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Abstract

Manipulation, bribery, and control are well-studied
ways of changing the outcome of an election. Many
voting systems are, in the general case, computation-
ally resistant to some of these manipulative actions.
However when restricted to single-peaked electorates,
these systems suddenly become easy to manipulate.
Recently, Faliszewski, Hemaspaandra, and Hemaspaan-
dra (2011b) studied the complexity of dishonest behav-
ior in nearly single-peaked electorates. These are elec-
torates that are not single-peaked but close to it accord-
ing to some distance measure.
In this paper we introduce several new distance mea-
sures regarding single-peakedness. We prove that deter-
mining whether a given profile is nearly single-peaked
is NP-complete in many cases. For one case we present
a polynomial-time algorithm. Furthermore, we explore
the relations between several notions of nearly single-
peakedness.

Introduction
Voting is a very useful method for preference aggrega-
tion and collective decision-making. It has applications in
many settings ranging from politics to artificial intelligence
and further topics in computer science (see, e.g., the work
of Dwork et al. (2001), Ephrati and Rosenschein (1997),
Ghosh et al. (1999)). In the presence of huge data volumes,
the computational properties of voting rules are worth study-
ing. In particular, we usually want to determine the winners
of an election quickly. On the other hand we want to make
various forms of dishonest behavior computationally hard.

The first to study the computational aspects of manipu-
lation in elections were Bartholdi, Tovey, and Trick (1989).
In this paper they defined and studied manipulation, i.e., a
group of voters casting their votes insincerely in order to
reach a desired outcome. Another type of dishonest behavior
is control, where an external agent makes structural changes
on the election such as adding/deleting/partitioning either
candidates or voters (as has been studied, e.g., by Bartholdi,
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Tovey, and Trick (1992)) in order to reach a desired out-
come. There is also bribery, where an external agent changes
some voters’ votes in order to change the outcome of the
election (see, e.g., the work of Faliszewski, Hemaspaandra,
and Hemaspaandra (2009)). For an overview and many natu-
ral examples on bribery, control, and manipulation we refer
to the work Baumeister et al. (2010), Faliszewski, Hema-
spaandra, and Hemaspaandra (2010), Faliszewski and Pro-
caccia (2010), and Brandt, Conitzer, and Endriss (2012).

Traditionally, the complexity of such attacks is studied
under the assumption that, in each election, any admis-
sible vote can occur. However, there are many elections
where the diversity of the votes is limited in the sense that
there are admissible votes nobody would ever cast. One
of the best known examples is single-peakedness, intro-
duced by Black (1948). It assumes that the votes are po-
larized along some linear axis. The study of the computa-
tional aspects of elections with single-peaked preferences
was initiated by Walsh (2007) (see also the work of Fal-
iszewski et al. (2011a), and Brandt et al. (2010)). Many
problems which are NP-hard in the general case turn out to
be easy for single-peaked societies. A recent line of research
initiated by Conitzer (2009) and by Escoffier, Lang, and
Öztürk (2008) suggests that many elections are not perfectly
single-peaked but are close to it with respect to some met-
ric. In the work of Faliszewski, Hemaspaandra, and Hema-
spaandra (2011b) various notions of nearly single-peaked
elections were introduced and it was shown that the com-
plexity of manipulative actions jumps back to NP-hardness
in many cases.

In this paper we present a systematic study of nearly
single-peaked electorates. Our main contributions are:

• We introduce three new notions of nearly single-
peakedness. In addition, we study four notions that al-
ready have been defined or suggested in the literature.

• We explore connections between both existing and new
notions by providing inequalities. These allow to compare
these notions and better understand their relationship.

