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Abstract

Many negotiations in the real world are characterized by
incomplete information, and participants’ success depends
on their ability to reveal information in a way that facili-
tates agreement without compromising the individual gains of
agents. This paper presents a novel agent design for repeated
negotiation in incomplete information settings that learns to
reveal information strategically during the negotiation pro-
cess. The agent used classical machine learning techniques
to predict how people make and respond to offers during the
negotiation, how they reveal information and their response to
potential revelation actions by the agent. The agent was eval-
uated empirically in an extensive empirical study spanning
hundreds of human subjects. Results show that the agent was
able to outperform people. In particular, it learned (1) to make
offers that were beneficial to people while not compromis-
ing its own benefit; (2) to incrementally reveal information to
people in a way that increased its expected performance. The
approach generalizes to new settings without the need to ac-
quire additional data. This work demonstrates the efficacy of
combining machine learning with opponent modeling tech-
niques towards the design of computer agents for negotiating
with people in settings of incomplete information.

Introduction
In many negotiation settings, participants lack information
about each other’s resources and preferences, often hinder-
ing their ability to reach beneficial agreements (Sarne and
Kraus 2003; Sarne and Grosz 2007). In such cases, par-
ticipants can choose whether and how much information to
reveal about their resources to others. This paper presents
a novel agent design for repeated negotiation with people
in settings where participants can choose to reveal informa-
tion while engaging in a finite sequences of alternating ne-
gotiation rounds. For example, consider two agents repre-
senting airlines that negotiate over a codeshare agreement
for sharing seating allocations on their flights. This pro-
cess comprises separate agreements about how many seats
to allocate in different flights. For each of these agreements,
revealing private information can improve the outcomes of
participants. One of the airlines may disclose that a flight
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is sparsely booked, which can help the other airline by ac-
commodating their over-booking fares for the same destina-
tions. However, revealing information may be costly, in that
the other airline can demand a lower price for the sparsely
booked seats.

Our study is conducted in an experimental framework
called a “revelation game” in which people and agents re-
peatedly negotiate over scarce resources, there is incomplete
information about their resources and preferences and they
are given the opportunity to reveal this information in a con-
trolled fashion during the negotiation. Although revelation
games are akin to many real world negotiation scenarios,
constructing effective agent strategies for such settings is
challenging (Peled, Kraus, and Gal 2011).

The proposed agent design explicitly reasons about the
social factors that affect people’s decisions whether to reveal
private information, as well as the effects of people’s reve-
lation decisions on their negotiation behavior. It combines
a prediction model of people’s behavior in the game with a
decision-theoretic approach to make optimal decisions. The
parameters of this model were estimated from data consist-
ing of human play. The agent was evaluated in an extensive
empirical study that spanned hundreds of subjects. The re-
sults showed that the agent was able to outperform human
players. In particular, it learned (1) to make offers that were
significantly more beneficial to people than the offers made
by other people while not compromising its own benefit, and
increased the social welfare of both participants as compared
to people; (2) to incrementally reveal information to people
in a way that increased its expected performance. Moreover,
the agent had a positive effect on people’s strategy, in that
people playing the agent performed significantly higher than
people playing other people. Lastly, we show how to gener-
alize the agent-design to different settings that varied rules
and situational parameters of the game without the need to
accumulate new data.

The contributions of this paper are threefold. It presents
a formal model of how people reveal private information in
repeated negotiation settings. Second, it shows how to in-
corporate this model into a decision-making paradigm for an
agent design that is able to incrementally reveal information.
Lastly, it demonstrates the efficacy of this model empirically,
including its ability to generalize to new settings.

Our work is related to studies in AI that use opponent
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modeling to build agents for repeated negotiation in het-
erogeneous human-computer settings. These include the
KBAgent that made offers with multiple attributes in set-
tings which supported opting out options, and partial agree-
ments (Oshrat, Lin, and Kraus 2009). It used density es-
timation to model people’s behavior (following the method
proposed by Coehoorn and Jennings for modeling compu-
tational agents (2004)) and approximated people’s reason-
ing by assuming that people would accept offers from com-
puters that are similar to offers they make to each other.
Other works employed Bayesian techniques (Hindriks and
Tykhonov 2008) or approximation heuristics (Jonker, Robu,
and Treur 2007) to estimate people’s preferences in negoti-
ation and integrated this model with a pre-defined conces-
sion strategy to make offers. Bench-Capon (2009) provide
an argumentation based mechanism for explaining human
behavior in the ultimatum game. We extend these works
by considering more challenging settings with incomplete
information and large strategy spaces, as well as explicitly
modeling the effect of revelation of information on people’s
negotiation behavior in the agent-design.

