
On the Subexponential Time Complexity of CSP

Iyad Kanj1 and Stefan Szeider2∗
1School of Computing, DePaul University, Chicago, USA

ikanj@cs.depaul.edu
2Vienna University of Technology, Vienna, Austria

stefan@szeider.net

Abstract
A Constraint Satisfaction Problem (CSP) with n vari-
ables ranging over a domain of d values can be solved
by brute-force in dn steps (omitting a polynomial fac-
tor). With a more careful approach, this trivial upper
bound can be improved for certain natural restrictions
of the CSP. In this paper we establish theoretical limits
to such improvements, and draw a detailed landscape of
the subexponential-time complexity of CSP.
We first establish relations between the subexponential-
time complexity of CSP and that of other problems,
including CNF-SAT. We exploit this connection to pro-
vide tight characterizations of the subexponential-time
complexity of CSP under common assumptions in com-
plexity theory. For several natural CSP parameters, we
obtain threshold functions that precisely dictate the
subexponential-time complexity of CSP with respect
to the parameters under consideration.
Our analysis provides fundamental results indicating
whether and when one can significantly improve on the
brute-force search approach for solving CSP.

Introduction
The Constraint Satisfaction Problems (CSP) provides a gen-
eral and uniform framework for the representation and so-
lution of hard combinatorial problems that arise in various
areas of Artificial Intelligence and Computer Science (Rossi,
van Beek, and Walsh 2006). For instance, in database theory,
the CSP is equivalent to the evaluation problem of conjunc-
tive queries on relational databases (Gottlob, Leone, and
Scarcello 2002).

It is well known that CSP is NP-hard, as it entails funda-
mental NP-hard problems such as 3-COLORABILITY and
3-CNF-SAT. Hence, we cannot hope for a polynomial-time
algorithm for CSP. On the other hand, CSP can obviously
be solved in exponential time: by simply trying all possi-
ble instantiations of the variables, we can solve a CSP in-
stance consisting of n variables that range over a domain
of d values in time dn (omitting a polynomial factor in the
input size). Significant work has been concerned with im-
proving this trivial upper bound (Feder and Motwani 2002;

∗Supported by the European Research Council (ERC), project
COMPLEX REASON 239962.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Beigel and Eppstein 2005; Grandoni and Italiano 2006), in
particular, for certain restrictions of CSP. For instance, binary
CSP with domain size d can now be solved in time (d− 1)n

(omitting a polynomial factor in the input size) by a forward-
checking algorithm employing a fail-first variable ordering
heuristic (Razgon 2006). All these improvements over the
trivial brute-force search give exponential running times in
which the exponent is linear in n.

The aim of this paper is to investigate the theoretical limits
of such improvements. More precisely, we explore whether
the exponential factor dn can be reduced to a subexponential
factor do(n) or not, considering various natural NP-hard re-
strictions of the CSP. We note that the study of the existence
of subexponential-time algorithms is of prime interest, as a
subexponential-time algorithm for a problem would allow us
to solve larger hard instances of the problem in comparison
to an exponential-time algorithm.

Results We obtain lower and upper bounds and draw
a detailed complexity landscape of CSP with respect to
subexponential-time solvability. Our lower bounds are sub-
ject to (variants of) the Exponential Time Hypothesis (ETH),
proposed by Impagliazzo and Paturi (2001), which states that
3-CNF-SAT has no subexponential-time algorithm.

It is easy to see that CSP of bounded domain size (i.e., the
maximum number of values for each variable) and bounded
arity (i.e., the maximum number of variables that appear
together in a constraint) has a subexponential-time algorithm
if and only if the ETH fails. Our first result provides evidence
that when we drop the bound on the domain size or the bound
on the arity, the problem becomes “harder” (we refer to the
discussion preceding Proposition 2):
1. If BOOLEAN CSP is solvable in nonuniform subexponen-

tial time then so is (unrestricted) CNF-SAT.
2. If 2-CSP (all constraints have arity 2) is solvable in subex-

ponential time then CLIQUE is solvable in time No(k) (N
is the number of vertices and k is the clique-size).

As it turns out, the number of tuples plays an important role
in characterizing the subexponential time complexity of CSP.
We show the following tight result:
3. CSP is solvable in subexponential time for instances in

which the number of tuples is o(n), and unless the ETH
fails, is not solvable in subexponential time if the number
of tuples in the instances is Ω(n).

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

459

For Boolean CSP of linear size we can even derive an equiv-
alence to the ETH:
4. Boolean CSP for instances of size Ω(n) is solvable in

subexponential time if and only if the ETH fails.
Results 3 and 4 also hold if we consider the total number of
tuples in the constraint relations instead of the input size.

By a classical result of (Freuder 1990), CSP becomes eas-
ier if the instance has small treewidth. There are several ways
of measuring the treewidth of a CSP instance, depending on
the graph used to model the structure of the instance. The
most common models are the primal graph and the incidence
graph. The former has as vertices the variables of the CSP in-
stance, and two variables are adjacent if they appear together
in a constraint. The incidence graph is the bipartite graph on
the variables and constraints, where a variable is incident to
all the constraints in which it is involved. We show that the
treewidth of these two graph models give rise to different
subexponential-time complexities:
5. CSP is solvable in subexponential time for instances

whose primal treewidth is o(n), but is not solvable in
subexponential time for instances whose primal treewidth
is Ω(n), assuming the ETH.