• We analyze the computational complexity of computing
the distance of arbitrary preference profiles to single-
peakedness. In most cases we show NP-completeness.
For the k-candidate deletion distance, we present a
polynomial-time algorithm.
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Related Work Our paper fits in the line of research
on single-peaked and nearly single-peaked preferences.
Ballester and Haeringer (2011) combinatorially character-
ize single-peaked elections by the means of forbidden sub-
sequences. In the work of Brandt et al. (2010) and Fal-
iszewski et al. (2011a) the complexity of winner problems
and of dishonest behavior (e.g., the complexity of manip-
ulation and control) in electorates with single-peaked pref-
erences is investigated. These papers do not consider nearly
single-peaked preferences, but mention them as future work.

In the context of nearly single-peaked preferences the
most relevant paper is by Faliszewski, Hemaspaandra, and
Hemaspaandra (2011b). They introduce several notions of
nearly single-peakedness and analyze the complexity of
bribery, control, and manipulation in nearly single-peaked
elections. In contrast, we are studying the complexity of
computing the distance of a preference profile to single-
peakedness. The question whether a given profile is single-
peaked has been recently investigated by Escoffier, Lang,
and Öztürk (2008). The difference to their work is that they
have not considered nearly single-peakedness, they only
pointed it out as a future research direction.

Two further distance measures have recently been stud-
ied. Single-peaked width has been been studied by Cor-
naz, Galand, and Spanjaard (2012). Elkind, Faliszewski,
and Slinko (2012) define the decloning measure which de-
scribes the number of adjacent candidates (adjacent in ev-
ery vote) that are merged into one candidate in order to
obtain single-peakedness. Finally, we remark that single-
peaked preferences have been considered in the context of
preference elicitation (Conitzer 2009) and in the context of
possible and necessary winners under uncertainty regarding
the votes (Walsh 2007).

Preliminaries
Let C be a finite set of candidates, V be a finite set of voters,
and let� be a preference relation (i.e., a tie-free and total or-
der) over C. Without loss of generality let V = {1, . . . ,n}. We
call a candidate c the peak (or top-ranked) of a preference re-
lation � if c� c′ for all c′ ∈C \{c}. Let P = (�1, . . . ,�n)
be a preference profile (i.e., a collection of preference re-
lations) over the candidate set C. We say that the preference
relation�i is the vote of voter i. For simplicity, we will write
for each voter i ∈ V c1c2 . . .cm instead of c1 �i c2 �i . . . �i
cm. An election is defined as a triple E = (C,V,P), where
C is the set of candidates, V the set of voters and P a pref-
erence profile over C.

Definition 1. Let an axis A be a total order over C denoted
by >. Furthermore, let � be a vote with peak c. The vote
� is single-peaked with respect to A if for any x,y ∈ C, if
x > y > c or c > y > x then c� y� x has to hold.

A preference profile P is said to be single-peaked with
respect to an axis A if and only if each vote is single-peaked
with respect to A. A preference profile P is said to be single-
peaked consistent if there exists an axis A such that P is
single-peaked with respect to A.

By P[C′] we denote the profile P restricted to the can-
didates in C′. Analogously if A is an axis over C, we denote

by A[C′] the axis A restricted to candidates in C′.

Nearly single-peaked preferences
In real-world settings one can expect a certain amount of
“noise” in preference data. The single-peakedness property
is very fragile and thus susceptible to such noise. The fol-
lowing example illustrates the fragility of single-peakedness:
Consider the single-peaked election consisting two kinds of
votes: a � b � c � d and d � c � b � a. Assume that both
votes have been cast by a large number of voters. This elec-
tion is single-peaked only with respect to the axis a > b >
c > d and its reverse. Adding a single vote a � b � d � c
destroys the single-peakedness property although this vote
is almost identical to the first kind of votes.

In this section we formally define different notions of
nearly single-peakedness. All these notions define a distance
measure to single-peaked profiles. Furthermore, we explore
the relation of these distance measures.

