
Multi-Cycle Query Caching in Agent Programming

University of Nottingham
Nottingham, UK

nza@cs.nott.ac.uk

Tristan Behrens
Clausthal University of Technology

Clausthal, Germany
behrens@in.tu-clausthal.de

Mehdi Dastani
Utrecht University

Utrecht, The Netherlands
M.M.Dastani@uu.nl

Koen Hindriks
Delft University of Technology

Delft, The Netherlands
K.V.Hindriks@tudelft.nl

Jomi F. Hübner
Federal University of Santa Catarina

Florianópolis, Brazil
jomi@das.ufsc.br

Brian Logan
University of Nottingham

Nottingham, UK
bsl@cs.nott.ac.uk

Hai Nguyen
University of Nottingham

Nottingham, UK
hhn@cs.nott.ac.uk

Marc van Zee
Utrecht University

Utrecht, The Netherlands
marcvanzee@gmail.com

Abstract

In many logic-based BDI agent programming languages, plan
selection involves inferencing over some underlying knowl-
edge representation. While context-sensitive plan selection
facilitates the development of flexible, declarative programs,
the overhead of evaluating repeated queries to the agent’s be-
liefs and goals can result in poor run time performance. In this
paper we present an approach to multi-cycle query caching
for logic-based BDI agent programming languages. We ex-
tend the abstract performance model presented in (Alechina
et al. 2012) to quantify the costs and benefits of caching query
results over multiple deliberation cycles. We also present re-
sults of experiments with prototype implementations of both
single- and multi-cycle caching in three logic-based BDI
agent platforms, which demonstrate that significant perfor-
mance improvements are achievable in practice.

Introduction
Belief-Desire-Intention (BDI) based agent programming
languages facilitate the development of rational agents spec-
ified in terms of beliefs, goals and plans. In the BDI
paradigm, agents select a course of action (a plan) that will
achieve their goals given their beliefs. To select plans, many
logic-based BDI-based agent programming languages rely
on inferencing over some underlying knowledge representa-
tion. While this allows the development of flexible, declar-
ative programs, inferencing triggered by repeated queries to
the agent’s knowledge representation can degrade perfor-
mance. When developing multi-agent applications for large
scale, time critical applications such performance issues are
often a key concern, potentially adversely impacting the
adoption of BDI-based agent programming languages and
platforms as an implementation technology.

In this paper we present an approach to query caching for
agent programming languages. Our approach is motivated

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by the observation that agents repeatedly perform the same
queries against a database of beliefs and goals to select pos-
sible courses of action (Dennis 2012; Alechina et al. 2012).
Caching the results of previous queries (memoization) is
therefore likely to be beneficial. Indeed caching as used
in algorithms such as Rete (Forgy 1982) and TREAT (Mi-
ranker 1987) has been shown to be beneficial in a wide range
of related AI applications, including cognitive agent archi-
tectures, e.g., (Laird, Newell, and Rosenbloom 1987), ex-
pert systems, e.g., (CLIPS 2003), and reasoners, e.g., (Jena
2011). However that work has focused on the propagation of
simple ground facts through a dependency network. There
has also been considerable work on tabling in Prolog, e.g.,
(Swift and Warren 2010). However in many cases, tables are
cleared after each top-level query. In contrast, the key contri-
bution of this paper is to investigate the potential of caching
the results of arbitrary logical queries both within and across
deliberation cycles in improving the performance of agent
programming languages.

We develop and extend the abstract model of the perfor-
mance of a logic-based BDI agent programming language
presented in (Alechina et al. 2012) to handle multi-cycle
caching, defined in terms of the basic query and update oper-
ations that form the interface to the agent’s knowledge rep-
resentation. We present empirical results from experiments
with prototype implementations of single- and multi-cycle
caching in different logic-based BDI agent platforms, which
demonstrate that the predicted performance improvements
are actually achievable in practice.