6. CSP is solvable in polynomial time for instances whose
incidence treewidth is O(1), but is not solvable in subex-
ponential time for instances whose incidence treewidth is
ω(1) unless the ETH fails.

Our tight results, summarized in the table at the end of this
paper, provide strong theoretical evidence that some of the
natural restrictions of CSP may be “harder than” k-CNF-
SAT—for which a subexponential-time algorithm would lead
to the failure of the ETH. Hence, our results provide a new
point of view of the relationship between SAT and CSP, an
important topic of recent AI research (Jeavons and Petke
2012; Dimopoulos and Stergiou 2006; Benhamou, Paris, and
Siegel 2012; Bennaceur 2004).

Preliminaries
Constraint satisfiability and CNF-satisfiability An in-
stance I of the CONSTRAINT SATISFACTION PROBLEM
(or CSP, for short) is a triple (V,D, C), where V is a finite
set of variables, D is a finite set of domain values, and C is a
finite set of constraints. Each constraint in C is a pair (S,R),
where S, the constraint scope, is a non-empty sequence of
distinct variables of V , and R, the constraint relation, is a re-
lation over D whose arity matches the length of S; a relation
is considered as a set of tuples. Therefore, the size of a CSP
instance I = (V,D, C) is the sum

∑
(S,R)∈C |S| · |R|; the

total number of tuples is
∑

(S,R)∈C |R|. We assume, without
loss of generality, that every variable occurs in at least one
constraint scope and every domain element occurs in at least
one constraint relation. Consequently, the size of an instance
I is at least as large as the number of variables in I . We write
var(C) for the set of variables that occur in the scope of
constraint C.

An assignment or instantiation is a mapping from the set V
of variables to the domainD. An assignment τ satisfies a con-
straint C = ((x1, . . . , xn), R) if (τ(x1), . . . , τ(xn)) ∈ R,

and τ satisfies the CSP instance if it satisfies all its con-
straints. An instance I is consistent or satisfiable if it is sat-
isfied by some assignment. CSP is the problem of deciding
whether a given instance of CSP is consistent. BOOLEAN
CSP denotes the CSP with the Boolean domain {0, 1}. By r-
CSP we denote the restriction of CSP to instances in which
the arity of each constraint is at most r.

For an instance I = (V,D, C) of CSP we define the fol-
lowing basic parameters:
• vars: the number |V | of variables, usually denoted by n;
• size: the size of the CSP instance;
• dom: the number |D| of values;
• cons: the number |C| of constraints;
CNF-SAT is the satisfiability problem for propositional for-
mulas in conjunctive normal form (CNF). k-CNF-SAT de-
notes CNF-SAT restricted to formulas where each clause is
of width at most k, i.e., contains at most k literals.

Subexponential time The time complexity functions used
in this paper are assumed to be proper complexity functions
that are unbounded and nondecreasing. The o(·) notation
used denotes the oeff(·) notation (Flum and Grohe 2006).
More formally, for any two computable functions f, g : N→
N, by writing f(n) = o(g(n)) we mean that there exists a
computable nondecreasing unbounded function µ(n) : N→
N, and n0 ∈ N, such that f(n) ≤ g(n)/µ(n) for all n ≥ n0.

It is clear that CSP and CNF-SAT are solvable in time
domn|I|O(1) and 2n|I|O(1), respectively, where I is the in-
put instance and n is the number of variables in I . We
say that the CSP (resp. CNF-SAT) problem is solvable
in uniform subexponential time if there exists an algo-
rithm that solves the problem in time domo(n)|I|O(1) (resp.
2o(n)|I|O(1)). Using the results of (Chen, Kanj, and Xia 2009;
Flum and Grohe 2006), the above definition is equivalent to
the following: The CSP (resp. CNF-SAT) problem is solv-
able in uniform subexponential time if there exists an algo-
rithm that for all ε = 1/`, where ` is a positive integer, solves
the problem in time domεn|I|O(1) (resp. 2εn|I|O(1)). The
CSP (resp. CNF-SAT) problem is solvable in nonuniform
subexponential time if for each ε = 1/`, where ` is a pos-
itive integer, there exists an algorithm Aε that solves the
problem in time domεn|I|O(n) (resp. 2εn|I|O(1)) (that is, the
algorithm depends on ε). We note that subexponential-time
algorithms running in O(2

√
n) time do exist for many natural

problems (Alber, Fernau, and Niedermeier 2004).
Let Q and Q′ be two problems, and let µ and µ′ be two

parameter functions defined on instances ofQ andQ′, respec-
tively. In the case of CSP and CNF-SAT, µ and µ′ will be
the number of variables in the instances of these problems. A
subexponential-time Turing reduction family (Impagliazzo,
Paturi, and Zane 2001; Flum and Grohe 2006), shortly a serf-
reduction, is an algorithm A with an oracle to Q′ such that
there are computable functions f, g : N −→ N satisfying:
(1) given a pair (I, ε) where I ∈ Q and ε = 1/` (` is a pos-
itive integer), A decides I in time f(1/ε)domεµ(I)|I|O(1)

(for CNF-SAT dom = 2); and (2) for all oracle queries of
the form “I ′ ∈ Q′” posed by A on input (I, ε), we have
µ′(I ′) ≤ g(1/ε)(µ(I) + log |I|).