I k-Maverick (M) The first formal definition of nearly
single-peaked societies was given by Faliszewski, Hema-
spaandra, and Hemaspaandra (2011b). Consider a prefer-
ence profile P for which most voters are single-peaked
with respect to some axis A. All voters that are not single-
peaked with respect to A are called mavericks. The number
of mavericks defines a natural distance measure to single-
peakedness. If an axis can be found for a large subset of
the voters, this is still a fundamental observation about the
structure of the votes.
Definition 2 (Faliszewski, Hemaspaandra, and Hemaspaan-
dra 2011b). Let E = (C,V,P) be an election and k a posi-
tive integer. We say that the profile P is k-maverick single-
peaked consistent if by removing at most k preference rela-
tions (votes) from P one can obtain a preference profile P ′

that is single-peaked consistent.
Let M(P) denote the smallest k such that P is k-

maverick single-peaked consistent. Note that M(P)≤ |V |−
1 always holds.
Example 1. Consider an election with C = {a,b,c,d,e} and
V = {1,2, . . . ,202}. Let the preference profile P consist of
the votes a�1 b�1 c�1 e�1 d and e�2 d �2 c�2 a�2 b
as well as 100 votes of the form a� b� c� d � e and 100
votes of the form e� d � c� b� a. Notice that preference
profiles containing a� b� c� d � e and e� d � c� b� a
may only be single-peaked consistent with respect to the axis
a > b > c > d > e and its reverse. Since �1 and �2 are
not single-peaked with respect to this axis, P is not single-
peaked. Deleting �1 and �2 obviously yields single-peaked
consistency and thus we have M(P) = 2.

I k-Candidate Deletion (CD) As suggested by Escoffier,
Lang, and Öztürk (2008), we introduce outlier candidates.
These are candidates that do not have “a correct place” on
any axis and consequently have to be deleted in order to ob-
tain a single-peaked consistent profile. Examples could be a
candidate that is not well-known (e.g., a new political party)
or a candidate that prioritizes other topics than most candi-
dates and thereby is judged by the voters according to differ-
ent criteria. The votes restricted to the remaining candidates
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might still have a clear and significant structure, in particular
they might be single-peaked consistent.
Definition 3. Let E = (C,V,P) be an election and k a pos-
itive integer. We say that the profile P is k-candidate dele-
tion single-peaked consistent if we can obtain a set C′ ⊆ C
by removing at most k candidates from C such that the pref-
erence profile P[C′] is single-peaked consistent.

Let CD(P) denote the smallest k such that P is
k-candidate deletion single-peaked consistent. Note that
CD(P)≤ |C|−2 always holds.
Example 1 (continued). Consider the preference profile P
as defined above. Observe that for C′ = {b,c,d}, P[C′] is
single-peaked consistent. Deleting a single candidate does
not yield single-peaked consistency and thus CD(P) = 2.
I k-Local Candidate Deletion (LCD) Personal friend-
ships or hatreds between voters and candidates could move
candidates up or down in a vote. These personal relation-
ships cannot be reflected in a global axis. To eliminate the
influence of personal relationships to some candidates we
define a local version of the previous notion. This notion can
also deal with the possibility that the least favorite candi-
dates might be ranked without special consideration or even
randomly.

We first have to define partial domains and partial profiles.
Definition 4. Let C be a set of candidates and A an axis
over C. A preference relation � over a candidate set C′ ⊂C
is called a partial vote. It is said to be single-peaked with
respect to A if it is single-peaked with respect to A[C′]. A
partial preference profile consists of partial votes. It is called
single-peaked consistent if there exists an axis A such that
its partial votes are single-peaked with respect to A.
Definition 5. Let E = (C,V,P) be an election and k a pos-
itive integer. We say that the profile P is k-local candidate
deletion single-peaked consistent if by removing at most k
candidates from each vote in P we obtain a partial prefer-
ence profile P ′ that is single-peaked consistent.

