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Abstract

Recently, a Euclidean heuristic (EH) has been proposed
for A* search. EH exploits manifold learning methods
to construct an embedding of the state space graph, and
derives an admissible heuristic distance between two
states from the Euclidean distance between their re-
spective embedded points. EH has shown good perfor-
mance and memory efficiency in comparison to other
existing heuristics such as differential heuristics. How-
ever, its potential has not been fully explored. In this
paper, we propose a number of techniques that can sig-
nificantly improve the quality of EH. We propose a
goal-oriented manifold learning scheme that optimizes
the Euclidean distance to goals in the embedding while
maintaining admissibility and consistency. We also pro-
pose a state heuristic enhancement technique to reduce
the gap between heuristic and true distances. The en-
hanced heuristic is admissible but no longer consistent.
We then employ a modified search algorithm, known as
B′ algorithm, that achieves optimality with inconsistent
heuristics using consistency check and propagation. We
demonstrate the effectiveness of the above techniques
and report un-matched reduction in search costs across
several non-trivial benchmark search problems.

Introduction
A∗ search is critical in many areas of real life. For exam-
ple, GPS navigation systems need to find the shortest path
between two locations efficiently and repeatedly (e.g. each
time a new traffic update has been received, or when the
driver makes a wrong turn) (Geisberger et al. 2008). As the
processor capabilities of these devices and the patience of
the users are both limited, the quality of the search heuris-
tic is of great importance. This importance only increases as
more and more low powered embedded devices (e.g. smart-
phones) are equipped with similar capabilities. Other appli-
cations include massive online multiplayer games (Sturte-
vant 2007), where artificial agents need to identify the short-
est path along a map, which can change dynamically through
actions by other users.

Designing heuristics for such problems is important but
difficult. For anA∗ search to find optimal paths, the heuristic
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must be admissible. Moreover, for a search to be fast, heuris-
tic distances must be consistent and close to true distances.
An accurate heuristic is crucial for time sensitive applica-
tions, e.g. GPS driver assistance systems, whose query time
is currently in the low microsecond range. Moreover, em-
bedded devices have limited memory, demanding a compact
representation of the heuristic. For example, given n states
in the search space, one can obtain a perfect heuristic by
storing all pre-computed distances between any two states—
however the O(n2) memory requirement renders this ap-
proach infeasible in practice.

Recently, Rayner, Bowling, and Sturtevant (2011) intro-
duced a novel heuristic for A∗ search, which they refer to
as the Euclidean heuristic (EH). It uses a manifold learning
algorithm, Maximum Variance Unfolding (MVU) (Wein-
berger and Saul 2006), to embed the state space graph into a
low dimensional Euclidean space. The Euclidean distance
between two states in the embedding is then used as the
heuristic distance for A∗ search. The embedding is con-
strained to keep the heuristic admissible and consistent, by
underestimating all distances. Further, the objective mini-
mizes the differences between the heuristic estimates and
their corresponding true distances. Moreover, it reduces
the space requirement for storing heuristics from O(n2) to
O(dn), where d is the dimensionality of the embedding. EH
achieves impressively better performance than other leading
heuristics (Rayner, Bowling, and Sturtevant 2011).

However, MVU with its original semi-definite relaxation
can only embed state spaces with up to a few thousand
states—severely limiting its use in practice. Although there
have been efforts to increase the scalability of MVU (Wein-
berger, Packer, and Saul 2005; Weinberger et al. 2007), these
lead to approximate solutions and the resulting heuristics
violate admissibility. A more recent variation of MVU, re-
ferred to as Maximum Variance Correction (MVC) (Chen,
Weinberger, and Chen 2013), greatly improves its scalabil-
ity (and accuracy) and can embed graphs with 200K states
or more. MVC generates approximate MVU solutions but
still guarantees admissibility and consistency of the heuris-
tics. The EH heuristics, computed via MVC, lead to signif-
icant reduction in search time, even beating the competitive
differential heuristic (Ng and Zhang 2002) by a large fac-
tor (Chen, Weinberger, and Chen 2013).

