties
are satisfied and extending standard tools to study the sta-
bility of the strategies to our replicator.

Game theoretical preliminaries
Extensive–form game definition. A perfect–information
extensive–form game (Fudenberg and Tirole 1991) is a tuple
(N,A,V, T, ι, ρ, χ,u), where: N is the set of agents (i ∈ N
denotes a generic agent), A is the set of actions (Ai ⊆ A de-
notes the set of actions of agent i and a ∈ A denotes a generic
action), V is the set of decision nodes (Vi ⊆ V denotes the
set of decision nodes of i), T is the set of terminal nodes
(w ∈ V ∪ T denotes a generic node and w0 is root node),
ι ∶ V → N returns the agent that acts at a given decision
node, ρ ∶ V → ℘(A) returns the actions available to agent
ι(w) at w, χ ∶ V ×A → V ∪ T assigns the next (decision or
terminal) node to each pair ⟨w,a⟩ where a is available at w,
and u = (u1, . . . , u∣N ∣) is the set of agents’ utility functions
ui ∶ T → R. Games with imperfect information extend those
with perfect information, allowing one to capture situations
in which some agents cannot observe some actions under-
taken by other agents. We denote by Vi,h the h–th infor-
mation set of agent i. An information set is a set of decision
nodes such that when an agent plays at one of such nodes she
cannot distinguish the node in which she is playing. For the
sake of simplicity, we assume that every information set has
a different index h, thus we can univocally identify an infor-
mation set by h. Furthermore, since the available actions at
all nodes w belonging to the same information set h are the
same, with abuse of notation, we write ρ(h) in place of ρ(w)
with w ∈ Vi,h. An imperfect–information game is a tuple
(N,A,V, T, ι, ρ, χ,u,H) where (N,A,V, T, ι, ρ, χ,u) is a
perfect–information game and H = (H1, . . . ,H∣N ∣) induces
a partition Vi = ⋃h∈Hi Vi,h such that for all w,w′ ∈ Vi,h we
have ρ(w) = ρ(w′). We focus on games with perfect recall
where each agent recalls all the own previous actions and the
ones of the opponents (Fudenberg and Tirole 1991).
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Figure 1: Example of two–agent perfect–information
extensive–form game, x.y denote the y–th node of agent x.

(Reduced) Normal form (von Neumann and Morgen-
stern 1944). It is a tabular representation in which each
normal–form action, called plan and denoted by p ∈ Pi
where Pi is the set of plans of agent i, specifies one action a
per information set. We denote by πi a normal–form strat-
egy of agent i and by πi(p) the probability associated with
plan p. The number of plans (and therefore the size of the
normal form) is exponential in the size of the game tree. The

reduced normal form is obtained from the normal form by
deleting replicated strategies (Vermeulen and Jansen 1998).
Although reduced normal form can be much smaller than
normal form, it is exponential in the size of the game tree.

Example 1 The reduced normal form of the game in Fig. 1
and a pair of normal–form strategies are:

agent 2
l r

a g
en

t1

L1∗ 2,4 2,4

R1L2L3 3,1 2,1

R1L2R3 3,1 4,2

R1R2L3 3,3 2,1

R1R2R3 3,3 4,2

π1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1,L1∗ = 1
3

π1,R1L2L3
= 0

π1,R1L2R3
= 1

3

π1,R1R2L3
= 0

π1,R1R2R3
= 1

3

π2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π2,l = 1

π2,r = 0

Agent form (Kuhn 1950; Selten 1975). It is a tabular rep-
resentation in which each agent is replicated in a number of
fictitious agents, each per information set, and all the ficti-
tious agents of the same agent have the same utility. A strat-
egy is commonly said behavioral and denoted by σi. We de-
note by σi(a) the probability associated with action a ∈ Ai.
The agent form is linear in the size of the game tree.