Let LCD(P) denote the smallest k such that P is k-
local candidate deletion single-peaked consistent. Note that
LCD(P)≤ |C|−2 always holds.
Example 1 (continued). Note that it is sufficient to remove
a from vote �1 and e from vote �2 to obtain single-peaked
consistency. Consequently, LCD(P) = 1.
I k-Additional Axes (AA) Another suggestion by Es-
coffier, Lang, and Öztürk (2008) was to consider the min-
imum number of axes such that each preference relation of
the profile is single-peaked with respect to at least one of
these axes. This notion is particularly useful if each candi-
date represents opinions on several issues (as it is the case
in political elections). A voter’s ranking of the candidates
would then depend on which issue is considered most im-
portant by the voter and consequently each issue might give
rise to its own corresponding axis.
Definition 6. Let E = (C,V,P) be an election and k
a positive integer. We say that the profile P is k-
additional axes single-peaked consistent if there is a parti-
tion V1, . . . ,Vk+1 of V such that the corresponding preference
profiles P1, . . . ,Pk+1 are single-peaked consistent.

Let AA(P) denote the smallest k such that P
is k-additional axes single-peaked consistent. Note that
AA(P) < min

(
|V |, |C|!2

)
always holds. This is because the

number of distinct votes is trivially bounded by |V |. Further-
more, AA(P) is bounded by |C|!2 since at most |C|! distinct
votes exist and each vote and its reverse are single-peaked
with respect to the same axes.
Example 1 (continued). We argue that one additional axis is
required for single-peaked consistency. Notice that �1 and
�2 are single-peaked consistent with respect to axis b > a >
c > e > d. The remaining votes are consistent with respect
to a > b > c > d > e. Thus, one additional axis is required
and hence AA(P) = 1.

I k-Global Swaps (GS) There is a second method of deal-
ing with candidates that are “not placed correctly” according
to an axis A. Instead of deleting them from either the candi-
date set C or from a vote, we could try to move them to the
correct position. We do this by performing a sequence of
swaps of consecutive candidates. We remark that the min-
imum number of swaps required to change one vote to an-
other is the Kendall tau distance (Kendall 1938) of these two
votes (permutations). For example, to get from vote abcd to
vote adbc, we first have to swap candidates c and d, and
then we have to swap b and d. Since this changes the votes
in a more subtle way, this can be considered a less obtrusive
notion than k-(Local) Candidate Deletion.

Definition 7. Let E = (C,V,P) be an election and k a pos-
itive integer. We say that the profile P is k-global swaps
single-peaked consistent if P can be made single-peaked
by performing at most k swaps in the profile.

Note that these swaps can be performed wherever we
want – we can have k swaps in only one vote, or one swap
each in k votes. Let GS(P) denote the smallest k such that
P is k-global swaps single-peaked consistent. Note that
GS(P) ≤

(|C|
2

)
· |V | always holds since rearranging a total

order in order to obtain any other total order requires at most(|C|
2

)
swaps.

Example 1 (continued). It is possible to make P single-
peaked consistent by swapping d and e in vote�1 and swap-
ping a and b in vote �2. This gives GS(P) = 2.

I k-Local Swaps (LS) We can also consider a “local
budget” for swaps, i.e., we allow up to k swaps per vote.
This distance measure has been introduced by Faliszewski,
Hemaspaandra, and Hemaspaandra (2011b) as Dodgsonk.

Definition 8. Let E = (C,V,P) be an election and k a pos-
itive integer. We say that the profile P is k-local swaps
single-peaked consistent if P can be made single-peaked
consistent by performing no more than k swaps per vote.

Let LS(P) denote the smallest k such that P is k-local
swaps single-peaked consistent. Note that LS(P)≤

(|C|
2

)
al-

ways holds.
Example 1 (continued). Since only one swap is required in
�1 and �2 each, we have LS(P) = 1.
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I k-Candidate Partition (CP) Our last nearly single-
peaked notion is the candidate analog of k-additional axes.
In this case we partition the set of candidates into subsets
such that all of the restricted profiles are single-peaked con-
sistent. This notion is useful for example in the follow-
ing situation. Each candidate has an opinion on a contro-
versial Yes/No-issue. Depending on their own preference
voters will always rank all Yes-candidates before or after
all No-candidates. It might be that when considering only
the Yes- or only the No-candidates, the election is single-
peaked. Therefore, if we acknowledge the importance of this
Yes/No-issue and partition the candidates accordingly, we
may obtain two single-peaked elections.
Definition 9. Let E = (C,V,P) be an election and k a pos-
itive integer. We say that the profile P is k-candidate par-
tition single-peaked consistent if the set of candidates C can
be partitioned into at most k disjoint sets C1, . . . ,Ck with
C1 ∪ . . .∪Ck = C such that the profiles P[C1], . . . ,P[Ck]
are single-peaked consistent.