With the development of MVC, EH becomes an attrac-
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tive and scalable choice for computing heuristics. However,
its potential is yet to be fully explored. The objective of
MVU/MVC minimizes the sum of the distance gaps be-
tween all pairs of states, while A∗ search is guided only by
the heuristic distance to the goal state. In many applications,
possible (or likely) goal states form a small subset of the
overall state space. For example, GPS driving assistants are
mostly used to find directions to registered street addresses,
which are a tiny fraction of all possible locations on a map.
This suggests that the EH can be further improved by “tight-
ening” the heuristic distances towards likely goal states.

Moreover, state graphs are typically not isometric to low
dimensional Euclidean spaces, which leads to distance gaps
between the EH heuristic and the true distances—in partic-
ular, for states that are far away from each other. We find
that it is possible to compactly encode the information about
distance gaps, using only a small amount of memory, and
significantly improve the search performance by correcting
heuristic estimates on-the-fly.

Our main contributions include, 1) a goal-oriented graph
embedding framework that optimizes the heuristic distance
to goals while preserving admissibility and consistency, and
2) an in-memory enhancement technique that can be used
online to speed up search. Since the enhancement technique
generates better heuristics that are admissible but no longer
consistent, we employ the B′ search to make sure that the
first solution found is an optimal one.

Background
The A∗ search algorithm finds the shortest path between
two nodes in a graph. Let G = (V,E) denote such a graph
with undirected edges E and nodes V , with |V |=n. Edges
(i, j)∈E are weighted by some cost, or length, dij ≥0 (of-
ten dij = 1 for all i, j). In the worst case, a naive algorithm
needs to exhaustively explore the whole graph which is ex-
pensive. But the search time can be reduced drastically with
a good heuristic, which estimates the shortest distance δij
between two nodes i, j ∈ V in the graph.

Euclidean heuristic (EH) and MVU
Rayner, Bowling, and Sturtevant (2011) propose the Eu-
clidean Heuristic. They advocate to embed the graph with
MVU (Weinberger and Saul 2006) into a Euclidean space as
x1, . . . ,xn∈Rd, such that ‖xi − xj‖2 ≤ δij , where δij de-
notes the graph distance between nodes i, j. The Euclidean
distance h(i, j)=‖xi−xj‖2 can then be used as an efficient
heuristic estimate of the graph distance δij .

The authors prove that A∗ with this heuristic is optimal,
as the heuristic is admissible and consistent. More precisely,
for all nodes i, j, k the following holds:

Admissibility: ‖xi − xk‖2 ≤ δik (1)
Consistency: ‖xi − xj‖2 ≤ δik + ‖xk − xj‖2 (2)

The proof is straightforward. Consistency follows from the
triangular inequality in combination with (1) and admissi-
bility is enforced by the MVU optimization problem im-
plicitly through the stricter constraints h(i, j) ≤ dij for all
(i, j) ∈ E where dij is the edge length.

The closer the gap in the admissibility inequality (1), the
better is the search heuristic. The perfect heuristic would
be the actual shortest path, h(i, j) = δij (with which A∗

could find the exact solution in linear time with respect
to the length of the shortest path). MVU narrows this gap
by maximizing all pairwise distances as its objective, i.e.∑

i,j ‖xi − xj‖2.
As the resulting heuristic is invariant to translation, a cen-

tering constraint,
∑

i xi =0, is added for mathematical con-
venience. This additional constraint reduces the objective to∑

i x
>
i xi. The MVU optimization then becomes:

maximize
x1,...,xn∈Rd

n∑
i=1

x>i xi

subject to ||xi − xj ||2 ≤ dij , ∀(i, j) ∈ E
n∑

i=1

xi = 0

(3)

Although (3) is non-convex, (Weinberger and Saul 2006)
show that with a rank relaxation, this problem can be
rephrased as a convex semi-definite program (SDP) by opti-
mizing over the inner-product matrix K, with kij = x>i xj :

maximize
K

trace(K)

subject to kii − 2kij + kjj ≤ d2ij , ∀(i, j) ∈ E∑
i,j

kij = 0

K � 0.

(4)

The final constraint K�0 ensures positive semi-definiteness
and guarantees that K can be decomposed into Euclidean
vectors x1, . . . ,xn with a straight-forward eigenvector de-
composition. To ensure strictly d−dimensional output, the
final embedding is projected into Rd with principal compo-
nent analysis (PCA). (This is identical to composing the vec-
tors xi out of the d leading eigenvectors of K.) With c con-
straints, the time complexity of MVU becomes O(n3 + c3),
which makes it prohibitive for larger data sets.