Queries and Updates
Agents programmed in a logic-based BDI agent program-
ming language repeatedly execute a ‘sense-plan-act’ cycle
(often called a deliberation cycle (Dastani et al. 2003) or
agent reasoning cycle (Bordini, Hubner, and Wooldridge
2007)). The details of the deliberation cycle vary from lan-
guage to language, but in all cases it includes the process-

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

32

Natasha Alechina



ing of events (sense), deciding on what to do next (plan),
and executing one or more selected actions (act). In a logic-
based BDI agent programming language, the plan phase of
the deliberation cycle is implemented by executing the set
of rules comprising the agent’s program. The rule condi-
tions consist of queries to be evaluated against the agent’s
beliefs and goals (e.g., plan triggers in Jason (Bordini, Hub-
ner, and Wooldridge 2007), the heads and guards of prac-
tical reasoning rules in 2APL (Dastani 2008), and mental
state conditions in GOAL (Hindriks 2009)), and the rule ac-
tions consist of actions or plans (sequences of actions) that
may be performed by the agent in a situation where the
rule condition holds. In the act phase, we can distinguish
between two different kinds of actions. Query actions in-
volve queries against the agent’s beliefs and goals and do
not change the agent’s state. Update actions, on the other
hand, are either actions that directly change the agent’s be-
liefs and goals (e.g., ‘mental notes’ in Jason, belief update
actions in 2APL, and mental state updates in GOAL), or ex-
ternal actions that affect the agent’s environment, and which
may indirectly change the agent’s beliefs and goals.

In such languages, the agent’s beliefs and goals are main-
tained using some form of declarative knowledge represen-
tation. From the point of view of the agent’s knowledge rep-
resentation, the three steps in the sense-plan-act cycle can be
mapped onto two kinds of knowledge representation func-
tionality: querying an agent’s beliefs and goals when apply-
ing rules or executing query actions in the agent’s plans; and
updating an agent’s beliefs and goals upon receiving new in-
formation from other agents or the environment (in the sense
phase), or as a result of performing update actions in plans.
The answer returned by a query is determined by the agent’s
current state and hence may be invalidated by an update that
changes the state. It is important to note however, that an up-
date can only result in the same query returning a different
answer at the next deliberation cycle, as updates occur after
all queries at the current cycle have been evaluated. If the
same query is repeated several times at a given deliberation
cycle, caching the results of previous queries (memoization)
may therefore be beneficial.

In previous work, Alechina et al. (2012) analysed query
and update patterns for a variety of typical agent pro-
grams written in the logic-based BDI agent programming
languages Jason (Bordini, Hubner, and Wooldridge 2007),
2APL (Dastani 2008), and GOAL (Hindriks 2009). Their re-
sults showed that for all agent/environment/platform combi-
nations investigated:
• queries are frequently repeated within a single cycle;
• a significant number of queries are repeated at subsequent

cycles; and
• in a single deliberation cycle, an agent performs only a

few (perhaps only one) actions that directly or indirectly
change the state of the agent.

Using data from their experiments, they also developed a
simple model of the costs and benefits of caching the an-
swers to queries within a single cycle, and showed, using
simulations based on query and update traces from their
experiments, that single-cycle caching could be beneficial.

However the extent to which the benefits of single-cycle
caching predicted by their experiments can be achieved in
practice is unclear. Moreover, their analysis did not consider
the costs and benefits of multi-cycle caching.

In the remainder of this paper we extend the analysis of
Alechina et al. in two ways. First we extend their model to
quantify the costs and benefits of multi-cycle caching, i.e., of
caching the answers to queries over multiple cycles. Second
we report the results of experiments with implementations
of both single- and multi-cycle caching in three logic-based
BDI agent programming languages which demonstrate that
the predicted gains of single- and multi-cycle caching are
achievable in practice.

Query Caching
In this section, we extend the single-cycle performance
model presented in (Alechina et al. 2012) to include multi-
cycle caching, and use our extended model to characterise
when the benefits of multi-cycle caching outweigh the costs.

Single-Cycle Caching

We begin by summarising the single-cycle model presented
in (Alechina et al. 2012). The model is based on the notion of
a query-update cycle consisting of two phases: a query phase
and an update phase. The query phase includes all queries
processed by the agent’s knowledge representation in evalu-
ating rule conditions to select a plan or plans, and in execut-
ing the next step of the agent’s plans (e.g., if the next step
of a plan is a belief or goal test action). The update phase
includes all updates to the agent’s knowledge representation
resulting from the execution of the next step of a plan where
this step changes the agent’s state directly (e.g., the gener-
ation of subgoals or the addition or deletion of beliefs and
goals), and updating the agent’s state with new beliefs, goals,
messages or events at the beginning of the next sense-plan-
act cycle. Note that query-update cycles do not necessarily
correspond one-to-one to deliberation cycles. For example,
in Jason and 2APL the action(s) performed at the end of a
deliberation cycle may be internal actions (such as test ac-
tions) that do not update the agent’s beliefs and goals, and in
these languages the query phase may include queries from
several consecutive deliberation cycles. As in (Alechina et
al. 2012) we assume that the query phase occurs first and
the update phase second, but the results are the same if the
order of the phases is reversed.