Peled et al. (2011) present an agent-design that makes
revelation decisions in negotiation settings that include peo-
ple and computer agents. Our work differs in several ways.
First, their model only supports all-or-nothing revelation de-
cisions, while our model allows agents to reveal their re-
sources incrementally, more like the real world. We show
later that this was a key feature of our agent’s strategy. Sec-
ond, their setting was significantly more constrained than
ours, consisting of a single negotiation and revelation round.
Our game allowed several consecutive rounds of negotia-
tion and revelation, making for an exponentially larger state
space. Third, they tested the model on the same games for
which they collected data, while our approach is shown to
generalize to new settings (for which prior data was not
available). Lastly, they used pre-defined rules (tit-for-tat)
to predict people’s behavior, while we used a principled ma-
chine learning approach.

Repeated Revelation Games
We designed a game in which players need to negotiate over
resources in an incomplete information setting and make re-
peated decisions about whether to reveal salient information
to their partners. This “repeated revelation game” was im-
plemented using Colored Trails (CT), an established test-bed
for studying task-settings that involve people and computers
making decisions together (Gal et al. 2010; Haim et al. 2012;
Gal et al. 2011). The game is played on a board of colored
squares. One square on the board is designated as the play-
ers’ goal. The goal of the game is to reach the goal square.
To move to an adjacent square requires surrendering a chip
in the color of that square. Each player starts the game with
a set of 16 chips. The allocation of the chips was chosen
such that no player can reach the goal using only his chips,
but there are some chip exchanges that let both players reach
the goal. Players have full view of the board, but cannot ob-
serve the other player’s chips. An example of a CT revela-
tion game is shown in Figure 1.

Each round in our CT game progresses in three phases

Figure 1: A snapshot showing the revelation game from the
point of view of a person (the “M” player) playing against a
computer agent (the “O” player).

with associated time limits. In the first “revelation” phase,
both players can choose to reveal a subset of their chips.
This decision is performed simultaneously by the players,
and the chips are only revealed at the end of the phase.1
In the “proposal phase”, one of the players can offer to ex-
change a (possibly empty) subset of its chips with a (pos-
sibly empty) subset of the chips of the other player. The
proposer cannot include chips that it did not reveal in the
proposal, but can ask for any set of chips from the other
player. The responder cannot accept proposals that require
it to give more chips than it has. Following an accepted
proposal, the chips are transferred automatically. If the re-
sponder rejects the proposal (or no offer was received fol-
lowing a three minute deadline), it will be able to make a
counter-proposal. In the “movement phase”, the players can
move towards the goal using the chips they have. In the next
round the players’ roles are switched: the first proposer in
the previous round becomes the responder for the first pro-
posal. The game ends after both players reach the goal, or
after 5 rounds.2 At the end of the game, both players are
moved towards the goal according to their chips, and their
score is computed as follows: 60 points bonus for reaching
the goal; 5 points for each chip left in a player’s possession
and 10 points deducted for any square in the path between
the players’ final position and the goal-square. This path is
computed by the Manhattan distance. Note that players’ mo-
tivation in the game is to maximize their score, not to beat
the other participants.

There are several advantages towards using the revelation
game described above to study people’s revelation strategies.
First, the game is challenging to play. Players have limited
information about each other’s resources. There is a tradeoff
between revealing information to the other party to facilitate
the negotiation, and the other party exploiting this informa-
tion. Second, it offers a rich space of revelation strategies
for players, who can choose to reveal information incremen-
tally, or reveal all their information on the onset of them
game. Lastly, it is akin to the real world in that it combines
revelation with negotiation. For example, the airline code-

1The revelation decision is truthful, that is, players cannot re-
veal chips that are not in their possession.

2This was not arbitrary. The majority of games played by peo-
ple ended before the 5-round deadline.

790



sharing agreement from the introduction can be modeled as
a revelation game.