Sequence form (von Stengel 1996). It is a representation
constituted by a tabular and a set of constraints. Sequence–
form actions are called sequences. A sequence q ∈ Qi of
agent i is a set of consecutive actions a ∈ Ai where Qi ⊆ Q
is the set of sequences of agent i and Q is the set of all
the sequences. A sequence can be terminal, if, combined
with some sequence of the opponents, it leads to a termi-
nal node, or non–terminal otherwise. In addition, the initial
sequence of every agent, denoted by q∅, is said empty se-
quence and, given sequence q ∈ Qi leading to some infor-
mation set h ∈ Hi, we say that q′ extends q and we denote
by q′ = q∣a if the last action of q′ (denoted by a(q′) = a′)
is some action a ∈ ρ(h) and q leads to h. We denote by
w = h(q) the node w with a(q) ∈ ρ(w); by q′ ⊆ q a subse-
quence of q; by xi the sequence–form strategy of agent i and
by xi(q) the probability associated with sequence q ∈ Qi.
Finally, condition q → h is true if sequence q crosses in-
formation set h. Well–defined strategies are such that, for
every information set h ∈Hi, the probability xi(q) assigned
to the sequence q leading to h is equal to the sum of the
probabilities xi(q′)s where q′ extends q at h. Sequence form
constraints are xi(q∅) = 1 and xi(q) = ∑a∈ρ(w) xi(q∣a) for
every sequence q, action a, node w such that w = h(q∣a),
and for every agent i. The agent i’s utility is represented as
a sparse multi–dimensional array, denoted, with an abuse of
notation, by Ui, specifying the value associated with every
combination of terminal sequences of all the agents. The size
of the sequence form is linear in the size of the game tree.

Example 2 The sequence form of the game in Fig. 1 and a
pair of sequence–form strategies are:
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agent 2
q∅ l r

ag
en

t1

q∅
L1 2,4

R1

R1L2 3,1

R1R2 3,3

R1L3 2,1

R1R3 4,2

x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
3
2
3
1
3
1
3

0
2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x2 =
⎡⎢⎢⎢⎢⎢⎢⎣

1

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

Replicator dynamics. The standard discrete–time repli-
cator equation with two agents is (Cressman 2003):

π1(p, t + 1) = π1(p, t) ⋅
eTp ⋅U1 ⋅π2(t)

πT1 (t) ⋅U1 ⋅π2(t)
(1)

π2(p, t + 1) = π2(p, t) ⋅
πT1 (t) ⋅U2 ⋅ ep

πT1 (t) ⋅U2 ⋅π2(t)
(2)

while the continuous–time one is

π̇1(p) = π1(p) ⋅ [(ep −π1)T ⋅U1 ⋅π2] (3)

π̇2(p) = π2(p) ⋅ [πT1 ⋅U2 ⋅ (ep −π2)] (4)

where ep is the vector in which the p–th component is “1”
and the others are “0”.

Discrete–time replicator dynamics for
sequence–form representation

Initially, we show that the standard discrete–time replicator
dynamics for normal form cannot be directly applied when
sequence form is adopted. Standard replicator dynamics ap-
plied to the sequence form is easily obtained by considering
each sequence q as a plan p and thus substituting eq to ep
in (1)–(2) where eq is zero for all the components q′ such
that q′ ≠ q and one for the component q′ such that q′ = q.
Proposition 3 The replicator (1)–(2) does not satisfy the
sequence–form constraints.

Proof. The proof is by counterexample. Consider x1(t)
and x2(t) equal to the strategies used in Example 2. At time
t + 1 the strategy profile generated by (1)–(2) is:

x
T
1 (t+1) = [ 0 1

3 0 1
2

1
6 0 0 ] x

T
2 (t+1) = [ 1

2
1
2 0 ]

that does not satisfy the sequence–form constraints, e.g.,
xi(q∅, t + 1) ≠ 1 for all i. ◻

The critical issue behind the failure of the standard repli-
cator dynamics lies in the definition of vector eq . Now we
describe how the standard discrete–time replicator dynam-
ics can be modified to be applied to the sequence form. In
our variation, we substitute eq with an opportune vector gq
that depends on the strategy xi(t) and it is generated as de-
scribed in Algorithm 1, obtaining:

x1(q, t + 1) = x1(q, t) ⋅
gTq (x1(t)) ⋅U1 ⋅ x2(t)

xT1 (t) ⋅U1 ⋅ x2(t)
(5)

x2(q, t + 1) = x2(q, t) ⋅
xT1 (t) ⋅U2 ⋅ gq(x2(t))

xT1 (t) ⋅U2 ⋅ x2(t)
(6)

The basic idea behind the construction of vector gq is:

Algorithm 1 generate gq(xi(t))
1: gq(xi(t)) = 0

2: if xi(q, t) ≠ 0 then
3: for q′ ∈ Qi s.t. q′ ⊆ q do
4: gq(q′,xi(t)) = 1

5: for q′′ ∈ Qi s.t. q′′ ∩ q = q′ and q′′ = q′∣a∣ . . . : a ∈ ρ(h), q /→ h do

6: gq(q′′,xi(t)) = xi(q
′′,t)

xi(q′,t)
7: return gq(xi(t))

• assigning “1” to the probability of all the sequences con-
tained in q,

• normalizing the probability of the sequences extending
the contained in q,

• assigning “0” to the probability of all the other sequences.
We describe the generation of vector gq(xi(t)), for clarity
we use as running example the generation of gR1R3(x1(t))
related to Example 2:
• all the components of gq(xi(t)) are initialized equal to

“0”, e.g.,

gR1R3
(x1(t))T = [ 0 0 0 0 0 0 0 ]

• if sequence q is played, the algorithm assigns:
– “1” to all the components gq(q′,xi(t)) of gq(xi(t))

where q′ ⊆ q (i.e., q′ is a subsequence of q), e.g.,

gR1R3
(x1(t))T = [ 1 0 1 0 0 0 1 ]

– “xi(q
′′,t)

xi(q′,t) ” to all the components gq(q′′,xi(t)) of
gq(xi(t)) where q′ ⊆ q with q′ = q′′ ∩ q and se-
quence q′′ is defined as q′′ = q′∣a∣ . . . with a ∈ ρ(h)
and q /→ h (i.e., q′ is a subsequence of q and q′′ extends
q′ off the path identified by q), e.g.,

gR1R3
(x1(t))T = [ 1 0 1 1

2
1
2 0 1 ]

– all the other components are left equal to “0”,
• if sequence q is not played, gq(xi(t)) can be arbitrary,

since the q–th equation of (5)–(6) is always zero given
that xi(q, t) = 0 for every t.

All the vectors gq(x1(t)) of Example 2 are:

gq∅ gL1 gR1
gR1L2

gR1R2
gR1L3

gR1R3

q∅ 1 1 1 1 1 1 1

L1
1
3 1 0 0 0 0 0

R1
2
3 0 1 1 1 1 1

R1L2
1
3 0 1

2 1 0 1
2

1
2

R1R2
1
3 0 1

2 0 1 1
2

1
2

R1L3 0 0 0 0 0 1 0

R1R3
2
3 0 1 1 1 0 1

We show that replicator dynamics (5)–(6) do not violate
sequence–form constraints.

Theorem 4 Given a well–defined sequence–form strategy
profile (x1(t),x2(t)), the output strategy profile (x1(t +
1),x2(t + 1)) of replicator dynamics (5)–(6) satisfies
sequence–form constraints.
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Proof. The constraints forced by sequence form are:
• xi(q∅, t) = 1 for every i,
• xi(q, t) = ∑a∈ρ(w) xi(q∣a, t) for every sequence q, ac-

tion a, nodew such thatw = h(q∣a), and for every agent i.
Assume, by hypothesis of the theorem, that the above con-

straints are satisfied at t, we need to prove that constraints

xi(q∅, t + 1) = 1 (7)

xi(q, t + 1) = ∑
a∈ρ(w)

xi(q∣a, t + 1) (8)

are satisfied. Constraint (7) always holds because
gq∅(x1(t)) = x1(t). We rewrite constraints (8) as

xi(q, t) ⋅
gTq (xi(t)) ⋅Ui ⋅ x−i(t)

xTi (t) ⋅Ui ⋅ x−i(t)
=

= ∑
a∈ρ(w)

⎛
⎝
xi(q∣a, t) ⋅

gTq∣a(xi(t)) ⋅Ui ⋅ x−i(t)
xTi (t) ⋅Ui ⋅ x−i(t)

⎞
⎠

(9)

Conditions (9) hold if the following condition holds

xi(q, t) ⋅ gTq (xi(t)) = ∑
a∈ρ(w)

(xi(q∣a, t) ⋅ gTq∣a(xi(t))) (10)

Notice that condition (10) is a vector of equalities, one per
sequence q′. Condition (10) is trivially satisfied for compo-
nents q′ such that gq(q′,xi(t)) = 0. To prove the condition
for all the other components, we introduce two lemmas.

Lemma 5 Constraint (10) holds for all components
gq(q′,xi(t)) of gq(xi(t)) such that q′ ⊆ q.