460

The optimization class SNP consists of all search problems
expressible by second-order existential formulas whose first-
order part is universal (Papadimitriou and Yannakakis 1991).
Impagliazzo, Paturi, and Zane (2001) introduced the notion
of completeness for the class SNP under serf-reductions, and
identified a class of problems which are complete for SNP
under serf-reductions, such that the subexponential-time solv-
ability for any of these problems implies the subexponential-
time solvability of all problems in SNP. Many well-known
NP-hard problems are proved to be complete for SNP under
the serf-reduction, including 3-SAT, VERTEX COVER, and
INDEPENDENT SET, for which extensive efforts have been
made in the last three decades to develop subexponential-
time algorithms with no success. This fact has led to the
exponential-time hypothesis, ETH, which is equivalent to
the statement that not all SNP problems are solvable in
subexponential-time:

Exponential-Time Hypothesis (ETH): The problem k-
CNF-SAT, for any k ≥ 3, cannot be solved in time 2o(n),
where n is the number of variables in the input formula.
Therefore, there exists c > 0 such that k-CNF-SAT cannot
be solved in time 2cn.

The following result is implied from (Impagliazzo, Paturi,
and Zane 2001, Corollary 1) and from the proof of the Sparsi-
fication Lemma (Impagliazzo, Paturi, and Zane 2001), (Flum
and Grohe 2006, Lemma 16.17).

Lemma 1. k-CNF-SAT (k ≥ 3) is solvable in 2o(n) time if
and only if k-CNF-SAT with a linear number of clauses and
in which the number of occurrences of each variable is upper
bounded by a constant is solvable in time 2o(n), where n is
the number of variables in the formula (note that the size of
an instance of k-CNF-SAT is polynomial in n).

The ETH has become a standard hypothesis in complexity
theory (Lokshtanov, Marx, and Saurabh 2011).

We close this section by mentioning some further work
on the subexponential-time complexity of CSP. There are
several results on 2-CSP with bounds on tw, the treewidth
of the primal graph (see the Introduction section for def-
initions). Lokshtanov, Marx, and Saurabh (2011) showed
the following lower bound, using a result on list coloring
(Fellows et al. 2011): 2-CSP cannot be solved in time
f(tw)no(tw) unless the ETH fails. Marx (2010a) showed
that if there is a recursively enumerable class G of graphs
with unbounded treewidth and a function f such that 2-CSP
can be solved in time f(G)no(tw/ log tw) for instances whose
primal graph is in G, then the ETH fails. Traxler (2008)
studied the subexponential-time complexity of CSP where
the constraints are represented by listing the forbidden tu-
ples (in contrast to the standard representation that we use,
where the allowed tuples are given, and which naturally cap-
tures database problems (Gottlob, Leone, and Scarcello 2002;
Grohe 2006; Papadimitriou and Yannakakis 1999)). This
setting can be considered as a generalisation of CNF-SAT;
a single clause gives rise to a constraint with exactly one
forbidden tuple.

Relations between CSP and CNF-SAT

In this section, we investigate the relation between the
subexponential-time complexity of CSP and that of CNF-
SAT. A clause of constant width can be represented by a
constraint of constant arity; the reverse holds as well (we get
a constant number of clauses). Hence, we have:
Proposition 1. BOOLEAN r-CSP is solvable in subexponen-
tial time if and only if the ETH fails.

The following proposition suggests that Proposition 1 may
not extend to r-CSP with unbounded domain size. Chen et
al. (Chen et al. 2005) showed that if CLIQUE (decide whether
a given a graph on N vertices contains a complete subgraph
of k vertices) is solvable in time No(k) then the ETH fails.
The converse, however, is generally believed not to be true.
The idea behind the proof of the proposition goes back to the
paper by Papadimitriou and Yannakakis (1999), where they
used it in the context of studying the complexity of database
queries. We skip the proof, and refer the reader to the original
source (Papadimitriou and Yannakakis 1999).
Proposition 2. If 2-CSP is solvable in subexponential time
then CLIQUE is solvable in time No(k).

We explore next the relation between BOOLEAN CSP
with unbounded arity and CNF-SAT. We show that if
BOOLEAN CSP is solvable in nonuniform subexponential
time then so is CNF-SAT. To do so, we exhibit a nonuni-
form subexponential-time Turing reduction from CNF-SAT
to BOOLEAN CSP.