Let CP(P) denote the smallest k such that P is
k-candidate partition single-peaked consistent. Note that
CP(P)≤

⌈
|C|
2

⌉
always holds.

Example 1 (continued). We partition the candidates into
C1 = {a,e} and C2 = {b,c,d}. Notice that P[C1] is trivially
single-peaked consistent because this holds for all profiles
over at most two candidates. Furthermore, P[C2] contains
only votes of the form b � c � d or its reverse, which also
gives immediately single-peakedness. Thus, CP(P) = 2.

We start with our first result, which shows several inequal-
ities that hold for the distance measures under consideration.
We hereby show how these measures relate to each other.
Notice that these inequalities do not have an immediate im-
pact on a classical complexity analysis. However, they turn
out to be very useful for the complexity analysis of manipu-
lation in nearly single-peaked elections.
Theorem 10. Let P be a preference profile. Then the fol-
lowing inequalities hold:

(1) LS(P)≤ GS(P). (5) M(P)≤ GS(P).

(2) LCD(P)≤CD(P). (6) AA(P)≤M(P).

(3) CD(P)≤ GS(P). (7) CP(P)≤CD(P)+1.
(4) LCD(P)≤ LS(P). (8) CP(P)≤ LS(P)+1.

This list is complete in the following sense: Inequalities that
are not listed here and that do not follow from transitivity do
not hold in general. The resulting partial order with respect
to ≤ is displayed in Figure 1 as a Hasse diagram.

Decision Problems We now introduce the seven prob-
lems we will study. We define the following problem for
X ∈ {Maverick, Candidate Deletion, Local Candidate Dele-
tion, Additional Axes, Global Swaps, Local Swaps, Candi-
date Partition}.

X SINGLE-PEAKED CONSISTENCY

Given: An election E = (C,V,P) and a positive
integer k.

Question: Is P k-X single-peaked consistent?

GS

CD

CP

M

AA

LS

LCD

GS
M
CD
LS
AA
CP
LCD

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Global Swaps
Maverick
Candidate Del.
Local Swaps
Additional Axes
Candidate Partition
Local Cand. Del.

Figure 1: Hasse diagram of the partial order described in
Theorem 10.

Nearly Single-Peaked Consistency
In this section we analyze the computational complexity of
determining the distance to single-peakedness with respect
to one of the measures discussed above. It turns out that in
most cases this task is NP-complete with the notable excep-
tion of candidate deletion.

Theorem 11. MAVERICK SINGLE-PEAKED CONSIS-
TENCY is NP-complete.

Theorem 12. LOCAL CANDIDATE DELETION SINGLE-
PEAKED CONSISTENCY is NP-complete.

Theorem 13. ADDITIONAL AXES SINGLE-PEAKED CON-
SISTENCY is NP-complete. This holds even for k = 2, i.e.,
for checking single-peaked consistency with two additional
axes.

Theorem 14. GLOBAL SWAPS SINGLE-PEAKED CONSIS-
TENCY is NP-complete, even for eight voters.

Theorem 15. LOCAL SWAPS SINGLE-PEAKED CONSIS-
TENCY is NP-complete.

The proofs of these theorems had to be omitted due to
space constraints. Exemplarily, we give the proof of Theo-
rem 12.