Proof. By construction, gq(q′,xi(t)) = 1 for every q′ ⊆ q.
For every extension q∣a of q, we have that q′ ⊆ q ⊂ q∣a. For
this reason gq∣a(q′,xi(t)) = 1. Thus

xi(q, t) ⋅ gq(q′,xi(t)) = ∑
a∈ρ(w)

(xi(q∣a, t) ⋅ gq∣a(q′,xi(t))) iff

xi(q, t) ⋅ 1 = ∑
a∈ρ(w)

xi(q∣a, t) ⋅ 1

that holds by hypothesis. Therefore the lemma is proved. ◻
Lemma 6 Constraint (10) holds for all components
gq(q′′,xi(t)) of gq(xi(t)) where q′ ⊆ q with q′ = q′′ ∩ q
and sequence q′′ = q′∣a′∣ . . . with a′ ∈ ρ(h) and q /→ h.

Proof. For all q′′, gq(q′′,xi(t)) = xi(q′′,t)
xi(q′,t) by construc-

tion. In the right side term of (10), for all a we can have
either q∣a ⊄ q′′ or q∣a ⊂ q′′. In the former we have that
gq∣a(q′′,xi(t)) = xi(q′′,t)

xi(q′,t) , in the latter there exists only one

action a such that gq∣a(q′′,xi(t)) = xi(q′′,t)
xi(q∣a,t) , while for the

other actions a∗ the value of gq∣a∗(q′′,xi(t)) is zero. Hence,
we can have two cases: if q∣a ⊄ q′′, then

xi(q, t) ⋅ gq(q′′,xi(t)) = ∑
a∈ρ(w)

(xi(q∣a, t) ⋅ gq∣a(q′′,xi(t))) iff

xi(q, t) ⋅
xi(q′′, t)
xi(q′, t)

= ∑
a∈ρ(w)

(xi(q∣a, t) ⋅
xi(q′′, t)
xi(q′, t)

)

that holds by hypothesis, otherwise if q∣a ⊂ q′′, then

xi(q, t) ⋅ gq(q′′,xi(t)) = ∑
a∈ρ(w)

(xi(q∣a, t) ⋅ gq∣a(q′′,xi(t))) iff

xi(q, t) ⋅
xi(q′′, t)
xi(q, t)

= xi(q∣a, t) ⋅
xi(q′′, t)
xi(q∣a, t)

that always holds. Therefore the lemma is proved. ◻
From the application of Lemmas 5 and 6, it follows that

condition (10) holds. ◻

Replicator dynamics realization equivalence
There is a well–known relation, based on the concept
of realization, between normal–form and sequence–form
strategies. In order to exploit it, we introduce two results
from (Koller, Megiddo, and von Stengel 1996).

Definition 7 (Realization equivalent) Two strategies of an
agent are realization equivalent if, for any fixed strategies of
the other agents, both strategies define the same probabili-
ties for reaching the nodes of the game tree.

Proposition 8 For an agent with perfect recall, any
normal–form strategy is realization equivalent to a
sequence–form strategy.

We recall in addition that each pure sequence–form strat-
egy corresponds to a pure normal–form strategy in the
reduced normal form (Koller, Megiddo, and von Stengel
1996). We can show that the evolutionary dynamics of (5)–
(6) are realization equivalent to the evolutionary dynamics
of the normal–form replicator dynamics and therefore that
the two replicator dynamics evolve in the same way.

Initially, we introduce the following lemma that we will
exploit to prove the main result.

Lemma 9 Given
• a reduced–normal–form strategy πi(t) of agent i,
• a sequence–form strategy xi(t) realization equivalent to
πi(t),

it holds that xi(q∣a, t) ⋅gTq∣a(xi(t)) is realization equivalent
to ∑p∈P ∶a∈p (πi(p, t) ⋅ eTp ) for all a ∈ Ai and q ∈ Qi with
q∣a ∈ Qi.