Maximum Variance Correction (MVC)
Recently, Chen, Weinberger, and Chen (2013) introduced
MVC to scale up MVU by several orders of magnitude.
It exploits the specific property of the MVU optimization
that all distance constraints are strictly local. As a first
step, MVC uses fast but inaccurate approximation methods
such as isomap (Tenenbaum, Silva, and Langford 2000) or
MVU approximations (Weinberger, Packer, and Saul 2005;
Weinberger et al. 2007) and re-scaling to obtain an initial
feasible solution x̂1, . . . , x̂n to (3). This initial embedding is
feasible but far from optimal. The second step of MVC is to
refine the embedding to maximize its variance, the objective
in (3), while maintaining feasibility.

MVC partitions the graph G = (V,E) into r connected
sub-graphs called patches: Gp =(Vp, Ep), where V = V1 ∪
· · · ∪ Vr and Vp ∩ Vq = {} for all p, q. There are two types
of nodes within a partition Vp. A point i ∈ Vp is an anchor
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point of Vp if there exists an edge (i, j)∈E connecting i to
some node j /∈ Vp outside the patch; Otherwise, xi ∈ Vp is
an inner point of Vp. Let V x

p denote the set of all inner points
and V a

p the set of all anchor points in Vp.
Based on such partitioning, MVU is decomposed into r

independent optimization problems of the following type:

maximize
xi∈V x

p

∑
i∈Vp

x>i xi

subject to
ak∈V a

p

||xi − xj ||2 ≤ dij , ∀(i, j) ∈ Exx
p

||xi − ak||2 ≤ dik, ∀(i, k) ∈ Eax
p

(5)

where Exx
p contains only edges between inner points of

Vp, and Eax
p contains only edges between anchor and in-

ner points. The optimization (5) can be further reduced to an
SDP and the solutions of the r sub-problems can be com-
bined into a globally feasible solution to (3).

The anchor points are fixed in place, which ensures that
no constraint in (5) involves two nodes in different patches.
Consequently, the r sub-problems are completely indepen-
dent and can be solved in parallel with off-the-shelf SDP
solvers (Borchers 1999). Each iteration, different patches
are selected and re-optimized. The algorithm terminates
once the embedding converges. Chen, Weinberger, and Chen
(2013) show that MVC can solve MVU problems of un-
precedented scale and demonstrate that it can even obtain
higher variance solutions than the convex MVU relaxation
(4), as it requires no rank relaxation.

Goal-oriented Euclidean heuristic
We make several assumptions about our problem domain:
The state-space is represented as an undirected graph with n
nodes, which fits into memory. We are asked to solve search
problems repeatedly, with different starting and goal states.
We would like to minimize the time required for these search
problems through better heuristics. The heuristics can be op-
timized offline, where computation time is of no particular
importance, but the storage required to encode the heuristic
must be small (as it might need to be communicated to the
consumers and loaded into memory).

In many A∗ search applications, some states are much
more likely to be considered goal states than others. For ex-
ample, in video games, certain locations (e.g. treasure tar-
gets) are typical goals that a players might want to move
to, whereas most arbitrary positions in the game space are
moved to very infrequently. In the subsequent section we
describe a robot planning domain, where robots can pick up
objects from pre-specified source locations and move them
to pre-specified target locations. Here, there exists a strict
subset of states that could potentially become goal states—
important information that ideally should be incorporated
into the heuristic design. As a final example, GPS naviga-
tion assistants are typically exclusively used to direct users
to registered home addresses—a tiny subset of all possible
locations on the map. Further, a particular user might only
traverse between no more than 100 locations on the world
map. It is fair to assume that she might prefer accelerating

the search for these frequent goals, even at the cost that the
search for infrequent goals takes a little longer.

Let G = (V,E) be the state-space graph. For conve-
nience, we assume that there is a subset of possible goal
states VG ⊆ V . When we know a set of possible goals, we
can improve EH by maximizing the distances to the goals.
Note that during an A∗ search, only those distances to the
particular goal state will be used as the heuristic function
(h), and heuristic distances between two non-goal states are
never used during search. This motivates us to modify the
objective function in the EH/MVU optimization so that it
exclusively maximizes distances to goals. Note that we can
still guarantee admissibility and consistency of EH, since we
keep all local constraints.