Proof of Theorem 12. We will reduce from the NP-
complete problem MINIMUM RADIUS, which was shown
to be NP-complete in (Frances and Litman 1997) and is
defined as follows:

MINIMUM RADIUS

Given: A set of strings S ⊆ {0,1}n and a positive
integer s.

Question: Has S a radius of at most s, i.e., is there a
string α ∈ {0,1}n such that each string in S
has a Hamming distance of at most s to α?

Given a string β , let β (k) denote the bit value at the
k-th position in β . We are going to construct an LCD
SINGLE-PEAKED CONSISTENCY instance. Each string in
S = {β1, . . . ,βn} will correspond to a voter. Each bit of
the strings corresponds to two candidates. In addition, we
have 2ms+ 2 extra candidates. Consequently, we have C =
{c1

1,c
2
1,c

1
2,c

2
2, . . . ,c

1
n,c

2
n,c
′
1, . . . ,c

′
ms+1,c

′′
1 , . . . ,c

′′
ms+1}.

We define the preference profile with the help of two func-
tions creating total orders: f0(a,b) = a � b and f1(a,b) =
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b� a. The vote �k, for each k ∈ {1, . . . ,m}, is of the form

c′1 . . . c′ms+1 fβk(1)(c
1
1,c

2
1) . . . fβk(n)(c

1
n,c

2
n) c′′1 . . . c′′ms+1.

Let �i denote vote �i in reverse order. The preference pro-
file P is now defined as (�1, . . . ,�n,�1, . . . ,�n). It holds
that (C,V,P) is s-LCD single-peaked consistent if and only
if S has a radius of at most s. Due to lack of space we have
to omit the correctness proof of the reduction.

In contrast to the previous hardness results, we show
that CANDIDATE DELETION SINGLE-PEAKED CONSIS-
TENCY can be decided in polynomial time. The algorithm
builds upon the O(|V | · |C|) time algorithm for testing single-
peaked consistency by Escoffier, Lang, and Öztürk (2008).
For the remainder of this section let (C,V,P) be an election
with |V |= n and C = {c1, . . . ,cm}.
Definition 16. L(P,C′) is the set of last ranked candidates
in P[C′].

Definition 17. A partial axis A is a total order of a subset of
the candidates in C. Let cand(A) denote the candidates that
are ordered by A. Consequently, any partial axis A is an axis
over cand(A).

Definition 18. An incomplete axis is a partial axis with a
marked position that indicates where further elements may
be added. We denote this position by a star symbol, e.g., the
incomplete axis c1 > c2 > ? > c3 allows additional candi-
dates to be added right of c2 and left of c3. The boundary
of an incomplete axis A, boundary(A), are the two elements
left and right of the star, e.g., boundary(c1 > c2 > ?> c3) =
{c2,c3}.

The algorithm by Escoffier, Lang, and Öztürk (2008) pro-
ceeds iteratively by placing the last ranked candidates that
have not yet been placed. Let C′ be the set of candidates
that have not yet been positioned on the (incomplete) axis A.
The algorithm checks what kinds of constraints follow from
each vote. If these constraints do not contradict each other,
the set of last ranked candidates L(P,C′) is placed. We de-
note this procedure with place(A,X) where X = L(P,C′).
The procedure place(A,X) returns either a new incomplete
axis (extending A by the candidates in X) or the value
INCONSISTENT. The algorithm repeatedly invokes place
until all elements have been placed or a contradiction has
been found.
Fact 19. The placement of candidates in the place proce-
dure only depends on boundary(A) rather than the full par-
tial axis A.

This fact is the main reason why we can employ dynamic
programming in the algorithm for deciding the CANDIDATE
DELETION SINGLE-PEAKED CONSISTENCY problem.

The candidate deletion algorithm. The algorithm oper-
ates on pairs consisting of an incomplete axis A (as in the
single-peaked consistency algorithm) and a set of candidates
X that have been placed on A by the previous call of the
place procedure. We refer to this pair (A,X) as state. The
basic data structure is an array S of states. The total number

of states can be exponential in C. However, for the algorithm
it suffices to maintain an array of size b1.5 · |C|2c.

