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Abstract
The Rao-Blackwell theorem is utilized to analyze and
improve the scalability of inference in large probabilis-
tic models that exhibit symmetries. A novel marginal
density estimator is introduced and shown both analyti-
cally and empirically to outperform standard estimators
by several orders of magnitude. The developed theory
and algorithms apply to a broad class of probabilistic
models including statistical relational models consid-
ered not susceptible to lifted probabilistic inference.

Introduction
Many successful applications of artificial intelligence re-
search are based on large probabilistic models. Examples
include Markov logic networks (Richardson and Domingos
2006), conditional random fields (Lafferty, McCallum, and
Pereira 2001) and, more recently, deep learning architec-
tures (Hinton, Osindero, and Teh 2006; Bengio and LeCun
2007; Poon and Domingos 2011). Especially the models one
encounters in the statistical relational learning (SRL) litera-
ture often have joint distributions spanning millions of vari-
ables and features. Indeed, these models are so large that,
at first sight, inference and learning seem daunting. For nu-
merous of these models, however, scalable approximate and,
to a lesser extend, exact inference algorithms do exist. Most
notably, there has been a strong focus on lifted inference
algorithms, that is, algorithms that group indistinguishable
variables and features during inference. For an overview
we refer the reader to (Kersting 2012). Lifted algorithms
facilitate efficient inference in numerous large probabilistic
models for which inference is NP-hard in principle.

We are concerned with the estimation of marginal prob-
abilities based on a finite number of sample points. We
show that the feasibility of inference and learning in large
and highly symmetric probabilistic models can be explained
with the Rao-Blackwell theorem from the field of statistics.
The theory and algorithms do not directly depend on the
syntactical nature of the relational models such as arity of
predicates and number of variables per formula but only on
the given automorphism group of the probabilistic model,
and are applicable to classes of probabilistic models much
broader than the class of statistical relational models.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Consider an experiment where a coin is flipped n times.
While a frequentist would assume the flips to be i.i.d., a
Bayesian typically makes the weaker assumption of ex-
changeability – that the probability of an outcome sequence
only depends on the number of “heads” in the sequence and
not on their order. Under the non-i.i.d. assumption, a pos-
sible corresponding graphical model is the fully connected
graph with n nodes and high treewidth. The actual number
of parameters required to specify the distribution, however,
is only n+1, one for each sequence with 0 ≤ k ≤ n “heads.”
Bruno de Finetti was the first to realize that such a sequence
of random variables can be (re-)parameterized as a unique
mixture of n+1 independent urn processes (de Finetti 1938).
It is this notion of a parameterization as a mixture of urn pro-
cesses that is at the heart of our work. A direct application of
de Finetti’s results, however, is often impossible since not all
variables are exchangeable in realistic probabilistic models.

Motivated by the intuition of exchangeability, we show
that arbitrary model symmetries allow us to re-paramterize
the distribution as a mixture of independent urn processes
where each urn consists of isomorphic joint assignments.
Most importantly, we develop a novel Rao-Blackwellized
estimator that implicitly estimates the fewer parameters of
the simpler mixture model and, based on these, computes
the marginal densities. We identify situations in which the
application of the Rao-Blackwell estimator is tractable. In
particular, we show that the Rao-Blackwell estimator is al-
ways linear-time computable for single-variable marginal
density estimation. By invoking the Rao-Blackwell theo-
rem, we show that the mean squared error of the novel esti-
mator is at least as small as that of the standard estimator and
strictly smaller under non-trivial symmetries of the proba-
bilistic model. Moreover, we prove that for estimates based
on sample points drawn from a Markov chainM, the bias of
the Rao-Blackwell estimator is governed by the mixing time
of the quotient Markov chain whose convergence behavior
is superior to that ofM.

We present empirical results verifying that the Rao-
Blackwell estimator always outperforms the standard esti-
mator by up to several orders of magnitude, irrespective of
the model structure. Indeed, we show that the results of the
novel estimator resemble those typically observed in lifted
inference papers. For the first time such a performance is
shown for an SRL model with a transitivity formula.
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Background
We review some concepts from group and estimation theory.