Proof. We denote by x̃p(t) the sequence–form strat-
egy realization equivalent to ep(t). According to (Koller,
Megiddo, and von Stengel 1996), we can rewrite the thesis
of the theorem as

xi(q∣a, t) ⋅ gTq∣a(xi(t)) = ∑
p∈P ∶a∈p

(πi(p, t) ⋅ x̃p(t)T ) ∀a ∈ Ai (11)

Notice that, for each action a and sequence q such that q∣a ∈
Qi, condition (11) is a vector of equality conditions. Given
a and q, two cases are possible:

1. xi(q∣a, t) = 0 and then ∑p∈P ∶a∈p πi(p, t) = 0, thus condi-
tions (11) hold;

2. xi(q∣a, t) ≠ 0, in this case:
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• for all components gq∣a(q′,xi(t)) of gq∣a(xi(t)) and
x̃p(q′, t) of x̃p(t) such that q′ ⊆ q∣a, we have that
x̃p(q′, t) = 1 for all p ∈ P with a ∈ p and Algorithm 1
sets gq∣a(q′,xi(t)) = 1, thus we can rewrite (11) as

xi(q∣a, t) ⋅ gq∣a(q′,xi(t)) = ∑
p∈P ∶a∈p

(πi(p, t) ⋅ x̃p(q′, t)) iff

xi(q∣a, t) ⋅ 1 = ∑
p∈P ∶a∈p

(πi(p, t) ⋅ 1)

that holds by hypothesis and thus conditions (11) hold;
• for all components gq∣a(q′′,xi(t)) of gq∣a(xi(t)) and
x̃p(q′′, t) of x̃p(t) such that q′′ such that q′′ ∩ q =
q′ and sequence q′′ = q′∣a′∣ . . . with a′ ∈ ρ(h) and
q /→ h, we have that x̃p(q′′, t) = 1 for all p ∈ P with
a, a(q′′) ∈ p and “0” otherwise, and Algorithm 1 sets
gq∣a(q′′,xi(t)) = xi(q′′,t)

xi(q′,t) , thus we can rewrite (11) as

xi(q∣a, t) ⋅ gq∣a(q′′,xi(t)) = ∑
p∈P ∶a∈p

(πi(p, t) ⋅ x̃p(q′′, t)) iff

xi(q∣a, t) ⋅
xi(q′′, t)
xi(q′, t)

= ∑
p∈P ∶a,a(q′′)∈p

(πi(p, t) ⋅ 1)

Using the relationship with the behavioral strategies,
we can write

xi(q∣a, t) ⋅
xi(q′′, t)
xi(q′, t)

= ∏
a′∈q∣a

σi(a′, t) ⋅
∏a′∈q′′ σi(a′, t)
∏a′∈q′ σi(a′, t)

Being q′ ⊆ q∣a and q′ ⊆ q′′ we have

xi(q∣a, t) ⋅
xi(q′′, t)
xi(q′, t)

=

∏
a′∈q∣a/q′

σi(a′, t) ⋅ ∏
a′∈q′

σi(a′, t) ⋅ ∏
a′∈q′′/q′

σi(a′, t) =

∏
a∗∈⋃a′∈{a,a(q′′)} q(a

′)
σi(a∗, t)

that can be easily rewrite as—for details (Gatti,
Panozzo, and Restelli 2013)—

∑
p∈P ∶a,a(q′′)∈p

πi(p, t) = ∏
a∗∈⋃a′∈{a,a(q′′)} q(a

′)
σi(a∗, t)

and therefore conditions (11) hold.
This completes the proof of the lemma. ◻

Now we state the main result. It allows us to study the
evolution of a strategy in a game directly in sequence form,
instead of using the normal form, and it guarantees that the
two dynamics (sequence and normal) are equivalent.
Theorem 10 Given
• a normal–form strategy profile (π1(t),π2(t)) and its

evolution (π1(t + 1),π2(t + 1)) according to (1)–(2),
• a sequence–form strategy profile (x1(t),x2(t)) and its

evolution (x1(t + 1),x2(t + 1)) according to (5)–(6),
if (π1(t),π2(t)) and (x1(t),x2(t)) are realization equiv-
alent, then also (π1(t+1),π2(t+1)) and (x1(t+1),x2(t+
1)) are realization equivalent.