The proposed goal-oriented Euclidean heuristic (GOEH)
solves the following:

maximize
x1,...,xn∈Rd

∑
i=1..n,g∈VG

‖xi − xg‖22

subject to ||xi − xj ||2 ≤ dij , ∀(i, j) ∈ E
n∑

i=1

xi = 0

(6)

Due to the centering constraint
∑n

i=1 xi = 0, the objec-
tive in (6) can be further reduced to

maximize
x1,...,xn∈Rd

ng
∑

i=1..n

‖xi‖22 + n
∑
g∈VG

‖xj‖22, (7)

where ng = |VG| is the number of goals.
Following the same rank relaxation as in MVU (Wein-

berger and Saul 2006) and considering (7), (6) can be
rephrased as a convex SDP by optimizing over the inner-
product matrix K, with kij = x>i xj :

maximize
K

ngtrace(K) + n
∑
g∈VG

kgg

subject to kii − 2kij + kjj ≤ d2ij , ∀(i, j) ∈ E∑
i,j

kij = 0

K � 0.

(8)

The final embedding is projected ontoRd by composing the
vectors xi out of the d leading eigenvectors of K.

Note that a general weighted EH model is already dis-
cussed in (Rayner, Bowling, and Sturtevant 2011). However,
GOEH makes the goal-oriented cases explicit.

Figure 1 illustrates the effects of GOEH. We can see that
GOEH “stretches” the embedding so that the goal states are
further away from other states, while the local distance con-
straints still ensure the admissibility and consistency.

The time complexity for solving the SDP in (8) is the
same as the original MVU formulation, which makes it pro-
hibitive for larger data sets. To improve its scalability, we
propose a modified version of MVC for solving (6). We fol-
low the same steps in MVC to generate the initial embedding
and r patches. However, each subproblem in (5) for patch p
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(a) Original EH embedding (b) GOEH with 2 goals (c) GOEH with 12 goals

Figure 1: EH and GOEH embeddings (d = 3) illustrated on a 5-puzzle problem. Goal states are colored in red, others in
green. In this spherical embedding in (a), the Euclidean distance is a bad approximation for distant states. GOEH deforms the
embedding to better reflect the spherical distance from far away states to the goal states—at the cost of shrinkage between
non-goal states.

is changed to:

maximize
xi∈V x

p

∑
i∈Vp,g∈VG

‖xi − xg‖22

subject to
ak∈V a

p

||xi − xj ||2 ≤ dij , ∀(i, j) ∈ Exx
p

||xi − ak||2 ≤ dik, ∀(i, k) ∈ Eax
p ,

(9)

Intuitively, for the subproblem of each patch, we maximize
the distances of its inner nodes to the goals, while still en-
forcing the local distance constraints involving inner nodes
and anchor nodes.

Following a similar approach as in MVC (Chen, Wein-
berger, and Chen 2013), we reformulate (9) as a SDP. Given
a patch Gp = (Vp, EP ) with np = |Vp|, we define a de-
sign matrix X= [x1, . . . ,xn]∈Rd×np , where each column
corresponds to one embedding coordinate of V x

p . Define the
matrix K ∈ R(d+np)×(d+np) as:

K =

(
I X

X> H

)
where H = X>X. (10)

Let the vector ei,j ∈ Rnp be all-zero except the ith element
is 1 and the jth element is −1. Let the vector ei be all-zero
except the ith element is −1. With this notation, and the
Schur Complement Lemma (Boyd and Vandenberghe 2004),
we can relax (9) into a SDP:

max
X,H

∑
i∈V x

p

ngHii −
∑
g∈V 1

p

2x̄>g xi +
∑
g∈V 2

p

(Hgg −Hig)


s.t. (0; eij)

>K(0; eij) ≤ d2ij ∀(i, j) ∈ Exx
p

(ak; ei)
>K(ak; ei) ≤ d2ik ∀(i, k) ∈ Eax

p

K =

(
I X

X> H

)
� 0

(11)
where V 1

p = VG\V x
p , V 2

p = VG ∩ V x
p , Hij are elements

in H, xi is the ith column of X, and x̄g is the coordi-
nate for node g. The optimization (11) is a convex SDP and
can be solved very efficiently for medium sized np. The r

sub-problems are completely independent and can be solved
in parallel, leading to almost perfect parallel speed-up on
multi-core computers or clusters. Like MVC, we reiterate
solving the r subproblems until convergence.