If the agent performs on average N queries in the query
phase of a query-update cycle, and the average cost of a
query is cqry , then the average total cost of the query phase
is given by N · cqry . In many cases, the same query is per-
formed several times in the same query phase. If the average
number of unique queries performed in a query-update cycle
is K, then on average each query is performed n = N/K
times per cycle. The average total cost of the update phase
of a query-update cycle can be derived similarly. If U is the
average number of updates (i.e., adds and deletes) and cupd
is the average cost of an update, then the average total cost
of the update phase is given by U ·cupd . Combining both the

33



query and update phase costs yields:

N · cqry + U · cupd (1)

The simplest approach to query caching is to add the re-
sults of a query to a cache the first time it is performed in
the query phase of a query-update cycle, and then retrieve
the results the from the cache if the query is reevaluated
in the same query phase. To implement such a cache, the
knowledge representation used by the agent must support
three operations: lookup to lookup entries, put to put en-
tries into the cache, and clear to clear the cache. The ba-
sic approach can be implemented as shown in Algorithm 1
below. As only query results are stored, it is not possible
to detect when cache entries are invalidated, so the cache
needs to be cleared before the query phase in each query-
update cycle by executing the clear(cache) command,
and rebuilt from scratch. Although simple, this approach has
a number of advantages: it requires no information about the
average number of times each unique query is repeated in a
query-update cycle; moreover it requires only a very loose
coupling between the cache and the underlying knowledge
representation.

Algorithm 1 Single-Cycle Cache

% Query Phase
clear(cache)
for each query Qi do

answer ← lookup(Qi, cache)
if answer 6= null then

return answer
else

answer ← query(Qi, beliefbase)
put(Qi, answer, cache)
return answer

end if
end for

If the cache is implemented as a hash table, the insertion
cost cins of an entry and the lookup cost chit of a query
can be assumed to be constant. This results in the following
performance model:

N · chit +K · (cqry + cins) + U · cupd (2)

It follows that whenever

cqry >
N

N −K
· chit +

K

N −K
· cins (3)

it is beneficial to implement a cache. For a hash table imple-
mentation, it is reasonable to assume that cins = chit, and
the above simplifies to

cqry >
N +K

N −K
· chit (4)

That is, the cache increases performance whenever the aver-
age query cost is greater than the average lookup cost times
the ratio of the total number of queries and unique queries
to non-unique queries (for N > K). The larger the average

number of times n a query is performed in a single query-
update cycle, the larger the expected efficiency gains. In the
worst case in which all queries are only performed once in a
cycle, i.e. n = 1, the cache will incur an increase in the cost
which is linear in the number of queries, i.e. N ·(cins+chit).

Multi-Cycle Caching
To exploit the fact that the same queries are performed in
subsequent query phases, we need to introduce a cache that
persists over multiple query-update cycles. The key chal-
lenge here is to check whether cache entries are invalidated
in the update phase. In order to implement this check we
need an operation invalidate that returns those cache
entries that are affected by updates. In essence this is a map-
ping that for each answer for a query in the cache returns
the set of facts that are needed to derive that answer. We
also need a delete operation to remove invalidated cache
entries. The approach can be implemented as shown in Al-
gorithm 2 below and extends (Alechina et al. 2012) with
changes required for the update phase. Note that there is no
need to clear the cache at the beginning of each query phase.

Algorithm 2 Multi-Cycle Cache

% Query Phase
for each query Qi do

answer ← lookup(Qi, cache)
if answer 6= null then

return answer
else

answer ← query(Qi, beliefbase)
put(Qi, answer, cache)
return answer

end if
end for
% Update Phase
queries← ∅
for each update Ui do

update(Ui, beliefbase)
queries← queries ∪ invalidate(Ui, cache)

end for
for each query Qj ∈ queries do

delete(Qj , cache)
end for

Using this model, we can now derive a new performance
model for the average cost of a single query-update cycle for
the multi-cycle cache. As before, let N represent the average
number of queries that are performed in each cycle. By p we
denote the percentage of the N queries that are repeated at
the next cycle and not invalidated by updates. Thus we have
p · N queries that have been performed before and are still
in the cache. The remaining (1− p) ·N queries are the new
queries in each cycle. We assume that the K unique queries
at each cycle are uniformly distributed between the p · N
cached and (1 − p) · N uncached queries. This seems rea-
sonable: N/K is largely determined by the agent’s program,
while p is largely determined by the agent’s environment.
N and K are determined by the plan triggers in the agent’s