The algorithm utilizes dynamic programming. Given a
state (A,X) and a set of candidates Xnew that are to be placed
next, we try to obtain a new incomplete axis Anew. If such an
incomplete axis Anew can be found, it extends A by the candi-
dates in Xnew. The placement is performed by the place pro-
cedure, more precisely we call place(A,Xnew). Since placing
more than two candidates at once is not possible, we always
have |Xnew| ≤ 2.

In order to allow for a more concise description of the
algorithm, we assume that there are two additional candi-
dates c0 and c′0. The candidate c0 is ranked last in every
vote and c′0 is ranked second-to-last, i.e., L(P,C) = {c0}
and L(P,C \{c0}) = {c′0}. All other candidates are ranked
above these. Note that these modified votes are single-
peaked consistent if and only if the original votes were
single-peaked consistent. Indeed, any axis for the original
votes is an axis for the modified votes if we add c0 at the
leftmost position and c′0 at the rightmost position (or vice
versa). Conversely, every axis of the modified votes is an
axis of the original votes if c0 and c′0 are removed. Due to
these observations we can assume that the algorithm always
starts with the incomplete axis c0 >?> c′0. The starting state
is consequently (c0 > ? > c′0,{c′0}).

For a concise description of the algorithm see Algo-
rithm 1. Similar to the single-peaked consistency algorithm
we place lower ranked candidates first. However, in contrast
to the previously described single-peaked consistency algo-
rithm we may delete candidates. Hence there are several pos-
sibilities which candidates are to be placed next. We define a
set next(X) containing those candidates that may be placed
next. For this let X = {x1,x2}, with x1 = x2 in case |X |= 1.
We define

next(X)= {c ∈C | ∀k ∈ {1, . . . , |V |} (c�k x1)∨ (c�k x2)} .

Candidates that are not contained in next(X) have already
been processed, i.e., they have already been placed on the
axis or they have been deleted. Consequently, the candidates
that have been deleted so far are exactly those contained in
the set C \ (cand(A)∪next(X)).

Recall that placing three or more candidates by the place
procedure at once is not possible. Therefore, we consider ev-
ery set of candidates Xnew ⊆ next(X) of cardinality 1 or 2. If
|Xnew| = 2 an additional condition has to apply. There has
to be a vote � for which x1 � x2 holds and another vote for
which x2 � x1 holds. This condition is equivalent to requir-
ing that L(P,Xnew) = Xnew. (If this condition is not satis-
fied, the lower ranked candidate has to be placed first and
the higher ranked candidate in a later iteration step.)

First, we create a copy of S called Snew. We are only
modifying Snew while iterating over all elements of S . The
algorithm applies place(A,Xnew) for the incomplete axis A
of every state (A,X) ∈S and for every admissible Xnew ⊆
next(X). If place(A,Xnew) returns a new incomplete axis
Anew, we have obtained a new state (Anew,Xnew). We now
have to decide whether to store (Anew,Xnew) in Snew.

Recall that we keep at most b1.5 · |C|2c states in S . This
is possible due to the following observations: If two states
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Algorithm 1: Polynomial time algorithm for k-CD
single-peaked consistency – Theorem 20

1 (Ainit,Xinit) =
(
c0 > ? > c′0,{c′0}

)
2 S ←

{
(Ainit,Xinit)

}
3 repeat |C| times
4 Snew←S
5 foreach state (A,X) ∈S do
6 foreach Xnew ⊆ next(X) with 1≤ |Xnew| ≤ 2

and L(P,Xnew) = Xnew do
7 Anew← place(A,Xnew)
8 if Anew 6= INCONSISTENT then
9 i← index(Anew,Xnew)

10 if S [i] is empty then
11 S [i]← (Anew,Xnew)
12 else
13 (Aold,Xold)←S [i]
14 if |cand(Anew)|> |cand(Aold)| then
15 S [i]← (Anew,Xnew)