The MERN Agent
The agent designed for the study, termed MERN (the Max-
imal Expectation-based Revelation and Negotiation agent)
developed uses a decision-theoretic approach to negotiate in
revelation games. It is based on a model of how humans
make decisions in the game. We begin by making the fol-
lowing definitions. The pair ψn =

〈
ψna , ψ

n
p

〉
contains the

revelation decision ψna for the agent and ψnp for the person
at round n. Let Cn = 〈Cna , Cnp 〉 represent the set of chips
in the possession of MERN and the person at round n. A
proposal ωn = 〈cna , cnp 〉 includes chips cna ⊆ Cna sent by
the agent and chips cnp ⊆ Cnp sent by the person at round
n. A player can only propose to send chips that it already
revealed. For the agent, this means that cna ⊆

⋃n
i=1 ψ

i
a (and

similarly for the person). The set Ωna (hn) includes all pos-
sible proposals for the agent in round n (and similarly for
the person). Let hn denote the history of the game up to
round n, where h0 contains the board layout and the players
location on the board on the onset of the game.

MERN makes decisions in the game by using Expectimax
search. Due to the large action space and the exponential
increase in the size of the tree, spanning the entire game is
not feasible. Thus, a key challenge to designing strategies
for MERN is how to assign values to intermediate states in
the game. To address this challenge MERN uses a heuristic
value function to assign utilities to intermediate rounds of
the game. The value function is an estimate of the score that
MERN will receive at the end of the game. Specifically, for
any non-terminal round k in the game, the function fa(hk)
returns the estimate of MERN’s score in the game.3

The results of this process are as follows. If round n is
the end of the game, then the utility for MERN is simply
its score in the game as described in the previous section.
For intermediate nodes (n = k), the utility for any deci-
sion by MERN is computed using the estimator fa(hn). We
do assume the existence of stochastic models for predicting
people’s behavior at a given round n in the game. Specifi-
cally, there exist probability distributions of how people re-
veal chips, respond to proposals from MERN, and make pro-
posals. We will show how we derive these models from data
in the next section.

Suppose that MERN is making the decision to reveal
chips in round n. The expected utility to MERN from re-
vealing ψna chips, denoted EUa

(
ψna | hn−1

)
depends on its

model p
(
ψnp | hn−1

)
of how people reveal chips in round n.

EUa
(
ψna | hn−1

)
=

∑
ψn

p∈Ψn
p

p
(
ψnp | hn−1

)
·

max
ωn

a∈Ωn
a

EUa
(
ωna | ψn, hn−1

) (1)

where the pair ψn = 〈ψna , ψnp 〉 contains the revelation de-
cision for both players and EUa

(
ωna | ψn, hn−1

)
is the ex-

pected utility for the agent for making the proposal ωna given
3We detail how to compute this function in the next section.

the revelation decisions and the history. The set Ψn
a (hn) in-

cludes all the chips that MERN can choose to reveal at round
n. This set includes all possible subsets of the intersection
between the chips in the possession of MERN in round n
and the chips it already revealed until this round. (we omit
the history hn when it is clear from context). Similarly, Ψn

p
is the set of all the chips that the person can choose to reveal
at round n.

Suppose that MERN is making the proposal ωna at round
n. Its utility from the proposal depends on its model
p
(
rnp | ψn, ωna , hn−1

)
of how people respond to proposals

in the game. If ωna is accepted, then the game proceeds to
round n + 1, in which MERN will make the decision ψn+1

a
of how many chips to reveal. If ωna is rejected, then the per-
son will make a counter-proposal in round n. In this case,
MERN’s utility depends on its model
p
(
ωnp | ψn, ωna , rnp = F, hn−1

)
of how people make propos-

als in the game, and choosing the best response to the pro-
posal ωnp . Formally, we write

EUa
(
ωna | ψn, hn−1

)
= p

(
rnp = T | ψn, ωna , hn−1

)
·

max
ψn+1

a ∈Ψn+1
a

EUa
(
ψn+1
a | hn

)
+ p

(
rnp = F | ψn, ωna , hn−1

)
·∑

ωn
p∈Ωn

p

p
(
ωnp | ψn, ωna , rnp = F, hn−1

)
·

max
rna∈{T,F}

EUa
(
rna | ψn, ωna , rnp = F, ωnp , h

n−1
)

(2)

where EUa
(
ψn+1
a | hn

)
is the utility of MERN

for revealing ψn+1
a chips in round n + 1, the

history hn is hn−1 ∪
{
ψn, ωna , r

n
p = T

}
and

EUa
(
rna | ψn, ωna , rnp = F, ωnp , h

n−1
)

is the utility for
MERN for response rna to the counter-proposal ωnp .