34



program, and by queries in it’s currently executing plan(s).
(This holds whether the queries in a plan trigger are evalu-
ated as a single boolean expression or ‘left to right’.) On the
assumption that queries in executing plans are less numerous
than plan trigger queries (there are typically many plan trig-
gers and only a few, or only one, executing plans), then the
queries performed at the current cycle and their results will
only differ from the queries performed at the previous cy-
cle if the agent’s beliefs and goals have changed. In general,
changes in the agent’s beliefs and goals are predominantly
a result of perception of its environment or interaction with
other agents, rather than plan execution, and there is no a
priori reason why the parts of the agent’s program and the
queries evaluated as a result of such changes (previously un-
evaluated queries if query evaluation is left to right, or new
answers to a a previously evaluated query) would have a dif-
ferent ratio of N/K. There is no reason to suppose, for ex-
ample, that N/K would be lower for queries which are new
at this cycle.

The performance model is based on the pseudocode of
Algorithm 2 and consists of two terms. The first term repre-
sents the costs of the query phase:

N · chit + (1− p) ·K · (cqry + cins) (5)
As above cins denotes the cache insertion cost and chit de-
notes the cost of looking up a cache entry. The second term
represents the costs of the update phase:

U · (cupd + cchk) + (1− p) ·K · cdel (6)
where as above U denotes the average number of updates
performed in the update phase. We take the number of cache
removals that need to be performed as a result of cache en-
tries being invalidated by updates to be (1−p) ·K. The cost
of checking whether an update invalidates cache entries is
represented by cchk and the cost of deleting a cache entry is
represented by cdel. The average total cost then results from
adding the query and update costs.

If we denote the total number of cached queries by R =
N − ((1− p) ·K) and assume that cins = chit (as above) ,
it follows that whenever

cqry >
N + (1− p) ·K

R
·chit+

U

R
·cchk+

(1− p) ·K
R

·cdel
(7)

it is beneficial to implement a multi-cycle cache. It is instruc-
tive to compare how the multi-cycle cache compares with
the single-cycle cache. The multi-cycle cache outperforms
the single- cycle cache whenever:

p ·K · cqry > U · cchk + (1− p) ·K · cdel (8)
i.e., whenever the query costs associated with repeating p·K
unique queries are higher than the costs associated with
checking whether updates invalidate cache entries and delet-
ing those entries. Since the costs of deleting a cache entry
are negligible compared to checking whether a cache entry
is invalidated, the key factor is the cost of checking for inval-
idated cache entries. Given that K � U, this means that the
multi-cycle cache outperforms the single cycle cache when-
ever the percentage p of repeated queries is sufficiently high.
As it is relatively easy to monitor p, it is also possible to
switch between single-cycle and multi-cycle caching at run-
time.

Experimental Evaluation
To determine whether the potential performance gains of
single- and multi-cycle caching are achievable in practice,
we performed experiments with single- and multi-cycle
caching in a number of different agent programming plat-
forms, and evaluated the average cost of queries and updates
with and without caching for a range of different agent pro-
grams. The agent platforms used, Jason (Bordini, Hubner,
and Wooldridge 2007), 2APL (Dastani 2008), and GOAL
(Hindriks 2009), differ significantly in architecture and im-
plementation, and the caching implementations were done
independently by developers familiar with the platform. The
consistent improvements in performance we report below
are therefore likely to hold for caching implementations in
other logic-based BDI agent languages.

We implemented the single-cycle caching mechanism
(Algorithm 1) in each of the three platforms. Due to time
limitations, multi-cycle caching (Algorithm 2) was imple-
mented only for 2APL and GOAL. To determine the perfor-
mance of the caching implementations, we performed ex-
periments with five existing agent programs/environments
(Blocks World, Grid World, Elevator Sim, Multi-Agent Pro-
gramming Contest, and Wumpus World), and compared the
average time to perform a query and an update both with
and without caching for each platform. We also report the
average percentage of queries that resulted in cache hits.1
The agent programs were chosen as representative of ‘typi-
cal’ agent applications, and span a wide range of task envi-
ronments (from observable and static to partially observable
and real-time), program complexity (measured in lines of
code), and programming styles. It is important to stress that,
to avoid any bias due to agent design in our results, the pro-
grams were not written specially for the experiments. While
our selection was therefore necessarily constrained by the
availability of pre-existing code (in particular a version of
each program was not available for all platforms), we believe
our results are representative of the query and update perfor-
mance of a broad range of agent programs ‘in the wild’.