Proof. Assume, by hypothesis of the theorem, that
(x1(t),x2(t)) is realization equivalent to (π1(t),π2(t)).
Thus, according to (Koller, Megiddo, and von Stengel 1996),
for every agent i it holds

xi(q∣a, t) = ∑
p∈P ∶a∈p

πi(p, t) ∀a ∈ Ai

We need to prove that the following conditions hold:

xi(q∣a, t + 1) = ∑
p∈P ∶a∈p

πi(p, t + 1) ∀a ∈ Ai (12)

By applying the definition of replicator dynamics, we can
rewrite the conditions (12) as:

xi(q∣a, t) ⋅
gTq∣a(xi(t)) ⋅Ui ⋅ x−i(t)

xTi (t) ⋅Ui ⋅ x−i(t)
=

= ∑
p∈P ∶a∈p

⎛
⎝
πi(p, t) ⋅

eTp ⋅Ui ⋅π−i(t)
πTi (t) ⋅Ui ⋅π−i(t)

⎞
⎠

∀a ∈ Ai (13)

Given that, by hypothesis, xTi (t) ⋅ Ui ⋅ x−i(t) = πTi (t) ⋅ Ui ⋅
π−i(t), we can rewrite conditions (13) as:

xi(q∣a, t) ⋅ gTq∣a(xi(t)) ⋅Ui ⋅ x−i(t) =

= ∑
p∈P ∶a∈p

(πi(p, t) ⋅ eTp ⋅Ui ⋅π−i(t)) ∀a ∈ Ai

These conditions hold if and only if∑p∈P ∶a∈p (πi(p, t) ⋅ eTp )
is realization equivalent to xi(q∣a, t) ⋅ gTq∣a(xi(t)). By
Lemma 9, this equivalence holds. ◻

Continuous–time replicator dynamics for
sequence–form representation

The sequence–form continuous–time replicator equation is

ẋ1(q, t) = x1(q, t) ⋅ [(gq(x1(t)) − x1(t))T ⋅U1 ⋅ x2(t)] (14)

ẋ2(q, t) = x2(q, t) ⋅ [x1(t)T ⋅U2 ⋅ (gq(x2(t) − x2(t))] (15)

Theorem 11 Given a well–defined sequence–form strategy
profile (x1(t),x2(t)), the output strategy profile (x1(t +
∆t),x2(t +∆t)) of replicator dynamics (14)–(15) satisfies
sequence–form constraints.

Proof. The constraints forced by sequence form are:
• xi(q∅, t) = 1 for every i,
• xi(q, t) = ∑a∈ρ(w) xi(q∣a, t) for every sequence q, ac-

tion a, nodew such thatw = h(q∣a), and for every agent i.
Assume, by hypothesis of the theorem, that constraints are
satisfied at a given time point t, we need to prove that con-
straints

xi(q∅, t +∆t) = 1 (16)

xi(q, t +∆t) = ∑
a∈ρ(w)

xi(q∣a, t +∆t) (17)

are satisfied. Constraint (16) always holds because
gq(x1(t)) = x1(t). We rewrite constraints (17) as

xi(q, t) ⋅ [(gq(xi(t)) − xi(t))T ⋅Ui ⋅ x−i(t)] =

= ∑
a∈ρ(w)

(xi(q∣a) ⋅ [(gq∣a(xi(t)) − xi(t))T ⋅Ui ⋅ x−i(t)]) (18)

Conditions (18) hold if the following conditions hold

xi(q, t) ⋅ gTq (xi(t)) = ∑
a∈ρ(w)

(xi(q∣a, t) ⋅ gTq∣a(xi(t))) (19)

Notice that condition (19) is a vector of equalities. The above
condition is trivially satisfied for components q′ such that
gq(q′,xi(t)) = 0. From the application of Lemmas 5 and 6,
the condition (19) holds also for all the other components. ◻
Theorem 12 Given
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• a normal–form strategy profile (π1(t),π2(t)) and its
evolution (π1(t+∆t),π2(t+∆t)) according to (3)–(4),

• a sequence–form strategy profile (x1(t),x2(t)) and its
evolution (x1(t + ∆t),x2(t + ∆t)) according to (14)–
(15),

if (π1(t),π2(t)) and (x1(t),x2(t)) are realization equiv-
alent, then also (π1(t + ∆t),π2(t + ∆t)) and (x1(t +
∆t),x2(t +∆t)) are realization equivalent.

