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Abstract

Hierarchical classification (HC) plays an significant role
in machine learning and data mining. However, most
of the state-of-the-art HC algorithms suffer from high
computational costs. To improve the performance of
solving, we propose a stochastic perceptron (SP) algo-
rithm in the large margin framework. In particular, a
stochastic choice procedure is devised to decide the di-
rection of next iteration. We prove that after finite it-
erations the SP algorithm yields a sub-optimal solution
with high probability if the input instances are separa-
ble. For large-scale and high-dimensional data sets, we
reform SP to the kernel version (KSP), which dramat-
ically reduces the memory space needed. The KSP al-
gorithm has the merit of low space complexity as well
as low time complexity. The experimental results show
that our KSP approach achieves almost the same accu-
racy as the contemporary algorithms on the real-world
data sets, but with much less CPU running time.

1 Introduction
In the practical application, we often meet hierarchical clas-
sification problems where outputs are structured. For exam-
ple, in document classification at the web site, it is often
preferable to categorize a given text document into hierar-
chical classes. By convention, the collection of text docu-
ment is organized as a tree; that is, the output is encoded as
a tree and the hierarchical structure is prespecified.

Existing flat classification approaches, which predict only
classes at leaf nodes, are not able to capture the mutual re-
lationship between the nodes of the output tree in question,
so they can not be directly applied to the hierarchical classi-
fication problem. Thus, it is inherently challenging to solve
the hierarchical classification problem.

Typically, there are two approaches for handling this
problem. The first one is a local approach (Koller and Sa-
hami 1997; Silla and Freitas 2010). The key idea is to
construct local classifiers from the top of tree to the bot-
tom. For example, one constructs classifiers at each level
of the category tree by invoking multi-classification algo-
rithms (Clare and King 2003), or constructs classifier at
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each node or each parent node (Dumais and Chen 2000;
Wu, Zhang, and Honavar 2005; Cesa-Bianchi, Gentile, and
Zaniboni 2006; Zhou, Xiao, and Wu 2011). Dłez, del Coz,
and Bahamonde(2010) devised a bottom-up learning strat-
egy and each node classifier is built by taking into account
other node classifiers.

The other is a global approach which builds a single clas-
sification model based on the training set, considering the
class hierarchy as a whole. Compared with the local ap-
proach, the total size of the global classification model is
typically considerably smaller. Additionally, the interdepen-
dence between different classes can be taken into account
in a straightforward way by the global classifier. The global
approach includes large margin methods (Taskar, Guestrin,
and Koller 2003; Cai and Hofmann 2004; Dekel, Keshet,
and Singer 2004; Taskar, Chatalbashev, and Guestrin 2005;
Tsochantaridis et al. 2005; Rousu et al. 2006; Sarawagi and
Gupta 2008), conditional random fields (Lafferty, McCal-
lum, and Pereira 2001), Bayesian models (Gyftodimos and
Flach 2003; Barutcuoglu, Schapire, and Troyanskaya 2006;
Gopal et al. 2012), etc.

The large margin methods and conditional random fields
can be formed as a SVM optimization, transforming it to the
dual form and invoking quadratic programming (QP) rou-
tine. There are totally n(|Y| − 1) variables in QP where n
is the size of the training data set and |Y| is the total num-
ber of vectors in output space Y . In many cases, both n and
|Y| may be extremely large. Thus, these algorithms are time
costly, even after the number of variables is reduced by some
techniques.

In this paper we introduce perceptron algorithm to de-
velop a global approach for the HC problem. The percep-
tron can be viewed as a routine to find a feasible point of a
set of linear inequalities (Blum and Dunagan 2002). Here
we can also regard it as a procedure to obtain a relaxed
maximum of margin (refer to section 3.3 for details), lead-
ing to a promising way to handle the large margin model.
The perceptron or stochastic gradient descent algorithms
which are similar to ours have been widely used in the
domain of binary, multi-class task or structured prediction
(Freund and Schapire 1999; Collins 2002; Dekel, Keshet,
and Singer 2004; Crammer et al. 2006; Ratliff, Bagnell, and
Zinkevich 2007; Shalev-Shwartz, Singer, and Srebro 2007;
Wang, Crammer, and Vucetic 2010). All these algorithms
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are especially suitable for online setting in which weights
updating direction are determined by current coming in-
stance. They are also guaranteed by the theoretical upper
bounds on the corresponding loss functions or number of
predictive mistakes.