The Blocks World is a classic environment in which
blocks must be moved from an initial position to a goal state
by means of a gripper. The Blocks World is a single agent,
discrete, fully observable environment where the agent has
full control. The Grid World is a single agent, discrete, par-
tially observable environment in which bombs must be re-
moved by bringing them to a trash bin that is located some-
where on the grid. The Wumpus World is a discrete, partially
observable environment in which a single agent must ex-
plore a grid to locate gold while avoiding being eaten by the
Wumpus or trapped in a pit. Elevator Sim is a dynamic en-
vironment that simulates one or more elevators in a building
with a variable number of floors (we used 25 floors) where
the goal is to transport a pre-set number of people between
floors. Each elevator is controlled by an agent, and the sim-
ulator controls people that randomly appear, push call but-

1Although for comparison of agent platforms benchmarks are
arguably necessary, our aim here is not to determine the absolute or
relative performance of each platform, but to determine the benefits
of caching for each platform.

35



tons, floor buttons, and enter and leave elevators upon ar-
rival at floors. The environment is partially observable as
elevators cannot see which buttons inside other elevators are
pressed nor where these other elevators are located. In the
2006 Multi-Agent Programming Contest scenario (MAPC
2006) (Dastani, Dix, and Novak 2006) teams of 5 agents
explore a grid-like terrain to find gold and transport it to
a depot. In the 2011 and 2012 Multi-Agent Programming
Contest scenario (MAPC 2011, MAPC 2012) (Behrens et al.
2011) teams of 10 agents explore ‘Mars’ and occupy valu-
able zones. Both MAPC environments are discrete, partially
observable, real-time multi-agent environments, in which
agent actions are not guaranteed to have their intended ef-
fect. For some of the environments we also varied the size
of the problem instance the agent(s) have to deal with. In the
Blocks World the number of blocks determines the problem
size, in the Grid World the number of bombs determines the
size of the problem, and in the Elevator Sim we varied the
number of people to be moved between floors.

To perform the experiments, we extended the logging
functionality of each agent platform to capture all queries
and updates delegated to the platform’s knowledge repre-
sentation, and the CPU time (in microseconds) required to
perform each query and update. In the case of 2APL and
GOAL, which use third party Prolog engines, we recorded
the cost of each query or update delegated to the respec-
tive Prolog engine. In the case of Jason, the instrumentation
was less straightforward, and involved modifying the Jason
belief base to record the CPU time required to query and
update percepts, messages, knowledge and beliefs. The time
required to process other types of Jason events, e.g., related
to the intentions or plans of an agent, was not recorded. All
platforms implement update using basic add and delete op-
erations on facts, and the belief queries as well as the belief
updates that occur in the agent programs are static in the
sense that they are not modified at run-time.

The logged values were used to compute the average cost
of queries cqry and updates cupd for each agent/environmen-
t/platform combination. To focus on the parameters in the
performance model, we have normalised the average times
by taking the lowest value of cqry and cupd for each plat-
form as the unit value (1) for that platform: all other values
are reported as multiples of the unit value. This has the ad-
vantage of abstracting from the particulars of machines and
underlying knowledge representation used by different plat-
forms and gives a more uniform presentation of the results.
We also report the percentage of the total number of queries
that resulted in cache hits (denoted by h in the tables below).

The Jason agents were run on a 2 GHz Intel Core Duo,
2 GB 667 MHz DDR2 SDRAM and the GOAL agents on a
2.66 GHz Intel Core i7, 4GB 1067 MHz DDR3, both run-
ning OSX 10.6 and Java 1.6. The 2APL agents were run on a
2.4GHz Intel Core i5, 6 GB 667 MHz DDR3, running Win-
dows 7 and Java 1.6. We report on the results obtained for
each platform below.