Proof. Assume, by hypothesis of the theorem, that
(x1(t),x2(t)) is realization equivalent to (π1(t),π2(t)).
Thus, according to (Koller, Megiddo, and von Stengel 1996),
for every agent i it holds

xi(q∣a, t) = ∑
p∈P ∶a∈p

πi(p, t) ∀a ∈ Ai

We need to prove that the following conditions hold:

xi(q∣a, t +∆t) = ∑
p∈P ∶a∈p

πi(p, t +∆t) ∀a ∈ Ai (20)

By applying the definition of replicator dynamics, we can
rewrite the conditions (20) as:

xi(q∣a, t) ⋅ [(gq∣a(xi(t)) − xi(t))T ⋅Ui ⋅ x−i(t)] =

= ∑
p∈P ∶a∈p

(πi(p, t) ⋅ [(ep −πi(t))T ⋅Ui ⋅π−i(t)]) ∀a ∈ Ai (21)

Given that, by hypothesis, xTi (t) ⋅ Ui ⋅ x−i(t) = πTi (t) ⋅ Ui ⋅
π−i(t), we can rewrite conditions (21) as:

xi(q∣a, t) ⋅ gTq∣a(xi(t)) ⋅Ui ⋅ x−i(t) =

= ∑
p∈P ∶a∈p

(πi(p, t) ⋅ eTp ⋅Ui ⋅π−i(t)) ∀a ∈ Ai

These conditions hold if and only if∑p∈P ∶a∈p (πi(p, t) ⋅ eTp )
is realization equivalent to xi(q∣a, t) ⋅ gTq∣a(xi(t)). By
Lemma 9, this equivalence holds. ◻

Analyzing the stability of a strategy profile
We focus on characterizing a strategy profile in terms of
evolutionary stability. When the continuous–time replicator
dynamics for normal–form is adopted, evolutionary stabil-
ity can be analyzed by studying the eigenvalues of the Ja-
cobian in that point (Arrowsmith and Place 1992)—non–
positiveness of the eigenvalues is a necessary condition for
asymptotical stability, while strict negativeness of the eigen-
values is sufficient. The Jacobian is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ẋ1(qi, t)
∂x1(qj , t)

∂ẋ1(qi, t)
∂x2(ql, t)

∂ẋ2(qk, t)
∂x1(qj , t)

∂ẋ2(qk, t)
∂x2(ql, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∀qi, qj ∈ Q1,

qk, ql ∈ Q2

In order to study the Jacobian of our replicator dynamics,
we need to complete the definition of gq(xi(t)). Indeed, we
observe that some components of gq(xi(t)) are left arbi-
trary by Algorithm 1. Exactly, some q′′ that are related to q′
with xi(q′, t) = 0. While it is not necessary to assign values
to such components during the evolution of the replicator
dynamics, it is necessary when we study the Jacobian. The
rationale follows. If xi(q′, t) = 0, then it will remain zero
even after t. Instead, if, after the dynamics converged to a

point, such a point has xi(q′) = 0 for some q′, it might
be the case that along the dynamics it holds xi(q′) ≠ 0.
Thus, in order to define these components of gq(xi(t)),
we need to reason backward, assigning the values that they
would have in the case such sequence would be played with
a probability that goes to zero. In absence of degeneracy,
Algorithm 2 addresses this issue assigning a value of “1”
to a sequence q′′ if it is the (unique, the game being non–
degenerate) best response among the sequences extending
q′ and “0” otherwise, because at the convergence the agents
play only the best response sequences. Notice that, in this
case, gq(xi(t),x−i(t)) depends on both agents’ strategies.

Algorithm 2 generate gq(xi(t),x−i(t))
1: gq(xi(t),x−i(t)) = 0

2: for q′ ∈ Qi s.t. q′ ⊆ q do
3: gq(q′,xi(t),x−i(t)) = 1

4: for q′′ ∈ Qi s.t. q′′ ∩ q = q′ and q′′ = q′∣a∣ . . . : a ∈ ρ(h), q /→ h do
5: if xi(q′, t) ≠ 0 then

6: gq(q′′,xi(t),x−i(t)) = xi(q
′′,t)

xi(q′,t)
7: else if q′′ = argmaxq∗∶a(q∗)∈ρ(h)E[Ui(q

∗,x−i)] then
8: gq(q′′,xi(t),x−i(t)) = 1

9: return gq(xi(t),x−i(t))

Given the above complete definition of gq , we can ob-
serve that all the components of gq(xi(t),x−i(t)) gener-
ated by Algorithm 2 are differentiable, being “0” or “1” or
“xi(q

′′,t)
xi(q′,t) ”. Therefore, we can derive the Jacobian as:

∂ẋ1(qi, t)