Group Theory A group is an algebraic structure (G, ◦),
where G is a set closed under a binary associative operation
◦ with an identity element and a unique inverse for each el-
ement. We often write G rather than (G, ◦). A permutation
group acting on a set Ω is a set of bijections g : Ω→ Ω that
form a group. Let Ω be a finite set and let G be a permuta-
tion group acting on Ω. If α ∈ Ω and g ∈ G we write αg

to denote the image of α under g. A cycle (α1 α2 ... αn)
represents the permutation that maps α1 to α2, α2 to α3,...,
and αn to α1. Every permutation can be written as a product
of disjoint cycles. A generating set R of a group is a subset
of the group’s elements such that every element of the group
can be written as a product of finitely many elements of R
and their inverses.

We define a relation ∼ on Ω with α ∼ β if and only if
there is a permutation g ∈ G such that αg = β. The relation
partitions Ω into equivalence classes which we call orbits.
We call this partition of Ω the orbit partition induced by G.
We use the notation αG to denote the orbit {αg | g ∈ G}
containing α. For a permutation group G acting on Ω and a
sequence A = 〈α1, ..., αk〉 ∈ Ωk we write Ag to denote the
image 〈α1

g, ..., αk
g〉 of A under g. Moreover, we write AG

to denote the orbit of the sequence A.

Point Estimation Let s1, ..., sN be N sample points
drawn from some distribution P . An estimator θ̂N of a pa-
rameter θ is a function of s1, ..., sN . The bias of an estimator
is defined by bias(θ̂N ) := E[θ̂N − θ] and the variance by
Var(θ̂N ) := E[(θ̂N − E(θ̂N ))2], where E is the expectation
with respect to P , the distribution that generated the data.
We say that θ̂N is unbiased if bias(θ̂N ) = 0. The qual-
ity of an estimator is often assessed with the mean squared
error (MSE) defined by MSE[θ̂N ] := E[(θ̂N − θ)2] =

Var(θ̂N ) + bias(θ̂N )2.

Theorem 1 (Rao-Blackwell). Let θ̂ be an estimator with
E[θ̂2] < ∞ and T a sufficient statistic both for θ, and let
θ̂∗ := E[θ̂ | T ]. Then, MSE[θ̂∗] ≤ MSE[θ̂]. Moreover,
MSE[θ̂∗] < MSE[θ̂] unless θ̂∗ is a function of θ̂.

Finite Markov chains A finite Markov chainM defines a
random walk on elements of a finite set Ω. For all x, y ∈ Ω,
Q(x, y) is the chain’s probability to transition from x to y,
and Qt(x, y) = Qt

x(y) the probability of being in state y
after t steps if the chain starts at x. A Markov chain is
irreducible if for all x, y ∈ Ω there exists a t such that
Qt(x, y) > 0 and aperiodic if for all x ∈ Ω, gcd{t ≥
1 | Qt(x, x) > 0} = 1. An irreducible and aperiodic chain
converges to its unique stationary distribution and is called
ergodic.

The total variation distance dtv of the Markov chain from
its stationary distribution π at time t with initial state x is
defined by

dtv(Q
t
x, π) =

1

2

∑
y∈Ω

|Qt(x, y)− π(y)|.

For ε > 0, let τx(ε) denote the least value T such that
dtv(Q

t
x, π) ≤ ε for all t ≥ T . The mixing time τ(ε) is

defined by τ(ε) = max{τx(ε) | x ∈ Ω}.

Related Work
There are numerous lifted inference algorithms such as
lifted variable elimination (Poole 2003), lifted belief
propagation (Singla and Domingos 2008; Kersting, Ah-
madi, and Natarajan 2009), first-order knowledge compi-
lation (Van den Broeck 2011), and lifted variational infer-
ence (Choi and Amir 2012). Probabilistic theorem proving
applied to a clustering of the relational model was used to
lift the Gibbs sampler (Venugopal and Gogate 2012). Recent
work exploits automorphism groups of probabilistic models
for more efficient probabilistic inference (Bui, Huynh, and
Riedel 2012; Niepert 2012). Orbital Markov chains (Niepert
2012) are a class of Markov chains that implicitly operate on
the orbit partition of the assignment space and do not invoke
the Rao-Blackwell theorem.