Jason The single-cycle caching mechanism given in Al-
gorithm 1 was implemented in Jason with one minor dif-
ference: the cache is used only for queries whose answer(s)

depend on rules (clauses). For queries that are simple be-
liefs, the cache is skipped since the Jason belief base already
stores such basic beliefs directly in a hash table. As is to be
expected, the number of cache hits is therefore lower, and
this is apparent when comparing the h values reported in
Table 1 with those for Table 2 and Table 3. In general, the
percentages for Jason are significantly lower than for either
2APL or GOAL.

Even so, in general, the results for Jason show that using
a cache reduces the average query time. Gains of up to 20%
were found, for example, for the Blocks World domain. In
this domain, queries are relatively expensive compared to
those performed in the MAPC environments. The speedup
is therefore more significant in the Blocks World domain
than in the MAPC domain. Given that multi-cycle caching
generally increases the number of cache hits (cf. Tables 2
and 3), we would expect significant performance gains of
multi-cycle caching for Jason.

Problem Caching h cqry cupd
Blocksworld 10 No 0% 132.40 225.70
Blocksworld 10 Single-cycle 18% 124.58 225.70
Blocksworld 50 No 0% 180.45 527.37
Blocksworld 50 Single-cycle 37% 170.39 527.37
Blocksworld 100 No 0% 172.63 441.90
Blocksworld 100 Single-cycle 41% 143.58 441.90
MAPC 2006 No 0% 1.21 41.90
MAPC 2006 Single-cycle 7% 1.00 41.90
MAPC 2012 No 0% 3.45 541.34
MAPC 2012 Single-cycle 7% 3.45 541.34

Table 1: Comparison of different caching models - Jason

2APL In the case of 2APL, multi-cycle caching has been
incorporated in the Java implementation of the 2APL in-
terpreter to allow most of the computation required for the
invalidate operation to be performed at compile-time,
rather than at run-time.2 The caching implementation ex-
ploits the fact that belief queries and updates are static in
a 2APL program. First, the set of belief queries that may be
affected by a belief update action are associated with that be-
lief update. Because the rules (clauses) in the belief base are
static as well, we can compute at compile-time which belief
queries may be affected by a belief update action. This set
of queries is computed by constructing a query dependency
graph that is derived from the rules. Using this graph the
atoms that a query depends on can be determined. When a
belief update action is executed in the update phase, all be-
lief queries that depend on the updated atom(s) are removed
from the cache. At each query phase, all belief queries that
are not present in the cache are queried on the belief base,
while the others are retrieved from the cache. Single-cycle
caching is implemented by clearing the cache at the begin-
ning of each query-update cycle.

The results of experiments with single- and multi-cycle
caching in 2APL are shown in Table 2. In all cases it is
clear that using caching decreases execution time. While it

2Belief caching is part of the latest 2APL release available at
http://apapl.sourceforge.net.

36



does not seem to matter much whether we use single-cycle
caching or multi-cycle caching in the Grid World applica-
tion, in the Wumpus World this is not the case. The num-
ber of cache hits increases significantly with multi-cycle
caching, and the execution time decreases as well. This sug-
gests that both types of caching can improve efficiency of
2APL applications significantly.

Problem Caching h cqry cupd
Gridworld 10 No 0% 3.61 2.61
Gridworld 10 Single-cycle 51% 2.82 5.75
Gridworld 10 Multi-cycle 52% 2.93 1.92
Gridworld 50 No 0% 1.81 1.58
Gridworld 50 Single-cycle 51% 1.51 2.97
Gridworld 50 Multi-cycle 52% 1.35 3.12
Gridworld 100 No 0% 1.41 1.63
Gridworld 100 Single-cycle 51% 1.21 1.46
Gridworld 100 Multi-cycle 52% 1.00 1.75
Wumpus Small No 0% 34.64 2.13
Wumpus Small Single-cycle 54% 35.99 3.55
Wumpus Small Multi-cycle 80% 14.13 3.91
Wumpus Large No 0% 82.41 2.64
Wumpus Large Single-cycle 57% 52.56 2.72
Wumpus Large Multi-cycle 84% 41.62 3.04

Table 2: Comparison of different caching models - 2APL

GOAL For GOAL, both single- and multi-cycle caching
were implemented. The implementation of single-cycle
caching is straightforward, and follows closely the pseudo-
code in Algorithm 1. In what follows, we focus on the im-
plementation of multi-cycle caching.