In order to reveal the close relation to the large margin
model, we design different perceptron algorithms in which
the next updating direction is determined by the whole set of
samples. Thus it is suitable for batch learning. We first de-
vise a perceptron algorithm in which the weight vector is up-
dated by adding the most violate feature gap (see Algorithm
1). However, Algorithm 1 is not our main concern, and it is
used to introduce Algorithm 2, the stochastic version. In Al-
gorithm 2, multiplicative weights (MW) method (Littlestone
1987) is used to construct a stochastic procedure to decide
the next updating direction, which largely improves the pre-
diction accuracy compared to Algorithm 1. Additionally, in
order to consider the application in high dimensional data,
we suggest a kernel stochastic perceptron algorithm (Algo-
rithm 3), which can significantly save the memory space.
This kernel algorithm has the advantage of much lower com-
putational complexity in comparison with the current state-
of-the-art algorithms, i.e.,O(n(dx+dy) log(n)/ε2) with dx
the dimension of features x and dy the dimension of output
y.

The paper is organized as follows: In Section 2, we for-
mulate the problem more concretely and review the popu-
lar large margin models closely related to our approach. In
Section 3, we propose a so-called hard perceptron algorithm
for HC, and then derive a stochastic perceptron algorithm,
also extend to the kernel version. We also analyze their con-
vergence and computational complexity in this section. In
Section 4, we use Algorithm 3 to conduct the numerical ex-
periments, showing that our algorithm achieves nearly the
same accuracy as state-of-the-art algorithms. We also report
the CPU times on different benchmark data sets and the per-
formance of different kernels used in the algorithm.

2 Problem Formulation
We are given a training data set D = {(xi,yi)}ni=1 where
xi ∈ X ⊂ Rdx is the input vector and yi ∈ Y ⊂ {1,−1}dy
is the corresponding output, the output is hierarchically or-
ganized. In particular, y is encoded as a tree, each node of
the tree corresponds to a component of y, see Figure 1 for
an illustration. We set the component to be 1 if the category
(represented as paths in the tree) of x contains the corre-
sponding node, and -1 otherwise. The current purpose is to
learn a map y = h(x) from the data set D.

Suppose that the learning map h(x) is of the following
parametric form:

hw(x) = argmax
y∈Y

f(w,x,y),

where f(w,x,y) is a function f :W×X×Y 7−→ R andW
is the parameter space. f is called a scoring function mea-
suring the confidence of output y given the parameter w and
input x. Simply, we consider f belonging to a linear fam-
ily, i.e., f(w,x,y) = w>Φ(x,y). We refer to Φ(x,y) as
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Figure 1: Structure of the output vector

the joint feature map of input and output. In the binary case
where y ∈ {1,−1}, Φ(x, y) is usually defined as yφ(x).

However, when the output is complicated, the definition
of Φ(x,y) is not straightforward. We here follow the setting
of Cai and Hofmann (2004), who defined Φ(x,y) = φ(x)⊗
ψ(y). with φ(x) ∈ Rd and ψ(y) ∈ Rk. precisely,

[Φ(x,y)]i+(j−1)d = [φ(x)]i[ψ(y)]j .

Furthermore, Φ(x,y) (or φ(x) and ψ(y)) is not necessar-
ily explicitly available. In this case, we resort to a kernel
trick (Shawe-Taylor and Cristianini 2004). Particularly,

K((x1,y1), (x2,y2)) , 〈Φ(x1,y1),Φ(x2,y2)〉
= 〈φ(x1), φ(x2)〉〈ψ(y1), ψ(y2)〉
= KI(x1,x2)KO(y1,y2),

whereKI(·, ·) andKO(·, ·) are the reproducing kernel func-
tions defined on the input space X × X and output space
Y × Y , respectively.