Both the centralized solution in (8) and the partitioned so-
lution in (11) maintain the admissibility and consistency of
EH, because the constraints are kept the same as in (3), and
the proof for admissibility and consistency of EH only re-
lies on these constraints (Rayner, Bowling, and Sturtevant
2011).

Proposition 1. Any feasible solution to (8) or (11) gives
admissible and consistent Euclidean heuristics.

The memory requirement for storing the embedding re-
sults x1, . . . ,xn ∈ Rd is still O(dn), which is reasonable
since d is often a small constant such as 3 or 4.

State heuristic enhancement
We propose a state heuristic enhancement (SHE) technique
to further improve the quality of GOEH. Since GOEH gives
a lower bound of the true distance, we can calculate their
gaps in a preprocessing phase and store the information in
the memory to aid the search.

Suppose we are given a state-space graph G = (V,E)
and a goal set VG ⊆ V . After we use GOEH to generate
a d-dimensional embedding x1, . . . ,xn ∈ Rd, for any i =
1, · · · , n, we store a real number ηi defined as:

ηi = min
j∈VG

{
dij − ‖xi − xj‖2

}
. (12)

During the search towards any goal g, for any state i, its
enhanced heuristic value will be

h(i, g) = ‖xi − xg‖2 + ηi. (13)
Intuitively, ηi stores the minimum gap between the EH

and true distance from state i to any goal state in the goal
set. During a search, we can add ηi to the Euclidean distance
from i to g in the embedded space. Clearly, we have:

Proposition 2. The heuristic function in (13) is admissible.
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However, the heuristic in (13) is no longer guaranteed to
be consistent. A parent node i may receive a much larger
ηi than the ηj received by a child node j, so that h(i, g) >
dij + h(j, g), leading to inconsistency.

As found in (Zahavi et al. 2007), inconsistent but admissi-
ble heuristics can often be preferable to consistent heuristics.
To ensure optimality of the first solution found, we employ
the B′ algorithm proposed in (Mero 1984).

Suppose the current expanded node is i, the rules of the
B′ algorithm to handle inconsistency are:

a) For each successor j of i, if h(j, g) < h(i, g) − dij , set
h(j, g) = h(i, g)− dij

b) Let j be the successor of i with minimum h(j, g) + dij . If
h(i, g) < h(j, g) + dij , set h(i, g) = h(j, g) + dij

It is shown in (Mero 1984) that adding those rules to A∗
search makes it optimal even when the heuristic is inconsis-
tent. They can actually further improve the heuristic since it
propagates improvements on the heuristic values based on
consistency constraints. It is also shown that if the heuristic
is consistent, then these rules will never be invoked and the
B′ search is exactly the same as the A∗ search (Mero 1984).
Experimentally, we found that inconsistency does not occur
often. For many problem instances we tested, the enhanced
heuristics are consistent. For other instances, these B′ rules
are invoked for some states to improve their GOEH values.

We note that there is a tradeoff between space complex-
ity and heuristic accuracy. SHE uses O(n) memory since it
stores one real number per state, which adds only 1/d over-
head to theO(dn) space used by EH and GOEH. As we will
see, this simple SHE technique can drastically improve the
efficiency of optimal search on every domain we test. Note
that EH cannot utilize dimensions that exceed the intrinsic
dimensionality of the state space. This is in contrast to SHE,
which does take advantage of such “extra” dimensions.

Experimental results
We evaluate our algorithms on two well-known benchmark
AI problems and on a real world service robot application.
M -Puzzle Problem (Jones 2008) is a popular benchmark

problem for search algorithms. It consists of a frame of M
tiles and one tile missing. All tiles are numbered and a state
constitutes any order of the tiles. An action is to move a car-
dinal neighbor tile of the empty space into the empty space.
The task is to find a shortest action sequence from a pre-
defined start to a goal state. We evaluate our algorithm on 7-
and 8-puzzle problems (4×2 and 3×3 frames), which contain
20160 and 181440 states, respectively.

Blocks World (Gupta and Nau 1992) is a NP-hard prob-
lem with the goal to build several given stacks out of a set of
blocks. Blocks can be placed on the top of others or on the
ground. Any block that is currently under another block can-
not be moved. We test blocks world problems with 6 blocks
(4,051 states) and 7 blocks (37,633 states), respectively.