The multi-cycle caching implementation extends the
single-cycle implementation as in Algorithm 2. To im-
plement the invalidate operation, we used a meta-
interpreter written in Prolog that, in addition to the answer
to a query, returns the ground facts used to answer the
query. Calls to SWI-Prolog are replaced by calls to the meta-
interpreter. The answer to each query is stored in a hash ta-
ble queryCache. Each ground fact f returned by the meta-
interpreter is also stored together with the set of queries it
may invalidate, invalidates(f) in a hash table. In later query-
update cycles, if an update (insertion or deletion) of f is
performed then, for each query in invalidates(f), its cached
result is removed from queryCache, and f is also removed
from invalidates. Note that, in contrast to the 2APL imple-
mentation, computation of dependency information is per-
formed at run-time rather than compile-time.

Although experiments show that the average query times
for calls to the meta-interpreter are about 1.5 to 2 times
higher than normal queries, as we clear the cache less often,
the number of calls to SWI-Prolog decreases resulting in a
reduction in average query times compared to single-cycle
caching. Table 3 shows the comparison between different
caching models in GOAL.

Related Work
There is almost no work that directly relates to our study
of the performance of knowledge representation and reason-
ing capabilities incorporated into agent programming. As

Problem Caching h cqry cupd
Blocksworld 10 No 0% 18.76 18.35
Blocksworld 10 Single-cycle 27% 15.37 16.17
Blocksworld 10 Multi-cycle 36% 15.24 14.10
Blocksworld 50 No 0% 14.65 15.64
Blocksworld 50 Single-cycle 32% 13.54 15.22
Blocksworld 50 Multi-cycle 51% 11.08 13.01
Blocksworld 100 No 0% 12.92 14.51
Blocksworld 100 Single-cycle 31% 11.51 14.98
Blocksworld 100 Multi-cycle 54% 10.53 13.21
Elevator 10 No 0% 6.67 6.92
Elevator 10 Single-cycle 83% 1.18 7.15
Elevator 10 Multi-cycle 90% 1.00 7.02
Elevator 50 No 0% 6.90 6.69
Elevator 50 Single-cycle 65% 2.57 6.97
Elevator 50 Multi-cycle 79% 2.02 6.21
Elevator 100 No 0% 7.05 6.66
Elevator 100 Single-cycle 65% 2.65 6.94
Elevator 100 Multi-cycle 77% 2.13 6.34

Table 3: Comparison of different caching models - GOAL

far as we know, Alechina et al. (2012) are the first to in-
vestigate patterns in the queries and updates performed by
agent programs. We extend this work by presenting a multi-
cycle model and empirical analysis of this model. Dennis
(2012) has observed that agent programs appear to spend
most of their time in evaluating conditions for adopting
plans; however the solution proposed was to adopt a plan in-
dexing scheme, rather than to optimise query evaluation in
general. Thielscher (2002) has studied the performance of
the FLUX and GOLOG agent programming languages, and
another GOLOG-style language, Indi-GOLOG, implements
caching (De Giacomo et al. 2009). However GOLOG-like
languages do not implement a deliberation cycle based on
the BDI paradigm.

Performance issues of BDI agents have been studied in
various other contexts. To mention just a few examples:
Koch and Dignum (2010) propose an extended deliberation
cycle for BDI agents that takes advantage of environmental
events and Singh et al. (2011) propose the incorporation of
learning techniques into BDI agents to improve their perfor-
mance in dynamic environments. The focus of these papers
is on integrating additional techniques into an agent’s archi-
tecture rather than single- or multi-cycle query caching.

Conclusion
We extended the abstract performance model of the query
and update operations that define the interface to a logic-
based BDI agent’s underlying knowledge representation
presented by Alechina et al. (2012) to quantify the costs and
benefits of multi-cycle caching. To the best of our knowl-
edge, our study is the first to present and analyse a model for
caching over multiple deliberation cycles in agent program-
ming languages. We also showed how the interface to the un-
derlying knowledge representation of an agent platform can
be modified to incorporate multi-cycle caching, and anal-
ysed the performance of both single and multi-cycle caching
using a variety of different agent programs implemented us-
ing three different logic-based BDI agent programming lan-

37



guages. Although based on a relatively small number of ex-
ample programs, our experimental results indicate that both
a single and a multi-cycle caching techniques have the po-
tential to substantially improve the performance of logic-
based BDI agent programming languages across a range of
application domains.