Letting ∆Φ(x, z) = Φ(x,y) − Φ(x, z) denote feature
gap, where y is the corresponding output of x, we give the
definition of separability of data as follows.
Definition 1 The data set D = {(xi,yi)}ni=1 is said to be
separable, if

max
w∈B

min
i,z6=yi

w>∆Φ(xi, z) = δ > 0

where B = {w; ‖w‖2 ≤ 1}.
Additionally, mini,z6=yi w

>∆Φ(xi, z) is called the mar-
gin of the training data set D. Suppose w∗ ∈ B satisfies
mini,z 6=yi w

>
∗ ∆Φ(xi, z) = δ. Our task is to learn the vector

w∗ based on the training data set.

2.1 The Large Margin Method
The most popular works related to ours are catego-
rized to large margin framework which has been studied
in (Taskar, Guestrin, and Koller 2003; Cai and Hofman-
n 2004; Dekel, Keshet, and Singer 2004; Taskar, Chatal-
bashev, and Guestrin 2005; Tsochantaridis et al. 2005;
Rousu et al. 2006; Sarawagi and Gupta 2008). The large
margin method for the HC problem (LMM-HC) is based on
the following optimization problem

1
2‖w‖22 (1)

s.t.w>∆Φ(xi, z) ≥ γ, ∀1 ≤ i ≤ n, ∀z ∈ Y, z 6= yi. (2)
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LMM-HC can be further extended by adding slack vari-
ables to deal with non-separable case, or replacing γ with a
more general loss function. Here we do not give the details.

Unlike the conventional SVM for the binary classifica-
tion problem, the number of constraints in LMM-HC grows
exponentially with respect to the dimension of output vec-
tor, and the dual QP problem has exponentially correspond-
ing variables. Thus, a lot of work has been focused on how
to reduce the number of variables to polynomial size. For
example, Tsochantaridis et al. (2005) devised an algorithm
that creates a nested sequence of successively tighter relax-
ation of the original problem using a cutting plane method.
Then the active set of constraints reduced to polynomial
size. Rousu et al. (2006) devised an efficient algorithm by
marginalizing the dual problem.

However, due to the high computational complexity of
QP, it is still infeasible to solve the large scale hierarchi-
cal problem. In fact, the algorithm of Tsochantaridis et al.
(2005) has complexityO(K(n+m)3+Kn(dx+dy)) where
m is the largest size of active sets and K is the number of it-
eration. The algorithm in (Rousu et al. 2006) have complex-
ity O(|E|3n3) where |E| represents the number of edges in
the tree.

This encourages us to develop a more efficient algorithm
to solve the HC problem. In the next section we propose
perceptron algorithms, without being troubled by the expo-
nential size of constraints.

3 Perceptron Algorithms for HC
Note that the constraints (2) can be written compactly as
mini,z6=yi

w>∆Φ(xi, z) ≥ γ. The optimization problem
(1,2) is equivalent to

max
w∈B

min
i,z6=yi

w>∆Φ(xi, z) (3)

The idea is similar to the work of binary classification given
by Clarkson, Hazan, and Woodruff(2010). However, it is
hard to rewrite the min step of (3) as minimization over a
simplex as in the case of binary classification.

3.1 Hard Perceptron Algorithm
We first devise a so-called hard perceptron (HP) to the HC
problem, which is given in Algorithm 1. The weight w is
updated by adding the most violate feature gap (its index it
minimize w>t ∆Φ(xi, zi)).

This algorithm can be viewed as an alternative process to
obtain the minimax of the function w>∆Φ(xi, z). At itera-
tion t, we fix wt to optimize w.r.t. (i, z) with the constraint
z 6= yi, then we fix (it, zit) to optimize w.r.t. w ∈ B.

Note that the perceptron algorithm does not guarantee to
increase the margin after every iteration. However, after fi-
nite steps, it is proved to obtain the sub-optimal solution (see
Theorem 1). In fact, we will see that Theorem 1 reveals a
relationship between the maximum margin and perceptron
algorithm.