Suppose MERN is making the decision rna to respond to
a counter-proposal ωnp . Its utility from responding to the
proposal depends on making the best possible revelation de-
cision ψn+1

a at round n+ 1 given its response. Formally, we
write

EUa
(
rna | ψn, ωna , rnp = F, ωnp , h

n−1
)

=

max
rna∈{T,F}

max
ψn+1

a ∈Ψn+1
a

EUa(ψn+1
a | hn) (3)

where hn is hn−1∪
{
ψn, ωna , r

n
p = F, ωnp , r

n
a

}
. Suppose that

MERN is making the decision ψn+1
a to reveal chips at round

n + 1. In this round, it is the person who makes the first
proposal. Therefore, the expected utility of MERN’s reve-
lation decision depends on the models p

(
ωn+1
p | ψn+1, hn

)
and p

(
ψn+1
p | hn

)
of how people make proposals and reveal

chips in round n+ 1. Formally,

EUa
(
ψn+1
a | hn

)
=

∑
ψn+1

p ∈Ψn+1
p

p
(
ψn+1
p | hn

)
·

∑
wn+1

p ∈Ωn+1
p

p
(
ωn+1
p | ψn+1, hn

)
·

max
rn+1
a ∈{T,F}

EUa
(
rn+1
a | ψn+1, ωn+1

p , hn
)

(4)
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where EUa
(
rn+1
a | ψn+1, ωn+1

p , hn
)

denotes the expected
utility for MERN for making response rn+1

a to the person’s
proposal ωn+1

p in round n+1. If MERN accepts the proposal
ωn+1
p , the game will proceed to round n + 2, and MERN

will decide how many chips to reveal. If MERN rejects the
proposal, it will make the best counter proposal at round n+
1. MERN will choose the response that is associated with
the best utility out of these two options. Formally,

EUa
(
rn+1
a | ψn+1, ωn+1

p , hn
)

=

max
[
EUa

(
ψn+2
a | hn+1

)
,

max
ωn+1

a ∈Ωn+1
a

EUa
(
ωn+1
a | ψn+1, ωn+1

p , rn+1
a = F, hn

)
]

(5)

whereEUa
(
ψn+2
a | hn+1

)
is defined in Equation 1, the his-

tory hn+1 is hn ∪
{
ψn+1, ωn+1

p , rn+1
a = T

}
and

EUa
(
ωn+1
a | ψn+1, ωn+1

p , rn+1
a = F, hn

)
is the utility to

MERN from making the counter-proposal ωn+1
a in round

n+1. In turn, the utility for MERN for this proposal depends
on its model p

(
rn+1
p | ψn, ωn+1

p , rn+1
a = F, ωn+1

a , hn
)

of
how people respond to proposals

EUa
(
ωn+1
a | ψn+1, ωn+1

p , rn+1
a = F, hn

)
=∑

rn+1
p ∈{T,F}

p
(
rn+1
p | ψn+1, ωn+1

p , rn+1
a = F, ωn+1

a , hn
)
·

max
ψn+2

a ∈Ψn+2
a

EU
(
ψn+2
a | hn+1

)
(6)

where EU
(
ψn+2
a | hn+1

)
is defined in Equation 1.

Learning in the Game
In this section we detail how MERN learned the probabilis-
tic models used to make its decisions in the previous section.
For people, this consisted of predicting the set of chips peo-
ple reveal, the proposals they make, and how they responded
to a given proposal. For MERN, this consisted of predicting
its final score in the game.