Rao-Blackwellized (RB) estimators have been used for
inference in Bayesian networks (Doucet et al. 2000; Bidyuk
and Dechter 2007) and latent Dirichlet allocation (Teh, New-
man, and Welling 2006) with application in robotics (Stach-
niss, Grisetti, and Burgard 2005) and activity recogni-
tion (Bui, Venkatesh, and West 2002). The RB theorem and
estimator are important concepts in statistics (Gelfand and
Smith 1990; Casella and Robert 1996).

Symmetry-Aware Point Estimation
An automorphism group of a probabilistic model is a
group whose elements are permutations of the probabilis-
tic model’s random variables X that leave the joint distri-
bution P (X) invariant. There is a growing interest in com-
puting and utilizing automorphism groups of probabilistic
models for more efficient inference algorithms (Bui, Huynh,
and Riedel 2012; Niepert 2012). The line of research is pri-
marily motivated by the highly symmetric nature of statis-
tical relational models and provides a complementary view
on lifted probabilistic inference. Here, we will not be con-
cerned with deriving automorphism groups of probabilistic
models but with developing algorithms that utilize these per-
mutation groups for efficient marginal density estimation.
Hence, we always assume a given automorphism group G
of the probabilistic model under consideration.

We begin by deriving a re-parameterization of the joint
distribution in the presence of symmetries that generalizes
the mixture of independent urn processes parameterization
for finitely exchangeable variables (Diaconis and Freedman
1980). All random variables are assumed to be discrete.

Let X = 〈X1, ..., Xn〉 be a finite sequence of discrete
random variables with joint distribution P (X), let G be an
automorphism group of X, and letO be an orbit partition of
the assignment space induced by G. Please note that for any
x,x′ ∈ O ∈ O we have P (x) = P (x′). For a subsequence
X̂ of X and an orbit O ∈ O we write P (X̂ = x̂ | O) for the
marginal density P (X̂ = x̂) conditioned on O. Thus,

P (X̂ = x̂ | O) =
1

|O|
∑
x∈O

I{x〈X̂〉=x̂},

726
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1 2 3 4 

1 2 3 4 

Figure 1: Illustration of the orbit partition of the assignment
space induced by the renaming automorphism group {(A B),
()}. A renaming automorphism is a permutation of constants
that forms an isomorphism between two graphical models.
(a) An MLN with three formulas and the grounding for two
constants A and B; (b) the state space of a Gibbs chain with
non-zero transitions indicated by lines and without self-arcs;
(c) the lumped state space of the quotient Markov chain
which has 10 instead of 16 states. The joint distribution can
be expressed as a mixture of draws from the orbits.

where I is the indicator function and x〈X̂〉 the assignment
within x to the variables in the sequence X̂. We can now
(re-)parameterize the marginal density as a mixture of inde-
pendent orbit distributions

P (X̂ = x̂) =
∑
O∈O

P (X̂ = x̂ | O)P (O),

where P (O) =
∑

x∈O P (X = x). For instance, the joint
distribution of the Markov logic network in Figure 1(a) can
be parameterized as a mixture of the distributions for the 10
orbits depicted in Figure 1(c).

Let us first recall the standard estimator used in most
sampling approaches. After collecting N sample points
s1, ..., sN the standard estimator for the marginal density
θ := P (X̂ = x̂) is defined as

θ̂N :=
1

N

N∑
i=1

I{si〈X̂〉=x̂}. (1)

Now, the symmetry-aware Rao-Blackwell estimator forN
sample points s1, ..., sN is defined as

θ̂rbN :=
1

N

N∑
i=1

P (X̂ = x̂ | siG), (2)

where G is the given automorphism group that induces O.
Hence, the unbiased Rao-Blackwell estimator integrates out
the joint assignments of each orbit. We will prove that the
mean squared error of the Rao-Blackwell estimator is less

than or equal to that of the standard estimator. First, how-
ever, we want to investigate under what conditions we can
efficiently compute the conditional density of equation (2).
To this end, we establish a connection between the orbit of
the subsequence X̂ under the automorphism group G and
the orbit partition of the assignment space induced by G1.
Definition 2. Let X be a finite sequence of random vari-
ables with joint distribution P (X), let G be an automor-
phism group of X, let X̂ be a subsequence of X, let Val(X)
be the assignment space of X, and let s ∈ Val(X). The orbit
Hamming weight of s with respect to the marginal assign-
ment X̂ = x̂ is defined by

HG
X̂=x̂

(s) :=
∑

A∈X̂G

I{s〈A〉=x̂}.