Intuitively, one would try to reduce an instance F of CNF-
SAT to an instance I of CSP by associating with every clause
in F a constraint in I whose variables are the variables in
the clause, and whose relation consists of all tuples that sat-
isfy the clause. There is a slight complication in such an
attempted reduction because the number of tuples in a con-
straint could be exponential if the number of variables in the
corresponding clause is linear (in the total number of vari-
ables). To overcome this subtlety, the idea is to first apply a
subexponential-time (Turing) reduction, which is originally
due to Schuler (2005) and was also used and analyzed by
Calabro, Impagliazzo, and Paturi (2006), that reduces the in-
stance F to subexponentially-many (in n) instances in which
the width of each clause is at most some constant k; in our
case, however, we will reduce the width to a suitable noncon-
stant value. We follow this reduction with the reduction to
BOOLEAN CSP described above.
Theorem 1. If BOOLEAN CSP has a nonuniform
subexponential-time algorithm then so does CNF-SAT.
Proof. Suppose that BOOLEAN CSP is solvable in nonuni-
form subexponential time. Then for every δ > 0, there exists
an algorithm A′δ that, given an instance I of BOOLEAN CSP
with n′ variables, A′δ solves I in time 2δn

′ |I|c′ , for some
constant c′ > 0.

Let 0 < ε < 1 be given. We describe an algorithm Aε
that solves CNF-SAT in time 2εnmO(1). Set k = b εn

2(1+c′)c.
Let F be an instance of CNF-SAT with n variables and m
clauses. The algorithm Aε is a search-tree algorithm, and
works as follows. The algorithm picks a clause C in F of

461

width more than k; if no such clause exists the algorithm
stops. Let l1, . . . , lk be any k literals in C. The algorithm
branches on C into two branches. The first branch, referred
to as a left branch, corresponds to one of these k literals being
assigned the value 1 in the satisfying assignment sought, and
in this case C is replaced in F by the clause (l1 ∨ . . . ∨ lk),
thus reducing the number of clauses in F of width more than
k by 1. The second branch, referred to as a right branch,
corresponds to assigning all those k literals the value 0 in
the satisfying assignment sought; in this case the values of
the variables corresponding to those literals have been de-
termined, and the variables can be removed from F and F
gets updated accordingly. Therefore, in a right branch the
number of variables in F is reduced by k. The execution of
the part of the algorithm described so far can be depicted by
a binary search tree whose leaves correspond to instances
resulting from F at the end of the branching, and in which
each clause has width at most k. The running time of this
part of the algorithm is proportional to the number of leaves
in the search tree, or equivalently, the number of root-leaf
paths in the search tree. Let F ′ be an instance resulting from
F at a leaf of the search tree. We reduce F ′ to an instance
IF ′ of BOOLEAN CSP as follows. For each clause C ′ in F ′,
we correspond to it a constraint whose variable-set is the set
of variables in C ′, and whose tuples consist of at most 2k − 1
tuples corresponding to all assignments to the variables in
C ′ that satisfy C ′. Clearly, IF ′ can be constructed in time
2kmO(1) (note that the number of clauses in F ′ is at most m).
To the instance IF ′ , we apply the algorithm A′δ with δ = ε/2.
The algorithm Aε accepts F if and only if A′δ accepts one of
the instances IF ′ , for some F ′ resulting from F at a leaf of
the search tree.

The running time of Aε is upper bounded by the number
of leaves in the search tree, multiplied by a polynomial in the
length of F (polynomial in m) corresponding to the (maxi-
mum) total running time along a root-leaf path in the search
tree, multiplied by the time to construct the instance IF ′ cor-
responding to F ′ at a leaf of the tree, and multiplied by the
running time of the algorithmA′δ applied to IF ′ . Note that the
binary search tree depicting the execution of the algorithm
is not a complete binary tree. To upper bound the size of the
search tree, let P be a root-leaf path in the search tree, and
let ` be the number of right branches along P . Since each
right branch removes k variables, ` ≤ n/k and the number
of variables left in the instance F ′ at the leaf endpoint of P is
n− `k. Noting that the length of a path with ` right branches
is at most m+ ` (each left branch reduces m by 1 and hence
there can be at most m such branches on P , and there are
` right branches), we conclude that the number of root-leaf
paths, and hence the number of leaves, in the search tree is at
most

∑dn/ke
`=0

(
m+`
`

)
.

The reduction from F ′ to an instance of BOOLEAN CSP
can be carried out in time 2kmO(1), and results in an instance
IF ′ in which the number of variables is at most n′ = n− `k,
the number of constraints is at most m, and the total size is at
most 2kmO(1). Summing over all possible paths in the search
tree, the running time of Aε is 2εnmO(1).

It follows that the algorithm Aε solves CNF-SAT in time

2εnmO(1). Therefore, if BOOLEAN CSP has a nonuniform
subexponential-time algorithm, then so does CNF-SAT. The
algorithm is nonuniform because the polynomial factor in the
running time (exponent of m) depends on ε.