Home Service Robot is designed to handle daily indoor
activities and can interact with human. In the Home Service
Robot Competition at the RoboCup (http://robocup.rwth-
aachen.de/athomewiki/index.php/Main Page), there are a
service robot, human, small objects that can be picked up

and moved by the robot, and some big objects that cannot
be moved. A typical task is to ask the robot to pick up a
small object and bring it to the human. In this problem, each
state describes different variables, such as the locations of
the robot, human and small objects. There are a lot of in-
termediate states that the robot never takes as the goal. The
robot can store the precomputed GOEH and SHE informa-
tion in memory and use it to solve various daily tasks online.

Goal sets. We design three kinds of goal settings for our
datasets. For M -puzzles, we let the goal set include all the
states where the first three tiles are blank, tile 1 and tile
2, respectively. In this case, all goal states are distributed
uniformly on the surface of the embedded sphere (see Fig-
ure 1c). For blocks world problems, we randomly pick a
state and add more states in its vicinity to the goal set. For
the home service robot application, the goal states are built-
in goals for completing specific tasks from the competition.
In this way, we evaluate our algorithms on the scenarios of
distributed goals, clustered goals, and real-world goals, lead-
ing to a comprehensive assessment.

Experimental setup. We use MVC to learn GOEH and
use Isomap (Tenenbaum, Silva, and Langford 2000) to ini-
tialize MVC. For datasets of a size greater than 8K, we set
8K landmarks for Isomap. For MVC we use a patch size of
m= 500 throughout (for which problem (11) can be solved
in less than 20s). Following (Rayner, Bowling, and Sturte-
vant 2011; Chen, Weinberger, and Chen 2013), we choose a
small embedding dimensionality for saving memory space.
We set the number of embedding dimensions d = 4 for all
experiments, meaning that each heuristic stores 4n real num-
bers. Since SHE requires another array of n numbers, the
embedding dimension is set to d = 3 when SHE is used.
This gives a fair comparison since all algorithms use 4n
space. In our experiments, all MVC or goal-oriented MVC
algorithms are stopped after a maximum of 50 iterations.

We also test the differential heuristic (Ng and Zhang 2002;
Sturtevant et al. 2009) as a baseline. The differential heuris-
tic pre-computes the exact distance from all states to a
few pivot nodes in a set S ⊆ V . We implemented the al-
gorithm to select good pivot nodes in (Sturtevant et al.
2009). The differential heuristic between two states a, b is
maxs∈S |δ(a, s) − δ(b, s)| ≤ δ(a, b). In our experiments,
we set the number of pivot nodes to 4 so that both differen-
tial heuristics and Euclidean heuristics have the same space
complexity of 4n.

Comprehensive evaluation. Figure 2 shows the total ex-
panded nodes of three problems as a function of the optimal
solution length, averaged over 500 start/goal pairs for each
solution length. Each goal is randomly chosen from the goal
set VG. The figures compare the performance of the differ-
ential heuristic (Diff), EH, GOEH, EH combined with SHE
(EH+SHE), and GOEH+SHE. To quantify the performance
improvement, Table 1 shows the speedup of each method
over the differential heuristic, defined as:

Speedup(M) =

∑
l

∑500
p=1 NumExpand(l,p,Diff)∑

l

∑500
p=1 NumExpand(l,p,M)

where NumExpand(l,p,M) is the number of states expanded
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Figure 2: The number of expanded nodes in the optimal search as a function of the optimal solution length. For EH+SHE and
GOEH+SHE, B′ search is used and the re-opened nodes are counted as new expansions.

Problem Diff EH GOEH EH+SHE GOEH+SHE
6-block 1.00 3.83 5.77 5.02 6.26
7-block 1.00 3.02 3.46 15.06 23.30
7-puzzle 1.00 1.40 1.53 2.01 2.08
8-puzzle 1.00 1.25 1.36 3.20 3.18
robot1 1.00 5.09 14.14 17.12 26.83
robot2 1.00 4.63 9.19 14.68 29.28

Table 1: Speedup of various methods as compared to the differen-
tial heuristic.

by algorithm M to solve the pth start/goal pair under solu-
tion length l. From Figure 2 and Table 1, we can see that
each of GOEH and SHE dramatically reduces the number of
expanded states. Combining them gives the most reduction.