3.2 The Stochastic Perceptron Algorithm
HP algorithm is deterministic. The main problem that HP
algorithm encounter is that the noisy data may lead to wrong

Algorithm 1 Hard Perceptron for HC (HP)
Initialization w1;
for t = 1 to T do

for i = 1 to n do
zi = arg minz6=yi

w>t ∆Φ(xi, z);
denote vt(i) = w>t ∆Φ(xi, zi);

end for
it = arg mini vt(i);
return wt, if vt(it) > 0;
w̄t+1 = w̄t + 1√

T
∆Φ(xit , zit);

wt+1 = w̄t+1

max(1,‖w̄t+1‖2) ;
end for
return w̄ = 1

T

∑
twt.

For given input x, the output is
h(x) = arg maxz w̄

>Φ(x, z).

Algorithm 2 Stochastic Perceptron Algorithm for HC
Initialization w̄1,u1 = 1n;
for t = 1 to T do
pt = ut

‖ut‖1 ;
wt = w̄t

max(1,‖w̄t‖2) ;
for i = 1 to n do

zi = arg minz6=yi w
>
t ∆Φ(xi, z);

vt(i) = w>t ∆Φ(xi, zi);
ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)

2);
end for
sample it from distribution pt;
w̄t+1 = w̄t + 1√

T
∆Φ(xit , zit);

end for
return w̄ = 1

T

∑
twt.

For given input x, the output is
h(x) = arg maxz w̄

>Φ(x, z).

updating direction since at every iteration HP chooses the
most violate feature gap under the current estimate wt. It
reslut in that the performance of HP is a little less assuming
than the state-of-the-art algorithm.

Therefore, we employ a stochastic procedure to chose it
from the set {1, ..., n}. The algorithm is based on the multi-
plicative weights (MW) method (Littlestone 1987; Clarkson,
Hazan, and Woodruff 2010).
Definition 2 (MW algorithm). Let v1, ...,vT ∈ Rn be a
sequence of vectors, the Multiplicative Weights (MW) al-
gorithm is the following: Start from u1 = 1n, and for
t ≥ 1, η > 0,

pt = ut/‖ut‖1
ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)

2).

where ut(i) is the i-th component of vector u.
Based on the MW algorithm, we summarize our stochas-

tic perceptron (SP) in Algorithm 2. Although the algorithm
is only guaranteed to be convergent for separable data sets,
we find in the experiments that it also performs well on real-
world data sets which are non-separable.
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3.3 Convergence Analysis
In this section we analyze the convergence property of both
Algorithms 1 and 2.

The following lemma is due to Zinkevich(2003), a build-
ing block of our results.
Lemma 1 Consider a sequence of vectors φ1, ..., φT ∈ Rd
satisfying ‖φi‖2 ≤ R. Suppose w1 = 0, and w̄t+1 = w̄t +

1√
T
φt, wt+1 = w̄t+1

max(1,‖w̄t+1‖2) . Then

max
w∈B

T∑
t=1

w>φt −
T∑
t=1

w>t φt ≤ 2R
√
T .

Based on the above lemma, we have the following con-
vergence theorem of Algorithm 1.

Theorem 1 Suppose ‖Φ(x,y)‖2 < R and set the iteration
number T ≥ (2R/ε)2. If Algorithm 1 stops at iteration t <
T , the returned vector wt successfully separates the sample
dataset D, i.e., mini{w>t ∆Φ(xi, zi)} > 0. If the algorithm
stops at t = T , it returns w̄ = 1

T

∑
twt which is an ε sub-

optimal solution, i.e.,

min
i,z6=yi

1

T

T∑
t=1

w>t ∆Φ(xi, z) ≥ δ − ε.

Proof: If Algorithm 1 stops at t < T , this implies
vt(it) > 0, i.e., vt(i) = w>t ∆Φ(xi, zi) > 0 ∀i ∈
{1, ..., n}. If the algorithm stops at t = T , we have

min
i,z6=yi

T∑
t=1

w>t ∆Φ(xi, z) ≥
∑
t

w>t ∆Φ(xit , zit)

≥ max
w:‖w‖2≤1

∑
t

w>∆Φ(xit , zit)− 2R
√
T

≥ Tδ − 2R
√
T

≥ T (δ − ε)
The first inequality is implied from Algorithm 1, the second
comes from Lemma 1, and the third from Definition 1. �

To capture the difference between expectation of vt(it)
and the minimal of vt(i) among i ∈ {1, ..., n}, we introduce
the following lemma.
Lemma 2 The MW algorithm satisfies∑

t

p>t vt ≤ min
1≤i≤n

T∑
t=1

max(−1/η,vt(i))

+
log n

η
+ η

T∑
t=1

p>t v
2
t ,

where v2
t = (vt(1)2, . . . ,vt(n)2)>.