16 S ←Snew

17 return a state (A,X) ∈S with maximum |cand(A)|

have the same X set, they have the same set of candidates
that have not yet been placed nor deleted. If two states have
the same boundary, they are indistinguishable from the per-
spective of the place procedure (cf. Fact 19). Therefore if
two states have both the same boundary and the same X
set, we can discard the state where more candidates had to
be deleted so far. This is the same as discarding the state
with the smaller incomplete axis. In case that two such states
have incomplete axes of the same cardinality, we can make
the choice arbitrarily. Since there are

(|C|
2

)
possible bound-

aries and only three X sets per boundary, an array of size
b1.5 · |C|2c suffices.

We use the function index to compute the index of a state
(A,X) in the array. This position is uniquely determined by
the boundary of A and by X . Thus, when deciding whether
a state (A,X) is to be stored in Snew, it only has to be com-
pared with the state stored in Snew at index index(A,X). The
state with a larger incomplete axis is stored in Snew. After
the iteration over all states in S and all possible X sets is
completed, Snew becomes S .

We repeat the just described procedure |C| times. Any se-
quence of states leading to a cardinality maximal partial axis
has length at most |C| because in each step at least one can-
didate is placed on the axis. Therefore the algorithm stops
after |C| iterations and the array S contains a partial axis of
maximum cardinality.

Theorem 20. CANDIDATE DELETION SINGLE-PEAKED
CONSISTENCY can be solved in time O(|V | · |C|5).

Proof. The runtime bound can be seen as follows. The ar-
ray S has size b1.5 · |C|2c = O(|C|2). For each of these

Notion Complexity

k-Maverick NP-c (Thm. 11)
k-Candidate Deletion in P (Thm. 20)
k-Local Candidate Deletion NP-c (Thm. 12)
k-Additional Axes NP-c (Thm. 13)
k-Global Swaps NP-c (Thm. 14)
k-Local Swaps NP-c (Thm. 15)
k-Candidate Partition open

Table 1: Complexity results for different notions of nearly
single-peakedness.

states and for each admissible X set, we employ the place
procedure. Since place has a runtime of O(|V |), we require
O(|V | · |C|4) time for one iteration step. This is repeated |C|
times. We obtain a total runtime of O(|V | · |C|5).

Conclusions and Open Questions
We have investigated the nearly single-peaked consistency
problem. We have introduced three new notions of nearly
single-peakedness and studied four known notions. We have
drawn a complete picture of the relations between all the
notions of nearly single-peakedness discussed in this paper.
For five notions we have shown that deciding single-peaked
consistency is NP-complete and for k-candidate deletion we
have presented a polynomial time algorithm. We refer the
reader to Table 1 for an overview. An obvious direction for
future work is to determine the complexity of CANDIDATE
PARTITION SINGLE-PEAKED CONSISTENCY.

NP-completeness, however, does not rule out the possibil-
ity of algorithms that perform well in practice. One approach
is to search for fixed-parameter algorithms, i.e., an algorithm
with runtime f (k) · poly(n) for some computable function
f . A fixed-parameter algorithm for MAVERICK SINGLE-
PEAKED CONSISTENCY was found by Bredereck (2012).
The design of fixed-parameter algorithms for nearly single-
peaked consistency deserves further attention. A second
approach is the development of approximation algorithms
since nearly single-peaked consistency can also be seen as
an optimization problem.

Another interesting direction for future work is extend-
ing our models to manipulative behavior, such as manipula-
tion, control, and bribery. That is, assuming we have a nearly
single-peaked electorate according to one of our notions,
how hard is a manipulative action under a certain voting rule
computationally? The analysis of manipulation and control
in such elections has already been started by Faliszewski,
Hemaspaandra, and Hemaspaandra (2011b) for some dis-
tance measures. This work has yet to be extended to the dis-
tance measures introduced in this paper. Finally, there might
be further useful and natural distance measures regarding
single-peakedness to be found.
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