Based on this definition, we state a lemma which allows
us to compute the density of equation (2) in closed form,
without having to enumerate all of the orbit’s elements.
Lemma 3. Let X be a finite sequence of random vari-
ables with joint distribution P (X), let G be an automor-
phism group of X, let X̂ be a subsequence of X, and let
s ∈ Val(X). Then,

P (X̂ = x̂ | sG) =
HG

X̂=x̂
(s)

|X̂G|
= E[θ̂N | HG

X̂=x̂
(s)].

The following example demonstrates the application of
the lemma to the special case of single-variable marginal
density estimation for the MLN in Figure 1.
Example 4. Let us assume we want to estimate the marginal
density P (smokes(A)=1) of the MLN in Figure 1(a). Since
G = {(smokes(A) smokes(B))(cancer(A) cancer(B)), ()}
we have that 〈smokes(A)〉G={〈smokes(A)〉, 〈smokes(B)〉}.
Given the sample point s = 〈1, 0, 1, 0〉 we have that
HG
〈smokes(A)〉=〈1〉(s) = 1 and P (smokes(A)=1 | sG) = 1

2 .

Thus, given a sample point s, the marginal density con-
ditioned on an orbit of the assignment space is computable
in closed form using the orbit Hamming weight of s with re-
spect to the marginal assignment since it is a sufficient statis-
tic for the marginal density. If the probabilistic model ex-
hibits symmetries, then the Rao-Blackwell estimator’s MSE
is less than or equal to that of the standard estimator.
Theorem 5. Let X be a finite sequence of random vari-
ables with joint distribution P (X), let G be an automor-
phism group of X given by a generating set R, let X̂ be a
subsequence of X, and let θ := P (X̂ = x̂) be the marginal
density to be estimated. The Rao-Blackwell estimator θ̂rbN
has the following properties:

(a) Its worst-case time complexity is O(R|X̂G|+N |X̂G|);
(b) MSE[θ̂rbN ] ≤ MSE[θ̂N ].

The inequality of (b) is strict if there exists a joint assignment
s with non-zero density and 0 < HG

X̂=x̂
(s) < |X̂G| > 1.

1Please note the two different types of orbit partitions discussed
here. One results from G acting on the assignment space the other
from G acting on sequences of random variables.
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For single-variable density estimation the worst-case time
complexity of the Rao-Blackwell estimator is O(R|X| +
N |X|) and, therefore, linear both in the number of variables
and the number of sample points. For most symmetric mod-
els, the inequality of Theorem 5(b) is strict and the Rao-
Blackwell estimator outperforms the standard estimator, a
behavior we will verify empirically.

Please note that in the special case of single-variable
marginal density estimation the RB estimator is identical to
the estimator that averages the identically distributed vari-
ables located in the same orbit. The advantages of utilizing
the Rao-Blackwell theory are (1) it directly provides con-
ditions for which the inequality of Theorem 5(b) is strict;
(2) it generalizes the single-variable case to marginals span-
ning multiple variables; (3) it allows us to investigate the
completeness of an estimator with respect to a given auto-
morphism group; and (4) it provides the link to the quotient
Markov chain in the MCMC setting and its superior conver-
gence behavior presented in the following section.

The Rao-Blackwell estimator is unbiased if the drawn
sample points are independent. Since it is often only prac-
tical to collect sample points from a Markov chain, the bias
for a finite number of N points will depend on the chain’s
mixing behavior. We will show that if there are non-trivial
model symmetries and if we are using the Rao-Blackwell
estimator, we only need to worry about the mixing behavior
of the Markov chain whose state space is the orbit partition.