The next lemma states the difference between
w>t ∆Φ(xit , zit) and its expectation.
Lemma 3 If η and T satisfy 9η2T − 8(η + 4) logn > 0,
then with probability at least 1−O(1/n), we have

|
∑
t

w>t ∆Φ(xit , zit)−
∑
t

p>t vt| ≤ 3RηT

Finally, we present the theoretical guarantee for Algo-
rithm 2.
Theorem 2 Suppose ‖Φ(x,y)‖2 < R, and set the iteration
number T ≥

[ (8R2+6R+1)
√

logn+2R
ε

]2
= O((log n)/ε2),

and η = min{c
√

logn
T , 1

2R}. Then with probability 1-O( 1
n )

Algorithm 2 returns w̄ = 1
T

∑
twt which is an ε optimal

solution, i.e.,

min
i,z6=yi

1

T

T∑
t=1

w>∆Φ(xi, z) ≥ δ − ε.

Proof: Consider that

min
i,z6=yi

∑
t

w>t ∆Φ(xi, z)

≥ min
i

∑
t

min
z6=yi

w>t ∆Φ(xi, z)

= min
i

∑
t

vt(i) ≥
∑
t

p>t vt −
log n

η
− ηp>t v2

t

≥
∑
t

w>t ∆Φ(xit , zit)− 3RηT − log n

η
4R2ηT

≥ Tδ − 2R
√
T − 3RηT − 4R2ηT − log n

η

≥ T (δ − ε).
The third line is implied by Algorithm 2, the fourth line

comes from Lemma 2, the fifth line from Lemma 3 and the
fact

∑
t p
>
t v

2
t ≤ 4R2T , and the sixth line is due to Defini-

tion 1. �
Keep in mind that mini,z6=yi

1
T

∑T
t=1 w

>
t ∆Φ(xi, z) ≤ δ.

Theorem 1 and 2 suggest that after finite iterations, HP and
SP algorithms are able to achieve nearly maximum of the
margin (with a small ε gap).

3.4 Kernel Stochastic Perceptron
Recall that in SP algorithm the dimension of both w and
Φ(x,y) is dim(φ(x)) × dim(ψ(y)), which may be very
high in practice and beyond the capacity of memory storage
of conventional computer architecture. This problem can be
avoid by kernelize the SP. Thus, we devise a kernel version
of SP, which is given in Algorithm 3. We call the resulting
procedure a kernel stochastic perceptron (KSP).

The KSP algorithm not only holds nonlinear modeling
ability, but also reduces the space complexity. Typically, we
assume the kernel on space Y×Y is linear, i.e.,KO(y, z) =
y>z.
Theorem 3 The KSP algorithm takes iteration T =
O( logn

ε2 ) and returns ε sub-optimal solution with probability
1−O( 1

n ), with total running timeO(n(dx+dy)(log n)/ε2).

3.5 Maximizing Linear Function on Output
Space

In Algorithms 1, 2 and 3, we need to solve z =
argmaxu a>u in the prediction stage. Since the output vec-
tor u ∈ Y is represented as a tree structure, every compo-
nent of u corresponds to a node in the tree. Thus, we can
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Algorithm 3 Kernel Stochastic Perceptron Algorithm (KSP)
for HC

Input D = {(xi,yi)}ni=1, dy(the dimension of y);
Initialization u1 = 1n, α1 = 0;
for t = 1 to T do
pt = ut

‖ut‖1 ;
for i = 1 to n do

if t = 1, at,i = 0dy
else at,i = at−1,i +KI(xit−1 ,xi)ct−1

zi = arg maxz6=yi
a>t,iz;

vt(i) = 1
βt
a>t,i(yi − zi);

ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)
2);

end for
sample it from distribution pt;
ct = yit − zit ;