Instance size and number of tuples
In this section we give characterizations of the
subexponential-time complexity of CSP with respect
to the instance size and the number of tuples. Recall
that the size of an instance I = (V,D, C) of CSP
is size =

∑
(S,R)∈C |S| · |R|. We also show that the

subexponential-time solvability of BOOLEAN CSP with
linear size, or linear number of tuples, is equivalent to the
statement that the ETH fails.
Lemma 2. Unless the ETH fails, BOOLEAN CSP is not
solvable in subexponential-time if the instance size is Ω(n).
Proof. Let s(n) = Ω(n) ≥ cn be a complexity function,
where c > 0 is a constant. Suppose that the restriction of
CSP to instances of size at most s(n) is solvable in subexpo-
nential time, and we will show that 3-CNF-SAT is solvable
in subexponential time. By Lemma 1, it is sufficient to show
that 3-CNF-SAT with a linear number of clauses is solvable
in 2o(n) time. Using a padding argument, we can prove the
preceding statement assuming any linear upper bound on the
number of clauses; we pick this linear upper bound to be
cn/24, where c is the constant in the upper bound on s(n).

Let F be an instance of 3-CNF-SAT with n variables and
at most cn/24 clauses. We reduce F to an instance IF of
BOOLEAN CSP using the same reduction described in the
proof of Theorem 1: for each clause C of F we correspond a
constraint whose variables are those in C and whose tuples
are those corresponding to the satisfying assignments to C.
Since the width of C is 3 and the number of clauses is at most
cn/24, the instance IF consists of at most cn/24 constraints,
each containing at most 3 variables and 8 tuples. Therefore,
the size of IF is at most cn. We now apply the hypothetical
subexponential-time algorithm to IF . Since |I| is linear in n,
and since the reduction takes linear time in n, we conclude
that 3-CNF-SAT is solvable in time 2o(n)nO(1) = 2o(n).

Lemma 3. CSP restricted to instances with o(n) tuples is
solvable in subexponential-time.

Proof. Let s(n) = o(n) be a complexity function, and con-
sider the restriction of CSP to instances with at most s(n)
tuples. We will show that this problem is solvable in time
doms(n)|I|O(1). Consider the algorithm A that, for each tu-
ple in a constraint, branches on whether or not the tuple is
satisfied by the satisfying assignment sought. A branch in
which more than one tuple in any constraint is selected as
satisfied is rejected, and likewise for a branch in which no tu-
ple in a constraint is selected. For each remaining branch, the
algorithm checks if the assignment to the variables stipulated
by the branch is consistent. If it is, the algorithm accepts;
the algorithm rejects if no branch corresponds to a consistent
assignment. Clearly, the algorithm A is correct, and runs in
time 2s(n)|I|O(1) = doms(n)|I|O(1).

462

Noting that the number of tuples is a lower bound for the
instance size, the following theorem follow from Lemma 2
and Lemma 3:
Theorem 2. CSP is solvable in subexponential-time for in-
stances in which the number of tuples is o(n), and unless
the ETH fails, is not solvable in subexponential-time if the
number of tuples in the instances is Ω(n).

Next, we show that the subexponential-time solvability of
BOOLEAN CSP with linear size, or with linear number of
tuples, is equivalent to the statement that the ETH fails. We
first need the following lemma.
Lemma 4. If the ETH fails then BOOLEAN CSP with linear
number of tuples is solvable in subexponential time.
Proof. We give a serf-reduction from BOOLEAN CSP with
linear number of tuples to BOOLEAN r-CSP for some con-
stant r ≥ 3 to be specified below. The statement will then
follow from Proposition 1.

Let s(n) ≤ cn be a complexity function, where c > 0
is a constant. Consider the restriction of BOOLEAN CSP to
instances in which the number of tuples is at most cn; we
will refer to this problem as BOOLEAN LINEAR TUPLE CSP.
Let 0 < ε < 1 be given. Choose a positive integer-constant
d large enough so that the unique root of the polynomial
xd − xd−1 − 1 in the interval (1,∞) is at most 2ε/c. (The
uniqueness of the root was shown (Chen, Kanj, and Jia 2001,
Lemma 4.1), and the fact that the root converges to 1 as
d −→ ∞ can be easily verified.) Let I be an instance of
BOOLEAN LINEAR TUPLE CSP. We will assume that, for
any constraint C in I , and any two variables x, y in C, there
must be at least one tuple in C in which the values of x and
y differ. If not, then the values of x and y in any assignment
that makes I consistent have to be the same; in this case we
remove all tuples from I in which the values of x and y differ,
replace y with x in every constraint in I , and simplify I
accordingly (if a constraint becomes empty during the above
process then we reject I).

We now apply the following branching procedure to I .
For each constraint C in I with more than d tuples, pick a
tuple t in C and branch on whether or not t is satisfied in an
assignment that makes I consistent (if such an assignment
exists). In the branch where t is satisfied, remove C from I ,
remove every tuple in I in which the value of a variable that
appears in C does not conform to the value of the variable in
t, and finally remove all variables in C from I and its tuples
(if a constraint becomes empty reject I). In the branch where
t is not satisfied, remove t from C. Note that each branch
either removes a tuple or removes at least d tuples. We repeat
the above branching until each constraint in the resulting
instance contains at most d tuples. The above branching can
be depicted by a binary search tree whose leaves correspond
to all the possible outcomes from the above branching. The
number of the leaves in the search tree is O(xcn0), where x0
is the root of the polynomial xd − xd−1 − 1 in the interval
(1,∞). (The branching vector is not worse than (1, d).) By
the choice of d, the number of leaves in the search tree is
O(2εn). Let I ′ be the resulting instance at a leaf of the search
tree. We claim that the arity of I ′ is at most 2d. Suppose not,
and let C be a constraint in I ′ whose arity is more than 2d.