Because the number of possible proposals and revelations
is exponential in the total number of chips given to both
players we defined equivalence classes over proposals and
revelations in the game. For brevity, we describe these fea-
tures from the point of view of the person, but they can also
be defined from the point of view of the agent. Because
players cannot observe each other’s chips, these classes are
based on the chips players need to get to the goal square, but
not on the chips in their possession. Specifically, we say that
the needed chips for the person, denoted NCnp , is the set of
chips the person needs to get to the goal square given its lo-
cation on the board at round n (regardless of the chips in the
person’s possession). For instance, for the person playing
the role of the “M” player in Figure 1, this set equals 4 green,
3 cyan chips, and one purple chip. The needed chips for the
agentNCna (playing the “O” role) include 4 red chips, 3 gray
chips and one purple chip. We denote the set of needed chips
for both players as the pair NCn = 〈NCnp , NCna 〉. We say

two revelations at round n are equivalent if they agree on the
following characterization functions given NCn:

• α1(ψnp ) =
∣∣ψnp ∩NCna ∣∣ The number of chips revealed

by the person that are useful to the agent. For example,
in the game described in Figure 1, suppose that the “M”
player has revealed one red and one gray chip. Both of
these chips are needed by the “O” player, and therefore
this function equals 2.

• α2(ψnp ) =
∣∣ψnp ∩NCnp ∣∣ The number of chips revealed

by the person that are useful to the person. In the board
described in Figure 1, this feature equals 0 given that the
“M” player revealed a red and gray chip.

• α3(ψnp ) =
∣∣ψip \ (NCia ∪NCip)

∣∣ The number of chips
revealed by the person that were not useful for both the
agent and the person. In the board described in Figure 1,
this feature equals 0 given that the “M” player revealed a
red and gray chip.

These functions can also be used to characterize the agent’s
revelations. An example for two equivalent revelations,
given the players’ positions in Figure 1, is a revelation of
one red and one gray chip and a revelation of two red chips
by player “M”. In a similar fashion, we also defined a similar
equivalence relation over proposals at round n.

Feature Selection
We trained a separate classifier for each action using a data
set consisting of people’s play in revelation games.4 Each
classifier was fitted with a different subset of features, those
for which it achieved the best performance on a held out
set of data instances using ten-fold cross-validation. We de-
scribe the set of features that were useful for all of the learn-
ing tasks, termed the “common feature set”:

1. The current round n in the game.

2. The total number of accepted and rejected proposals by
the person in rounds 0 through n−1. This feature reflects
the person’s willingness to accept offers throughout the
game.

3. |Cna | −
∣∣C0
a

∣∣ The difference between the number of chips
in the possession of the agent in round n and the chips it
was given at the onset of the game. This feature measures
the “chips balance” for the agent.

4.
∣∣NCnp ∣∣ This feature measures the number of chips needed
by the person in round n. It estimates its current perfor-
mance in the game without relying on information that is
not observed by players in the game.

5.
∑n
i=o α1

(
ψip
)

This feature measures the sum of the num-
ber of chips revealed by the person in rounds 0 through n
that were useful to the agent.

6.
∑n
i=o α2

(
ψip
)

This feature measures the sum of the num-
ber of chips revealed by the person in rounds 0 through n
that were useful to the person.

4The data set consisted of 97 games. We provide additional
details on how we collected this data in the next section.
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Model Predictor Accuracy
Accepting Proposals SVM (linear kernel) 71%
Making Proposals multi-class LG 68%

Revelations multi-class LG 72%
Reaching the goal LG 82%

Table 1: Predictors and accuracy (LG for Logistic Regres-
sion)

7.
∑n
i=o α3

(
ψip
)

This feature measures the sum of the num-
ber of chips revealed by the person in rounds 0 through n
that were not useful for both the person and the agent.

Note that features (4)-(7) are described from the point of
view of the human player. We also included these features
from the point of view of the agent. The common feature
set was incorporated into all of the classifiers we used in the
study. For brevity, we do not list features added for specific
tasks: predicting whether a proposal made by the agent ωna
will be accepted by the person, predicting players’ revela-
tions and proposals, and predicting whether the agent would
reach the goal in the end of the game.

Prediction Accuracy
Table 1 summarizes the chosen predictor and the resulting
accuracy for each learning task, comparing between Support
Vector Machines, and linear and logistic regression meth-
ods. As shown by the Table, an SVM classifier with a lin-
ear kernel was found to be the most accurate for predicting
whether a proposal ωna will be accepted by the human re-
sponder (71%). A logistic regression model was found to be
most accurate for predicting players’ revelations (72%) and
proposals (68%). A logistic regression classifier was found
most accurate (82%) for predicting whether the agent would
reach the goal at the end of the game. Lastly, a linear re-
gression was chosen to estimate the agent’s final score in the
game. This estimate is used by the MERN agent to assign
values to its actions in intermediate states in the game. The
best prediction was obtained when learning separate regres-
sion models for cases in which the agent reached the goal,
and did not reach the goal. The expected score was com-
puted as follows:

fa(hn) =
∑

G∈{T,F}

p
(
G | hn−1

)
· ŷ
(
hn−1 | G

)
(7)

where p
(
G | hn−1

)
is the agent’s probability for reaching

(for G = T ) and not reaching (for G = F ) the goal.
ŷ
(
hn−1 | G

)
is the linear regression result, where the fea-

tures are taken from games where the agent has reached the
goal (for G = T ) and hasn’t reached the goal (for G = F ).

Empirical Methodology
We recruited 410 subjects using Amazon Mechanical
Turk(Kittur, Chi, and Suh 2008). Subjects received an iden-
tical tutorial and needed to answer a series of basic compre-
hension questions about the game. Each participant played
only one game. The board in the study fulfilled the following
conditions at the onset of the game: (1) Every player lacks

some of the chips needed to reach the goal; (2) Every player
possesses the chips that the other needs to get to the goal; (3)
There exists at least one proposal which allows both players
to reach the goal.

Participants were paid according to their performance in
the game and divided into several pools. The first pool con-
sisted of people playing other people (45 games). The sec-
ond pool consisted of people playing a computer agent us-
ing a predefined strategy (39 games). The purpose of this
pool was to collect reactions to diverse situation, such as
their response to proposals and chips revelations that were
never made by other people. The third pool was consisted
of people playing the MERN agent (24 games). We used
two-thirds of the first pool and the complete second pool to
train models of human behavior, as described in the previ-
ous section. We use the remaining third of the first pool and
the complete third pool to test the performance of the MERN
agent. In addition, we collected more data for the generaliza-
tions process, as described in the next section. MERN used
the prediction model described in Section and the Expecti-
max search described in Section to compute its strategy. We
set k = 2, meaning the tree was grown for two ply before
estimating its score in the game using the function fa(hn).

Results and Discussion
In this section we demonstrate the efficacy of the MERN
agent by comparing its performance to new people, as well
as to an agent using an alternative negotiation strategy that
was designed by experts. For each result, we list the mean,
standard deviation and number of observations. All results
reported in this section are statistically significant in the
p < 0.05 range using t-test and Mann Whitney tests as ap-
propriate.

We first present a comparison of the average performance
of MERN and people (when interacting with other people).
The average score of MERN (101.88±sd = 25.45, n = 24)
was significantly higher than people (63.97 ± 47.97, n =
30). In addition, MERN was able to get to the goal (96%)
significantly more often than people (60%). MERN also had
a positive influence on people’s individual performance and
social welfare in the game: The performance of people in-
teracting with MERN (85.83 ± 41.45, n = 24) was sig-
nificantly higher than the performance of people interacting
with other people (63.97± 47.97). The aggregate utility for
both players (the social welfare) was higher when interact-
ing with MERN (187.71 ± 28.61) than with other people
(127.17± 75.4).

Strategic Analysis
To facilitate the description of MERN’s negotiation strat-
egy, we make the following definitions. Let i, j be the two
players in the game (whether agent or person). We define
the score to i from a j’s proposal ωnj in round n, denoted
πi(ω

n
j | hn−1) as the score to i given that the proposal is

realized (the chips are transferred for both sides), and play-
ers are moved as close as possible to the goal. We use the
associated score to define the following measures, which are
computed from the point of view of an oracle (that is, they
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assume knowledge of players’ chips in the game): We de-
fine the helpfulness of a proposal ωni made by player i at
round n as πj(ωni | hn−1), that is, the score to j that is
associated with the offer made by i. We define the compet-
itiveness of a proposal ωni made by player i at round n as
πi(ω

n
i | hn−1) − πj(ωni | hn−1), that is, the difference in

the scores to player i and player j associated with the offer.
The results revealed two opposing patterns in MERN’s