αt+1 = αt +
KI(xit ,xit )c>t ct

T + 2
max(1,

√
αt)√

T
vt(it);

βt+1 =
√
T max(1,

√
αt+1);

end for
For given input x, the output is
h(x) = arg maxz

∑T
t=1KI(xit ,x)(yit − zit)

>z

use dynamic programming to compute z = argmaxu a>u.
Specifically, we derive the recursion as follows. Let C(i)
denote the set of children of node i and f+(i) denote the
largest value of a>z restricted on the subtree rooted at node
i. f−(i) is the value restricted on the subtree rooted at node
i with node i takeing value −1. Then

f−(i) = −ai +
∑

k∈C(i)

f−(k);

f+(i) = max{f−(i), ai +
∑

k∈C(i)

f+(k)}.

In the training stage, in order to compute z =
argmaxu6=y a

>u, we need to obtain the top two maximum
points (z1, z2) and to compare the maximum point z1 with
y. If z1 = y, the solution is z = z2; otherwise, z = z1.
Let f2+(i) denote the second largest value with restriction
on the subtree rooted at node i. We have the recursion as
follows.

f−(i) = −ai +
∑

k∈C(i)

f−(k);

[f+(i), f2+(i)] = max
{
f−(i),

{ai + f2+(j) +
∑

k∈C(i),k 6=j
f+(k)}j∈C(i)

}
.

3.6 Accelerate Techniques
Our SP and KSP algorithms can be accelerated. Note that we
need to traverse from 1 to n for very large n, thus time costly.
We divide the datasetD = {D1, . . . ,Dk} into k subsets with
almost the same size. Instead of traversing from 1 to n, we
successively do SP (or KSP) on the sets {D1, . . . ,Dk}, and
use previous result as hot start.

Another trick is followed by observing that the inner loop
traversing from 1 to n can run in parallel, so we can take
advantage of multiple CPU kernels. Similarly as above, we
divide the dataset D = {D1, . . . ,Dk} into k subsets with
nearly the same size, and run the inner loop on k CPUs to
accelerate the algorithms.

4 Experiments
In this section we conduct experimental analysis on the
popular benchmark datasets: CCAT, ECAT, GCAT, MCAT,
NEWS201, and WIPO2. The first four datasets CCAT,
ECAT, GCAT and MCAT can be found from (Lewis et al.
2004). We summary the basic information of these data sets
in Table 1.

Table 1: Summary of The Datasets
Data ] features ] training set ] test set ] labels depth

CCAT 47236 10786 5000 34 3
ECAT 47236 3449 5000 26 2
GCAT 47236 6970 5000 33 2
MCAT 47236 5882 5000 10 2

NEWS20 62061 15935 3993 27 2
WIPO 74435 1352 358 189 4

The classification accuracy is evaluated by standard infor-
mation retrieval statistics: precision (P), recall (R) and F1
with F1 = 2PR

P+R . The precision and recall are computed
over all micro-label predictions in the test set.

We give some implementation details. Although the con-
vergence analysis in section 3.3 need to set initial weight
w1 = 0, we find it is better to set w1 to be nonzero in prac-
tice. The R which is a factor of iteration number T can be
estimated as R = max1≤i≤n

√
KI(xi,xi)KO(yi,yi). In

our implementation of the algorithm, we only need to re-
turn the last iteration vector wT , because when T is large
enough, 1/T

∑
iwi is almost the same as wT . Parameter ε

indicating the training error are set to be 0.1 throughout the
paper. And η = min{1/(2R), c

√
(log n)/T} is provided in

Theorem 2 with the small constant number c estimated by
cross-validation.

We first compare our algorithm with the methods of
Rousu et al.(2006) and Tsochantaridis et al.(2005), which
are respectively denoted by LM-1 and LM-2 for simplicity.
We choose the linear kernel in our KSP algorithm. We also
report the result of the HP algorithm.

The results are summarized in Table 2. From this table,
we see that although the KSP algorithm looks much simple,
it still achieves high accuracy in comparison with the other
algorithms.