Embedding time. Table 2 shows the training time for
each embedding algorithm. Note that for real deployment,
such as GPS systems, MVC only needs to be run once to
obtain the embedding. This offline computing cost is of no
importance – it is the online search speed that matters to end
users. Once such an embedding is loaded into memory, the
online calculation of Euclidean heuristics is very fast. Since
we set d = 4 when SHE is not used and d = 3 when SHE
is used, the training times for the MVC optimization in EH
and EH+SHE are different. The same difference applies to
GOEH and GOEH+SHE. All embeddings were computed
on a desktop with two 8-core Intel(R) Xeon(R) processors
at 2.67 GHz and 128GB of RAM. We implement MVC in
MATLABTM and use CSDP (Borchers 1999) as the SDP
solver. We parallelize each run of MVC on eight cores.

From the last two columns of Table 2, we can observe that
the overhead for computing SHE is negligible compared to
the training time for MVC optimization.

Conclusions and Future Work
In conclusion, we have introduced several substantial im-
provements to the Euclidean Heuristic (Rayner, Bowling,
and Sturtevant 2011). We narrow the gap between heuristic
estimates and true distances through two different means:
1) we optimize the Euclidean embedding to yield especially

Problem n ng EH GOEH EH+SHE GOEH+SHE
6-block 4K 60 9m 10m 9m+1s 9m+1s
7-block 37K 100 56m 62m 51m+9s 60m+9s
7-puzzle 20K 120 40m 49m 40m+6s 45m+7s
8-puzzle 181K 720 7h 11h 6h+3m 10h+3m
robot1 50K 80 5h 6h 4h+15s 6h+15s
robot2 90K 100 7h 10h 7h+33s 9h+32s

Table 2: The total number of states (n), size of goal sets (ng),
and training time for various heuristics on different problems. For
EH+SHE and GOEH+SHE, we also report the additional time for
computing SHE.

accurate distance estimates for the relevant goal states, and
2) we store the remaining approximation gaps in a compact
fashion for online correction during search. The combina-
tion of these two enhancements yields drastic reductions in
search space expansion.

As future work, we would like to investigate automatic
EH re-optimization of problem domains with frequent A∗
applications. If the solver keeps statistics of how often states
are chosen as goals, it can periodically re-optimize the
heuristics to best serve the users’ demands. We will also
study the generalization where we know a prior distribution
of the goal state in the state space and design a new optimiza-
tion objective to incorporate such probability distributions.
Since there are known limits of improving heuristic accu-
racy alone (Helmert and Röger 2008), we will also study the
interaction between GOEH heuristics and other orthogonal
search-space reduction techniques such as (Chen and Yao
2009; Chen, Xu, and Yao 2009; Wolfe and Russell 2011;
Wehrle and Helmert 2012; Alkhazraj et al. 2012).

We believe that, because of its simplicity, elegance and
unmatched accuracy, the goal-oriented Euclidean heuristic,
based on the large-scale MVC solver (Chen, Weinberger,
and Chen 2013), will become a powerful standard heuristic
for optimal search problems in many areas of AI.
Acknowledgements. WC and YC are supported in part
by NSF grants CNS-1017701 and CCF-1215302. KQW is
supported by NIH grant U01 1U01NS073457-01 and NSF
grants 1149882 and 1137211.

178



References
Alkhazraj, Y.; Wehrle, M.; Mattmuller, R.; and Helmert, M.
2012. A stubborn set algorithm for optimal planning. In
Proc. ECAI.
Borchers, B. 1999. Csdp, ac library for semidefinite
programming. Optimization Methods and Software 11(1-
4):613–623.
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization.
New York, NY, USA: Cambridge University Press.
Chen, Y., and Yao, G. 2009. Completeness and Optimality
Preserving Reduction for Planning. In Proc. IJCAI.
Chen, W.; Weinberger, K.; and Chen, Y. 2013. Maximum
variance correction with application to A∗ search. In Proc.
ICML.
Chen, Y.; Xu, Y.; and Yao, G. 2009. Stratified Planning. In
Proc. IJCAI.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: faster and simpler hierarchi-
cal routing in road networks. In Proc. ICEA, 319–333.
Gupta, N., and Nau, D. 1992. On the complexity of blocks-
world planning. Artificial Intelligence 56(2):223–254.
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