Pick an arbitrary ordering of the tuples in C, and list them as
t1, . . . , ts, where s ≤ d. For each variable in C, we associate
a binary sequence of length s whose ith bit is the value of the
variable in ti. Since the arity is more than 2d, the number of
binary sequences is more than 2d. Since the length of each
sequence is s ≤ d, by the pigeon-hole principal, there exist
two binary sequences that are identical. This contradicts our
assumption that no constraint has two variables whose values
are identical in all the tuples of the constraint. It follows
that the instance I ′ is an instance of BOOLEAN 2d-CSP.
Since the number of variables in I ′ is at most that of I , and
the number of leaves in the search tree is O(2εn), we have
a serf-reduction from BOOLEAN LINEAR TUPLE CSP to
BOOLEAN r-CSP for some constant r.

Lemma 2, combined with Lemma 4 after noting that the
size is an upper bound on the number of tuples, give the
following result.
Theorem 3. BOOLEAN CSP with linear number of tuples is
solvable in subexponential time if and only if the ETH fails.
Theorem 4. The BOOLEAN CSP with linear size is solvable
in subexponential time if and only if the ETH fails.

Treewidth and number of constraints
In this section we characterize the subexponential-time com-
plexity of CSP with respect to the treewidth of certain
graphs that model the interaction of variables and constraints.
Many NP-hard problems on graphs become polynomial-
time solvable for graphs whose treewidth is bounded by
a constant. For a definition of treewidth we refer to other
sources (Bodlaender 1998). Freuder (1990) showed that CSP
is polynomial-time solvable if a certain graph associated
with the instance, the primal graph, is of bounded treewidth.
The primal graph associated with a CSP instance I has the
variables in I as its vertices; two variables are joined by an
edge if and only if they occur together in the scope of a con-
straint. Freuder’s result was generalized in various ways, and
other restrictions on the graph structure of CSP instances
have been considered (Gottlob, Leone, and Scarcello 2000;
Marx 2010b). If the treewidth of the primal graph is bounded,
then so is the arity of the constraints. The incidence graph
provides a more general graph model, as it includes instances
of unbounded arity even if the treewidth is bounded. The
incidence graph associated with I is a bipartite graph with
one partition being the set of variables in I and the other
partition being the set of constraints in I; a variable and a
constraint are joined by an edge if and only if the variable
occurs in the scope of the constraint. For a CSP instance, we
denote by tw the treewidth of its primal graph and by tw∗ the
treewidth of its incidence graph.

As shown by Bodlaender (1996), there exists for every
fixed k a linear time algorithm that checks if a graph has
treewidth at most k and, if so, outputs a tree decomposition
of minimum width. It follows that we can check whether the
treewidth of a graph is O(1) in polynomial time.
Lemma 5. CSP is solvable in polynomial time for instances
whose incidence treewidth tw∗ is O(1).
Proof. If the tw∗ is O(1) then the hypertree-width is also
O(1) (Gottlob, Leone, and Scarcello 2000), and CSP is solv-

463

able in polynomial-time if the hypertree-width is O(1) (Gott-
lob, Leone, and Scarcello 2002). Combining the preceding
statements gives the lemma.
Lemma 6. Unless the ETH fails, CSP is not solvable in
subexponential-time if the number of constraints is ω(1).
Proof. Let λ(n) = ω(1) be a complexity function. We show
that, unless the ETH fails, the restriction of CSP to instances
in which cons ≤ λ(n), denoted CSPλ is not solvable in
domo(n) time. By Proposition 1, it suffices to provide a serf-
reduction from BOOLEAN 3-CSP with a linear number of
constraints to BOOLEAN CSPλ.

Let I be an instance of BOOLEAN CSP in which cons =
n′ ≤ cn, where c > 0 is a constant. Let C1, . . . , Cn′ be the
constraints in I; we partition these constraints arbitrarily into
bλ(n)c many groups C1, . . . , Cr, where r ≤ bλ(n)c, each
containing at most dn′/λ(n)e constraints. The serf-reduction
A works as follows. A “merges” all the constraints in each
group Ci, i = 1, . . . , r, into one constraint C ′i as follows.
The variable-set of C ′i consists of the union of the variable-
sets of the constraints in Ci. For each constraint C in Ci,
iterate over all tuples in C. After selecting a tuple from each
constraint in Ci, check if all the selected tuples are consistent,
and if so merge all these tuples into a single tuple and add
it to C ′i. By merging the tuples we mean form a single tuple
over the variables in these tuples, and in which the value
of each variable is its value in the selected tuples (note that
the values are consistent). Since each constraint in I has
arity at most 3, and hence contains at most 8 tuples, and
since each group contains at most dn′/λ(n)e constraints, C ′i
can be constructed in time 8dn

′/λ(n)en′O(1) = 2o(n), and
hence, all the constraints C ′1, . . . , C

′
r can be constructed in

time 2o(n)nO(1) = 2o(n). We now form the instance I ′ whose
variable-set is that of I , and whose constraints areC ′1, . . . , C

′
r.