Our focus has been on the knowledge representation and
reasoning capabilities of agents. In logic-based agent plat-
forms these capabilities account for a large part of the per-
formance of an agent. Future work is needed to build a per-
formance model that accounts for all aspects in an agent’s
deliberation cycle and to put our work into perspective rela-
tive to this bigger picture.

References
Alechina, N.; Behrens, T.; Hindriks, K.; and Logan, B. 2012.
Query caching in agent programming languages. In Dastani,
M.; Logan, B.; and Hübner, J. F., eds., Proceedings of the
Tenth International Workshop on Programming Multi-Agent
Systems (ProMAS 2012), 117–131.
Behrens, T. M.; Dix, J.; Hübner, J.; and Köster, M. 2011.
Special issue: The multi-agent programming contest: Envi-
ronment interface and contestants in 2010, editorial. Annals
of Mathematics and Artificial Intelligence 61(4):257–260.
Bordini, R. H.; Hubner, J. F.; and Wooldridge, M. 2007. Pro-
gramming Multi-Agent Systems in AgentSpeak using Jason.
Wiley.
Software Technology Branch, Lyndon B. Johnson Space
Center, Houston. 2003. CLIPS Reference Manual: Version
6.21.
Dastani, M.; de Boer, F.; Dignum, F.; and Meyer, J.-J. 2003.
Programming agent deliberation: an approach illustrated us-
ing the 3APL language. In Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS’03), 97–104. New York, NY, USA:
ACM Press.
Dastani, M.; Dix, J.; and Novak, P. 2006. The first contest on
multi-agent systems based on computational logic. In Toni,
F., and Torroni, P., eds., Computational Logic in Multi-Agent
Systems, 6th International Workshop, CLIMA VI, London,
UK, June 27-29, 2005, Revised Selected and Invited Papers,
373–384. Springer.
Dastani, M. 2008. 2APL: a practical agent programming
language. Journal of Autonomous Agents and Multi-Agent
Systems 16(3):214–248.
De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sar-
dina, S. 2009. IndiGolog: A high-level programming lan-
guage for embedded reasoning agents. In Bordini, R. H.;
Dastani, M.; Dix, J.; and Fallah-Seghrouchni, A. E., eds.,
Multi-Agent Programming: Languages, Platforms and Ap-
plications. Springer. 31–72.
Dennis, L. 2012. Plan indexing for state-based plans. In
Sakama, C.; Sardiña, S.; Vasconcelos, W.; and Winikoff,
M., eds., Declarative Agent Languages and Technologies IX
- 9th International Workshop, DALT 2011, Taipei, Taiwan,
May 3, 2011, Revised Selected and Invited Papers, volume
7169 of LNCS, 3–15. Springer.

Forgy, C. 1982. Rete: a fast algorithm for the many pattern/-
many object pattern match problem. Artificial Intelligence
19(1):17–37.
Hindriks, K. V. 2009. Programming rational agents in
goal. In El Fallah Seghrouchni, A.; Dix, J.; Dastani, M.; and
Bordini, R. H., eds., Multi-Agent Programming: Languages,
Tools and Applications. Springer US. 119–157.
Jena. 2011. http://jena.sourceforge.net/.
Koch, F., and Dignum, F. 2010. Enhanced deliberation in
BDI-modelled agents. In Demazeau, Y.; Dignum, F.; Cor-
chado, J.; and Bajo-Perez, J., eds., Advances in Practical Ap-
plications of Agents and Multiagent Systems (PAAMS 2010),
volume 70 of Advances in Soft Computing, 59–68. Springer.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
SOAR: An architecture for general intelligence. Artificial
Intelligence 33:1–64.
Miranker, D. P. 1987. TREAT: A better match algorithm
for AI production systems. In Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence (AAAI’87), 42–
47. AAAI Press.
Singh, D.; Sardina, S.; Padgham, L.; and James, G. 2011.
Integrating Learning into a BDI Agent for Environments
with Changing Dynamics. In Walsh, T., ed., Proceedings
of the 22nd International Joint Conference on Artificial In-
telligence (IJCAI 2011), 2525–2530.
Swift, T., and Warren, D. S. 2010. XSB: Extending Prolog
with tabled logic programming. CoRR abs/1012.5123.
Thielscher, M. 2002. Pushing the envelope: Programming
reasoning agents. In AAAI Workshop Technical Report WS-
02-05: Cognitive Robotics. AAAI Press.

38