Next, we report the CPU times of the three algorithms:
KSP, LM-1 and LM-2, which are implemented in Matlab on
the same machine. For comparison fair, we do not use the
accelerate technique described in Section 3.6. The running
times are listed in Table 3. The results agree with our theo-
retical analysis for KSP in Section 3.3 and 3.4. That is, the

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.wipo.int/classifications /ipc/en/support/
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Table 2: Classification accuracy with different algorithms

Data HP KSP (linear kernel) LM-1 LM-2
P R F1 P R F1 P R F1 P R F1

CCAT 0.93 0.60 0.73 0.89 0.78 0.83 0.92 0.78 0.85 0.93 0.78 0.85
ECAT 0.95 0.62 0.75 0.93 0.84 0.88 0.93 0.84 0.88 0.95 0.84 0.89
GCAT 0.93 0.66 0.77 0.94 0.75 0.84 0.93 0.78 0.85 0.94 0.78 0.85
MCAT 0.92 0.81 0.86 0.98 0.95 0.96 0.97 0.95 0.96 0.98 0.95 0.96

NEWS20 0.93 0.39 0.56 0.87 0.83 0.85 0.92 0.85 0.88 0.92 0.86 0.89
WIPO 0.92 0.72 0.81 0.92 0.73 0.81 0.93 0.72 0.81 0.95 0.67 0.78

KSP algorithm has very low computational complexity, so it
is very efficient.

Table 3: CPU time (s) with KSP, LM-1 and LM-2

Data Algorithms
KSP (linear) LM-1 LM-2

CCAT 347 4579 18693
ECAT 97 686 3974
GCAT 251 2723 9831
MCAT 100 754 1691

NEWS20 559 4406 39305
WIPO 241 531 13892

Finally, we compare the use of different kernels in Algo-
rithm 3, illustrating influence of choice of kernels. In partic-
ular, we employ three popular kernels: linear, polynomial,
and Gaussian kernel. The polynomial kernel is defined as
KI(xi,xj) = (a+x>i xj)

d where a > 0 is a constant and d
is the polynomial order. As for the Gaussian kernel, it takes
the form KI(xi,xj) = exp(−‖xi−xj‖2/(2γ)). The hyper
parameters a, d and variance γ can be learned via cross-
validation.

We give the classification results on the test data sets in
Table 4. It can be seen from Table 4 that KSP is less sen-
sitive to the kernels. However, the kernel form provide the
opportunity to use more complex learning model. What is
more, the non-linear kernels may perform better on some
other data sets rather than listed in Table 1.

5 Conclusion
In this paper we have proposed a stochastic perceptron (SP)
based large margin method to solve the hierarchical clas-
sification problem. We have also derived kernel stochastic
perceptron via the kernel trick. We have proved that our al-
gorithms obtain the ε sub-optimal solution with high proba-
bility if the data set is separable. We have conducted exper-
imental analysis. The experimental results on the real-world
benchmark data sets have demonstrated that our algorithms
hold the same performance of the existing state-of-the-art al-
gorithms in prediction accuracy but with much lower com-
putational complexity.

Although our algorithms have been developed for the hi-
erarchical classification problem, they can also be used for
other structured prediction problems with slight modifica-
tions, such as image segmentation, part-of-speech-tagging,

Table 4: Comparison with different kernels for KSP

Data Kernel P R F1

CCAT
Linear 0.89 0.78 0.83

Polynomial 0.88 0.78 0.83
Gaussian 0.90 0.74 0.81

ECAT
Linear 0.93 0.84 0.88

Polynomial 0.93 0.84 0.88
Gaussian 0.94 0.78 0.85

GCAT
Linear 0.94 0.75 0.84

Polynomial 0.93 0.76 0.84
Gaussian 0.96 0.70 0.81

MCAT
Linear 0.98 0.95 0.96

Polynomial 0.97 0.95 0.96
Gaussian 0.97 0.92 0.95

NEWS20
Linear 0.87 0.83 0.85

Polynomial 0.88 0.81 0.84
Gaussian 0.94 0.74 0.83

WIPO
Linear 0.92 0.73 0.81

Polynomial 0.91 0.72 0.81
Gaussian 0.94 0.56 0.70

label sequence learning, protein structure prediction, etc.
Therefore our algorithms are potentially useful for large-
scale and high-dimensional structured data set problems.
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