∂x1(qj , t)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(gqi (x1(t),x2(t)) − x1(t))
T
⋅U1 ⋅ x2(t) + x1(qi, t)⋅

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

∂gqi
(x1(t),x2(t))

∂x1(qj , t)
− ei

⎞

⎠

T

⋅U1 ⋅ x2(t)

⎤
⎥
⎥
⎥
⎥
⎦

if i = j

x1(qi, t) ⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

∂gqi
(x1(t),x2(t))

∂x1(qj , t)
− ej

⎞

⎠

T

⋅U1 ⋅ x2(t)

⎤
⎥
⎥
⎥
⎥
⎦

if i ≠ j

∂ẋ1(qi, t)

∂x2(ql, t)
= x1(qi, t) ⋅ [(gqi (x1(t),x2(t)) − x1(t))

T
⋅U1 ⋅ el]

∂ẋ2(qk, t)

∂x1(qj , t)
= x2(qk, t) ⋅ [e

T
j ⋅U2 ⋅ (gqk (x2(t),x1(t)) − x2(t))]

∂ẋ2(qk, t)

∂x2(ql, t)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

x1(t)
T
⋅U2 ⋅ (gqk (x2(t),x1(t)) − x2(t)) + x2(qk, t)⋅

⋅

⎡
⎢
⎢
⎢
⎢
⎣

x1(t)
T
⋅U2 ⋅

⎛

⎝

∂gqk
(x2(t),x1(t))

∂x2(ql, t)
− ek

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

if k = l

x2(qk, t) ⋅

⎡
⎢
⎢
⎢
⎢
⎣

x1(t)
T
⋅U2 ⋅

⎛

⎝

∂gqk
(x2(t),x1(t))

∂x2(ql, t)
− el

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

if k ≠ l

With degenerate games, given a opponent’s strategy pro-
file x−i(t) and a sequence q ∈ Qi such that xi(q, t) = 0, we
can have multiple best responses. Consider, e.g., the game
in Example 2, with xT1 (t) = [ 1 1 0 0 0 0 0 ],
xT2 (t) = [ 1 1 0 ] and compute gR1L3(x1(t),x2(t)):
both sequences R1L2 and R1R2 are best responses to x2(t).
Reasoning backward, we have different vectors gq(xi,x−i)
for different dynamics. More precisely, we can partition the
strategy space around (xi,x−i), associating a different best
response with a different subspace and therefore with a dif-
ferent gq(xi,x−i). Thus, in principle, in order to study the
stability of a strategy profile, we would need to compute and
analyze all the (potentially combinatory) Jacobians. How-
ever, we can show that all these Jacobians are the same and
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therefore, even in the degenerate case, we can safely study
the Jacobian by using a gq(xi,x−i) as generated by Algo-
rithm 2 except, if there are multiple best responses, Step 7–8
assign “1” only to one, randomly chosen, best response.
Theorem 13 Given
• a specific sequence q ∈ Qi such that xi(q, t) = 0,
• a sequence–form strategy x−i(t),
• a sequence q′ ⊆ q,
• the number of sequences q′′ such that q′′ ∩ q = q′ and
q′′ = q′∣a∣ . . . : a ∈ ρ(h), q /→ h and that are best responses
to x−i(t) is larger than one,

the eigenvalues of the Jacobian are independent from which
sequence q′′ is choosen as best–response.

Conclusions and future works
We developed efficient evolutionary game theory techniques
to deal with extensive–form games. We designed the first
replicator dynamics applicable with the sequence form of an
extensive–form game, allowing an exponential reduction of
time and space w.r.t. the standard (normal–form) replicator
dynamics. Our replicator dynamics is realization equivalent
w.r.t. the standard one. We show the equivalence for both the
discrete and continuous time cases. Finally, we discuss how
standard tools from dynamical systems for the study of the
stability of strategies can be adopted in our case.

In future, we intend to explore the following problems:
extending the results on multi–agent learning when se-
quence form is adopted taking into account also Nash re-
finements for extensive–form games (we recall, while this
is possible with sequence form, it is not with the normal
form); extending our results to other forms of dynamics, e.g.,
best response dynamics, imitation dynamics, smoothed best
replies, the Brown–von Neumann–Nash dynamics; compar-
ing the expressivity and the effectiveness of replicator dy-
namics when applied to the three representation forms.
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