Symmetry-Aware MCMC
Whenever we collect sample points from a Markov chain,
the efficiency of an estimator is influenced by (a) the mix-
ing behavior of the Markov chain and (b) the variance of the
estimator under the assumption that the Markov chain has
reached stationarity, that is, the asymptotic variance (Neal
2004). That the Rao-Blackwell estimator’s asymptotic vari-
ance is at least as low as that of the standard estimator is
a corollary of Theorem 5. We show that the same is true
for the bias that is caused by the fact that we collect a finite
number of sample points from Markov chains which never
exactly reach stationarity.

A lumping of a Markov chain is a partition of its state
space which is possible under certain conditions on the tran-
sition probabilities of the original Markov chain (Buchholz
1994; Derisavi, Hermanns, and Sanders 2003).
Definition 6. LetM be an ergodic Markov chain with tran-
sition matrixQ, stationary distribution π, and state space Ω,
and let C = {C1, ..., Cn} be a partition of the state space. If
for all Ci, Cj ∈ C and all si′, si′′ ∈ Ci

Q′(Ci, Cj) :=
∑

sj∈Cj

Q(si
′, sj) =

∑
sj∈Cj

Q(si
′′, sj)

then we say thatM is ordinary lumpable with respect to C.
If, in addition, π(s′i) = π(s′′i ) for all s′i, s

′′
i ∈ Ci and all

Ci ∈ C thenM is exactly lumpable with respect to C. The
Markov chainM′ with state space C and transition matrix
Q′ is called the quotient chain ofM with respect to C.

Every finite ergodic Markov chain is exactly lumpable
with respect to an orbit partition of its state space. The fol-

lowing theorem states this and the convergence behavior of
the quotient Markov chain in relation to the original Markov
chain (cf. (Boyd et al. 2005)).

Proposition 7. LetM be an ergodic Markov chain and let
O be an orbit partition of its state space. Then, the Markov
chain M is exactly lumpable with respect to O. If M is
reversible, then the quotient Markov chainM′ with respect
to O is also reversible. Moreover, the mixing time ofM′ is
smaller than or equal to the mixing time ofM.

Example 8. Figure 1(b) depicts the state space of the Gibbs
chain for the MLN shown in Figure 1(a). The constants re-
naming automorphism group {(A B), ()} acting on the sets
of constants leads to the automorphism group {(smokes(A)
smokes(B))(cancer(A) cancer(B)), ()} on the ground level.
This permutation group acting on the state space of the
Gibbs chain induces an orbit partition which is the state
space of the quotient Markov chain (see Figure 1(c)).

The explicit construction of the state space of a quotient
Markov chain is intractable. Given an automorphism group
G, merely counting the number of equivalence classes of
the orbit partition of the assignment space induced by G
is known to be a #P-complete problem (Goldberg 2001).
Nevertheless, if the Rao-Blackwell estimator is utilized, one
can draw the sample points from the original Markov chain
while analyzing the convergence behavior of the quotient
Markov chain of the original chain.

Theorem 9. Let X be a finite sequence of random variables
with joint distribution P (X), letM be an ergodic Markov
chain with stationary distribution P , and let O be an orbit
partition ofM’s state space. Let θ̂rbN be the Rao-Blackwell
estimator for N sample points sT+1, ..., sT+N collected
from M, after discarding the first T sample points. Then,
|bias(θ̂rbN )| ≤ ε if T ≥ τ ′(ε), where τ ′(ε) is the mixing time
of the quotient Markov chain ofM with respect to O.

Hence, if one wants to make sure that the absolute value
of the bias of the Rao-Blackwell estimator is smaller than
a given ε > 0, one only needs a burn-in period consisting
of τ ′(ε) simulation steps, where τ ′(ε) is the mixing time of
the quotient Markov chain. Existing work on analyzing the
influence of symmetries in random walks has shown that it
is often more convenient to investigate the mixing behavior
of the quotient Markov chain (Boyd et al. 2005). In the con-
text of marginal density estimation, Markov chains implic-
itly operating on the orbit partition of the assignment space
were shown to have better mixing behavior (Niepert 2012).