Since r ≤ bλ(n)c, I ′ is an instance of CSPλ. Moreover, it
is easy to see that I is consistent if and only if I ′ is. Since
I ′ can be constructed from I in subexponential time and the
number of variables in I ′ is at most that of I , it follows that
A is a serf-reduction from BOOLEAN 3-CSP with a linear
number of constraints to CSPλ.

Since tw∗ = O(cons), Lemmas 5 and 6 give the follow-
ing result.
Theorem 5. CSP is solvable in polynomial time for in-
stances with O(1) constraints, and unless the ETH fails, is
not solvable in subexponential-time if the number of con-
straints is ω(1).
Theorem 6. CSP is solvable in polynomial time for in-
stances whose incidence treewidth tw∗ is O(1), and unless
the ETH fails, is not solvable in subexponential-time for in-
stances whose tw∗ is ω(1).
Theorem 7. CSP is solvable in subexponential-time for in-
stances whose primal treewidth tw is o(n), and is not solvable
in subexponential-time for instances whose tw is Ω(n) unless
(the general) CSP is solvable in subexponential time.
Proof. The fact that CSP is solvable in subexponential time
if tw = o(n) follows from the facts that: (1) we can com-
pute a tree decomposition of width at most 4 · tw in time
24.38tw|I|O(1) (Amir 10), and (2) CSP is solvable in time

O(domtw)|I|O(n) (Freuder 1990).
Let s(n) = cn, where c > 0 is a constant, and consider

the restriction of CSP to instances whose tw is at most s(n),
denoted LINEAR-tw-CSP. Note that the number of vertices
in the primal graph is n, and hence tw ≤ n. Therefore, if
c ≥ 1, then the statement trivially follows. Suppose now that
c < 1, and let I be an instance of CSP with n variables. By
“padding” d1/ce disjoint copies of I we obtain an instance I ′
that is equivalent to I , whose number of variables is N ′ =
d1/cen, and whose tw is the same as that of I . Since the tw
of I is at most n, it follows that the tw of I ′ is at most cN ′,
and hence I ′ is an instance of LINEAR-tw-CSP. This gives a
serf-reduction from CSP to LINEAR-tw-CSP.

We note that the hypothesis “CSP is solvable in subex-
ponential time” in the above theorem implies that “ETH
fails” by Proposition 1, and implies that CNF-SAT has a
nonuniform subexponential-time algorithm by Theorem 1.
We also note that the difference between the subexponential-
time complexity of CSP with respect to the two structural
parameters tw and tw∗: Whereas the threshold function for
the subexponential-time solvability of CSP with respect to
tw is o(n), the threshold function with respect to tw∗ is O(1).

Degree and arity
In this section we give characterizations of the
subexponential-time complexity of CSP with respect
to the degree and the arity. The proofs are omitted.
Theorem 8. Unless ETH fails, CSP is not solvable in
subexponential-time if deg ≥ 2.

There is a folklore reduction from an instance of 3-
COLORABILITY with n vertices that results in an instance
of CSP with n variables, arity = 2, and dom = 3. Since
the 3-COLORABILITY problem is SNP-complete under serf-
reductions (Impagliazzo, Paturi, and Zane 2001), we get:
Theorem 9. Unless ETH fails, CSP is not solvable in
subexponential-time if arity ≥ 2 (and dom ≥ 3).

Conclusion
We have provided a first analysis of the subexponential-time
complexity of CSP under various restrictions. We have ob-
tained several tight thresholds that dictate the subexponential-
time complexity of CSP. These tight results are summarized
in the following table.

CSP ∈ SUBEXP CSP /∈ SUBEXP Result
(assuming the ETH)

tuples ∈ o(n) tuples ∈ Ω(n) Theorem 2
cons ∈ O(1) (even in P) cons ∈ ω(1) Theorem 5
tw∗ ∈ O(1) (even in P) tw∗ ∈ ω(1) Theorem 6
tw ∈ o(n) tw ∈ Ω(n) Theorem 7

Furthermore, we have linked the subexponential-time com-
plexity of CSP with bounded arity to CLIQUE, and CSP with
bounded domain size to CNF-SAT. These results suggest
that these restrictions of CSP may be “harder than” k-CNF-
SAT—for which a subexponential-time algorithm would lead
to the failure of the ETH—with respect to subexponential-
time complexity. It would be interesting to provide stronger
theoretical evidence for this separation.