negotiation strategy. The first pattern included cooperative
behavior: MERN learned to make proposals that were sig-
nificantly more helpful to people (83.52 ± 31.17, n = 44),
than proposals made by people to other people (37.52 ±
43.49, n = 204). The second pattern was competitive:
The proposals made by MERN to other people were sig-
nificantly more competitive (24.89 ± 37.44) than propos-
als made by people to other people (10.47 ± 57.11). To
explain this discrepancy, we need to show how MERN
evolved its negotiation strategy over time. In early rounds
of the game (rounds 1-4), MERN made highly competitive
offers (32.70 ± 33.18, n = 36), while in the last round
of the game (round 5) it was significantly more generous
(−42.50 ± 5.00, n = 8). An example of a proposal made
by MERN in round 1 consists of asking for 4 red and 4 gray
chips in return for 1 green and 4 cyan chips. This proposal
is associated with a score of 115 points for MERN and 25
points for the person. Conversely, the proposal made by
MERN in round 5 consists of asking for 1 gray in return
for 3 green and 1 cyan chips. This proposal is associated
with a score of 80 for MERN and 125 for the person.

Playing this “hard-headed” strategy affected people’s be-
havior, in that people’s average acceptance rate (per pro-
posal) when interacting with MERN (19%) was significantly
lower than when interacting with other people (36%). How-
ever, for those games in which MERN rejected peoples’ pro-
posals in rounds 1-4, peoples’ average acceptance rate for
the competitive offers made by MERN in those rounds was
very high (88%). Thus, MERN was able to learn to make
competitive offers to people that were eventually likely to
be accepted. This strategy also affected the efficiency of the
offers made by MERN in the game in that 78% of MERN’s
proposals were pareto optimal, while only 17% of peoples’
proposals.

Interestingly, MERN’s strategy had a positive effect on
people’s behavior. People playing MERN offered signifi-
cantly more pareto optimal proposals (42%), and their pro-
posals were significantly more helpful (68.10± 53.26, n =
79). This result is striking, in that people’s success in the
game is attributed not only due to the beneficial offers made
by MERN, but also to the change in their strategy.

Generalizing the model
In this section we show that our approach was able to gener-
alize across different number of rounds. We tested MERN’s
performance on a two rounds interactions, rather than five.5.
We found, unsurprisingly, that a straightforward deployment

585% of the games were ended before the fifth round, so in-
creasing the rounds number is not likely to change the results sig-
nificantly.

of MERN in the modified game (using predictors of hu-
man behavior trained on a game with 5 rounds) resulted
in poor performance (64.44 ± 51.15, n = 18, as com-
pared to 101.88 ± 25.45, n = 24 on the original settings).
MERN was still able to perform significantly better than
people (33.12 ± 36.46, n = 32). The social welfare in
MERN’s games (112.78 ± 90.37, n = 18) was also sig-
nificantly higher than the social welfare in people’s games
(66.25± 70.48, n = 16).

We hypothesized that MERN’s performance could be im-
proved by separating the data from the original 5-round
games into segments of two rounds, without collecting new
data. To this end, we recomputed the value of the aggregate
features on each of these two-round segments. All other as-
pects of MERN’s decision-making remained the same. Us-
ing the new features, MERN significantly improved its per-
formance (84.41 ± 27.33, n = 17, p = 0.015) on games
with two rounds, compared to MERN’s play using the origi-
nal five-round features. The social welfare obtained for both
players was also significantly higher (173.82 ± 60.14, n =
17, p = 0.001) using this approach. An interesting facet of
MERN’s behavior in these two-round settings was that the
adaptation process of its “hard-headed” strategy was very
quick. Specifically, when people rejected its offer in the first
round, it immediate gave generous offer in the second round.
In comparison for the low acceptance rate in the five-rounds
games (19%), here people accepted 52% of MERN propos-
als.

Conclusion
This paper presented an agent-design for repeated negotia-
tion with people in incomplete information settings where
participants can choose to reveal private information at var-
ious points during the negotiation process. The agent used
opponent modeling techniques to predict people’s behavior
during the game, based on a set of features that included
players’ social factors as well as game-dependent informa-
tion and the effects of people’s revelation decisions on their
negotiation behavior. The parameters of the model were es-
timated from data consisting of people’s interactions with
other people. In empirical investigations, the agent was able
to outperform people playing other people. It was also able
to generalize to different settings that varied rules and situa-
tional parameters of the game without the need to accumu-
late new data. The agent learned to play a “hard-headed”
strategy, which was shown to be very effective when play-
ing revelation games with people. This work is a first step
towards a general argumentation system in which agents in-
tegrate explanations and justifications within their negotia-
tion process.
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