In summary, whenever probabilistic models exhibit non-
trivial symmetries we can have the best of both worlds. The
bias owed to the fact that we are collecting a finite number of
sample points from a Markov chain as well as the asymptotic
variance (Neal 2004) of the Rao-Blackwell estimator are at
least as small as those of the standard estimator. The more
symmetric the probabilistic model the larger the reduction in
mean squared error.

We now present the experimental results for several large
probabilistic models, both relational and non-relational.
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(a) The asthma-smokes-cancer MLN
with 50 people and 10% evidence.
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(b) The smokes-cancer MLN with 50
people and 10% evidence.
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(c) The smokes-cancer MLN with 50
people, no evidence, and transitivity.
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(d) The smokes-cancer MLN with 50
people, 10% evidence, and transitivity.
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(e) The 2-coloring 100× 100 grid model
with weight 0.2.
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(f) The 2-coloring 100× 100 grid model
with hard constraints.

Figure 2: Plots of average KL divergence versus time in seconds of the two MCMC algorithms with the standard estimator
(standard) and the Rao-Blackwell estimator (aggregated) for various probabilistic models.

Experiments
The aim of the empirical investigation is twofold. First, we
want to verify the efficiency of the novel Rao-Blackwell es-
timator when applied as a post-processing step to the output
of state-of-the-art sampling algorithms. Second, we want to
test the hypothesis that the efficiency gains of the novel es-
timator on standard SRL models are similar empirically to
those of state-of-the-art lifted inference algorithms.

For the SRL models we computed the orbit partitions
of the variables based on the model’s renaming automor-
phisms (Bui, Huynh, and Riedel 2012). As discussed earlier,
renaming automorphisms are computable in time linear in
the domain size. We applied GAP (GAP 2012) to compute
the variables’ orbit partition. For all non SRL models we
computed the automorphism group and the orbit partitions
as in (Niepert 2012) using the graph automorphism algo-
rithm SAUCY (Darga, Sakallah, and Markov 2008) and the
GAP system, respectively. Overall, the computation of the
orbit partitions of the models’ variables took less than one
second for each of the probabilistic models we considered.

We conducted experiments with several benchmark
Markov logic networks, a statistical relational language gen-
eral enough to capture numerous types of graphical mod-
els (Richardson and Domingos 2006). Here, we used (a) the
asthma-smokes-cancer MLN (Venugopal and Gogate 2012)
with 10% evidence2; (b) the “Friends & Smokers” MLN ex-

2For a random 10% of all people it is known (a) whether they
smoke or not and (b) who 10 of their friends are.

actly as specified in (Singla and Domingos 2008) with 10%
evidence; and the “Friends & Smokers” MLN with the tran-
sitivity formula on the friends relation having weight 1.0,
(c) without and (d) with 10% evidence. Each of the models
had between 10 and 100 objects in the domain, leading to
log-linear models with 102-104 variables and 102-106 fea-
tures. We used WFOMC (Van den Broeck 2011), to com-
pute the exact single-variable marginals of the asthma MLN.
For all other MLNs, existing exact lifted inference algorithm
were unable to compute single-variable densities. In these
cases, we performed several very long runs (burn-in 1 day;
overall 5 days) of a Gibbs sampler guaranteed to be ergodic
and made sure that state-of-the-art MCMC diagnostics indi-
cated convergence (Brooks and Gelman 1998).

We executed our implementation of the standard Gibbs
sampler and ALCHEMY’s implementation of the MC-SAT
algorithm (Poon and Domingos 2006) on the MLNs based
on 10 separate runs, without a burn-in period. For each sam-
pling algorithm we computed the marginal densities with
the standard estimator and the Rao-Blackwell estimator, re-
spectively, which we implemented in the GAP program-
ming language3. Figure 2 depicts, for each MLN, the av-
erage Kullback-Leibler divergence4 between the estimated
and precomputed true single-variable marginals of the non-
evidence variables plotted against the absolute running time

3https://code.google.com/p/lifted-mcmc/
4We computed both MSE and average KL divergence but omit-

ted the qualitatively identical MSE results due to space constraints.
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(b) Number of sample points for
the smokes-cancer MLN.
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(c) Average time for the smokes-
cancer MLN with transitivity.