464

References
Alber, J., Fernau, H., and Niedermeier, R. 2004. Parame-
terized complexity: exponential speed-up for planar graph
problems. J. Algorithms 52(1):26–56.
Amir, E. 2010. Approximation Algorithms for Treewidth.
Algorithmica 56(4):448–479.
Beigel, R., and Eppstein, D. 2005. 3-coloring in time
O(1.3289n). J. Algorithms 54(2):168–204.
Benhamou, B.; Paris, L.; and Siegel, P. 2012. Dealing with
satisfiability and n-ary csps in a logical framework. Journal
of Automated Reasoning 48(3):391–417.
Bennaceur, H. 2004. A comparison between SAT and CSP
techniques. Constraints 9(2):123–138.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Bodlaender, H. L. 1998. A partial k-arboretum of graphs with
bounded treewidth. Theoretical Computer Science 209(1-
2):1–45.
Calabro, C.; Impagliazzo, R.; and Paturi, R. 2006. A duality
between clause width and clause density for SAT. In 21st An-
nual IEEE Conference on Computational Complexity, CCC
2006, 252–260. IEEE Computer Society.
Chen, J.; Chor, B.; Fellows, M.; Huang, X.; Juedes, D.; Kanj,
I. A.; and Xia, G. 2005. Tight lower bounds for certain param-
eterized NP-hard problems. Information and Computation
201(2):216–231.
Chen, J.; Kanj, I. A.; and Jia, W. 2001. Vertex cover: fur-
ther observations and further improvements. J. Algorithms
41(2):280–301.
Chen, J.; Kanj, I. A.; and Xia, G. 2009. On parameterized
exponential time complexity. Theoretical Computer Science
410(27-29):2641–2648.
Dimopoulos, Y., and Stergiou, K. 2006. Propagation in CSP
and SAT. In Benhamou, F., ed., Principles and Practice
of Constraint Programming - CP 2006, Proceedings, vol-
ume 4204 of Lecture Notes in Computer Science, 137–151.
Springer Verlag.
Feder, T., and Motwani, R. 2002. Worst-case time bounds for
coloring and satisfiability problems. J. Algorithms 45(2):192–
201.
Fellows, M. R.; Fomin, F. V.; Lokshtanov, D.; Rosamond,
F.; Saurabh, S.; Szeider, S.; and Thomassen, C. 2011. On
the complexity of some colorful problems parameterized by
treewidth. Information and Computation 209(2):143–153.
Flum, J., and Grohe, M. 2006. Parameterized Complex-
ity Theory, volume XIV of Texts in Theoretical Computer
Science. An EATCS Series. Berlin: Springer Verlag.
Freuder, E. C. 1990. Complexity of k-tree structured con-
straint satisfaction problems. In Shrobe, H. E.; Dietterich,
T. G.; and Swartout, W. R., eds., Proceedings of the 8th Na-
tional Conference on Artificial Intelligence., 4–9.
Gottlob, G.; Leone, N.; and Scarcello, F. 2000. A compar-
ison of structural CSP decomposition methods. Artificial
Intelligence 124(2):243–282.

Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Hypertree
decompositions and tractable queries. J. of Computer and
System Sciences 64(3):579–627.
Grandoni, F., and Italiano, G. F. 2006. Algorithms and con-
straint programming. In Benhamou, F., ed., Principles and
Practice of Constraint Programming - CP 2006, Proceedings,
volume 4204 of Lecture Notes in Computer Science, 2–14.
Springer Verlag.
Grohe, M. 2006. The structure of tractable constraint sat-
isfaction problems. In Kralovic, R., and Urzyczyn, P., eds.,
Mathematical Foundations of Computer Science 2006, MFCS
2006, Proceedings, volume 4162 of Lecture Notes in Com-
puter Science, 58–72. Springer Verlag.
Impagliazzo, R., and Paturi, R. 2001. On the complexity of
k-SAT. J. of Computer and System Sciences 62(2):367–375.
Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which prob-
lems have strongly exponential complexity? J. of Computer
and System Sciences 63(4):512–530.
Jeavons, P., and Petke, J. 2012. Local consistency and sat-
solvers. J. Artif. Intell. Res. 43:329–351.
Lokshtanov, D.; Marx, D.; and Saurabh, S. 2011. Lower
bounds based on the exponential time hypothesis. Bulletin of
the European Association for Theoretical Computer Science
105:41–72.
Marx, D. 2010a. Can you beat treewidth? Theory of Com-
puting 6:85–112.
Marx, D. 2010b. Tractable hypergraph properties for con-
straint satisfaction and conjunctive queries. In Schulman,
L. J., ed., Proceedings of the 42nd ACM Symposium on The-
ory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, 735–744. ACM.
Papadimitriou, C. H., and Yannakakis, M. 1991. Optimiza-
tion, approximation, and complexity classes. J. of Computer
and System Sciences 43(3):425–440.
Papadimitriou, C. H., and Yannakakis, M. 1999. On the
complexity of database queries. J. of Computer and System
Sciences 58(3):407–427.
Razgon, I. 2006. Complexity analysis of heuristic CSP
search algorithms. In Hnich, B.; Carlsson, M.; Fages, F.; and
Rossi, F., eds., Recent Advances in Constraints, CSCLP 2005,
Revised Selected and Invited Papers, volume 3978 of Lecture
Notes in Computer Science, 88–99. Springer Verlag.
Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Handbook
of Constraint Programming. Elsevier.
Schuler, R. 2005. An algorithm for the satisfiability prob-
lem of formulas in conjunctive normal form. J. Algorithms
54(1):40–44.
Traxler, P. 2008. The time complexity of constraint satisfac-
tion. In Grohe, M., and Niedermeier, R., eds., Proceedings
of the Third International Workshop on Parameterized and
Exact Computation 2008, volume 5018 of Lecture Notes in
Computer Science, 190–201. Springer Verlag.

465