10 25 50 75 100
number of persons

104

105

106

107

108

nu
m

be
ro

fs
am

pl
es

standard Gibbs
aggregated Gibbs

(d) Sample points for the smokes-
cancer MLN with transitivity.

Figure 3: Average time and number of sample points, respectively, needed to achieve an average KL divergence of < 0.0001.

of the algorithms in seconds.
The Rao-Blackwell estimator improves the density esti-

mates by at least an order of magnitude and, in the absence
of evidence, even up to four orders of magnitude relative
to the standard estimator. The improvement of the empir-
ical results is independent of the relational structure of the
MLNs. For the MLN with a transitivity formula on the
friends relation, generally considered a problematic and
as of now not domain-liftable model, the results are as pro-
nounced as for the MLNs known to be domain-liftable.

We also conducted experiments with non-SRL models to
investigate the efficiency of the approach on graphical mod-
els. We executed the Gibbs sampler with and without using
the Rao-Blackwell estimator on a 100× 100 2-coloring grid
model with binary random variables. The symmetries of the
model are the reflection and rotation automorphisms of the
2-dimensional square grid. Figure 2(e) depicts the plot of the
average KL divergence against the running time in seconds,
where each pairwise factor between neighboring variables
X,Y was defined as exp(0.2) if X 6= Y , and 1 otherwise.
Figure 2(f) depicts the plot of the same grid model except
that the pairwise factors were defined as 1 if X 6= Y , and
0 otherwise. The results clearly demonstrate the superior
performance of the Rao-Backwell estimator even for proba-
bilistic models with a smaller number of symmetries.

In addition, we analyzed the impact of the domain size on
the estimator performance for (a) domain-liftable MLNs and
(b) MLNs not liftable by any state-of-the-art exact lifted in-
ference algorithm. We used the “Friends & Smokers” MLN
without evidence; and with and without the transitivity for-
mula on the friends relation. The MLN without transi-
tivity is a standard benchmark for lifted algorithms whereas
MLNs with transitivity are considered difficult and no ex-
act lifted inference algorithm exists for such MLNs as of
now. Figures 3(a)&(c) depict the time needed to achieve
an average KL divergence of less than 10−4 plotted against
the domain size of the models without and with transitivity.
The increase in runtime is far less pronounced with the Rao-
Blackwell estimator. The plots resemble those often shown
in lifted inference papers where an algorithm that can lift a
model is contrasted with one that cannot. The increase in
runtime is slightly higher for the model with transitivity but
this is owed to the size increase of each variable’s Markov
blanket and, thus, the time needed for each Gibbs sampler

step. Figures 3(b)&(d) plots the sample size required to
achieve an average KL divergence of less than 10−4 against
the domain size. Interestingly, the number of sample points
is almost identical for the model with and without transitiv-
ity, indicating that the advantage of the Rao-Blackwell esti-
mator is independent of the model’s formulas.

In Figure 3(a) we plot the results of WFOMC for com-
piling a first-order circuit and computing (a) one single-
variable marginal and (b) all single-variable marginals.
WFOMC has constant runtime for exactly computing one
single-variable marginal density. The Rao-Blackwell esti-
mation for all of the model’s variables scales sub-linearly
and is more efficient than repeated calls to WFOMC. While
we do not need to run WFOMC once per single-variable
marginal density if the variables are first partitioned into sets
of variables with identical marginal densities (de Salvo Braz,
Amir, and Roth 2005), the results demonstrate that the
symmetry-aware estimator scales comparably to exact lifted
inference algorithms on domain-liftable models and that its
runtime is polynomial in the domain size of the MLNs.

Discussion
A Rao-Blackwell estimator was developed and shown, both
analytically and empirically, to have lower mean squared
error under non-trivial model symmetries. The presented
theory provides a novel perspective on the notion of lifted
inference and the underlying reasons for the feasibility of
marginal density estimation in large but highly symmetric
probabilistic models. For the first time, the applicability of
such an approach does not directly depend on the proper-
ties of the relational structure such as the arity of predicates
and the type of formulas but only on the given evidence and
the corresponding automorphism group of the model. We
believe the theoretical and empirical insights to be of great
interest to the machine learning community and that the pre-
sented work might contribute to a deeper understanding of
lifted inference algorithms.
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